中考常考的旋转、折叠、翻转等几种经典类型
中考经典几何题讲义系列:旋转、翻折问题

∴AE=EF,∠EAF=∠EFA= =22.5°。∴∠FAB=67.5°。
2
设 AB=x,则 AE=EF= 2 x,
∴an67.5°=tan∠FAB=t FB 2x+x 2 1。故选 B。 AB x
4. (广东河 源 3 分)如图,在折纸活动中,小明制作了一张△ABC 纸片,点 D、E 分别在边 AB、 AC 上,将△ABC 沿着 DE 折叠压平,A 与 A′重合.若∠A=75º,则∠1+∠2=【 】
∴BC=CM。
设 CF=x,D′F=DF=y, 则 BC=CM=CD=CF+DF=x+y。∴FM=CM+CF=2x+y,
在 Rt△D′FM 中,tan∠M=tan30°= DF y 3 ,∴ x 3-1 y 。
FM 2x y 3
2
∴ CF x 3-1 。故选 A。 FD y 2
3. (江苏连云港 3 分)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片 ABCD 沿过点 B 的直线折叠, 使点 A 落在 BC 上的点 E 处,还原后,再沿过点 E 的直线折叠,使点 A 落在 BC 上的点 F 处,这样就可以求出 67.5° 角的正切值是【 】
A.150º
B.210º
C.105º
D.75º
【答案】A。
【考点】折叠的性质,平角的定义,多边形内角和定理。
【分析】根据折叠对称的性质,∠A′=∠A=75º。
根据平角的定义和多边形内角和定理,得
∠1+∠2=1800-∠ADA′+1800-∠AEA′=3600-(∠ADA′+∠AEA′)=∠A′+∠A=1500。
(1)如图 1,当点 D 与点 C 位于直线 AB 的两侧时,a=b=3,且∠ACB=60°,则 CD=
上海中考数学第18题分析(翻折类)

上海中考数学第18题分析(一)——翻折类前言,函数图像的变换和几何图像的变换,我们一般归类为这几类:平移、对称、翻折、旋转、伸缩;而恰恰在初三中考试卷的18题位置,对旋转和翻折的考察更是重中之重,通过旋转和翻折的深入研究,充分的展现学生对几何知识的熟练驾驭能力和对平面图形的变换规律把握能力;一、平移、旋转、翻折知识储备1、运动的性质:运动前、后的图形全等(1)平移的性质:①对应点之间的距离等于平移的距离;②对应点之间的距离相等,对应角大小相等,对应线段的长度相等;③平移前、后的图形全等.(2)旋转的性质:①对应点到旋转中心的距离相等;①对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.(3)翻折的性质:①对应线段的长度相等,对应角的大小相等,对应点到对称轴的距离相等;②翻折前、后的图形全等二、翻折类题型总结及归纳1. 翻折定义:翻折是指把一个图形按某一直线翻折180º后所形成的新的图形的变化。
2. 翻折特征:平面上的两个图形,将其中一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么说这两个图形关于这条直线对称,这条直线就是对称轴。
3. 翻折总结:解这类题抓住翻折前后两个图形是全等的,弄清翻折后不变的要素。
4. 翻折归纳:翻折在三大图形运动中是比较重要的,考查得较多.另外,从运动变化得图形得特殊位置探索出一般的结论或者从中获得解题启示,这种由特殊到一般的思想对我们解决运动变化问题是极为重要的,值得大家留意。
三、翻折类题型解题策略⑴图形翻折之“翻折边长”题型解题方法与策略:1.寻找翻折直线,即对称轴;2.根据翻折情况,画图,画图是解题的关键;3.寻找翻折相等的线段或角度;4.利用翻折并结合题目中的特殊条件解题;5.部分题目注意分类讨论。
⑵图形翻折之“翻折角度”题型解题方法与策略:1.寻找翻折直线,即对称轴;2.根据翻折情况,画图,画图是解题的关键;3.寻找翻折相等的线段或角度;4.利用翻折并结合题目中的特殊条件解题;5.利用好三角形的内角和外角性质。
中考数学专题复习翻转折叠问题

翻转折叠问题【专题点拨】图形折叠是中考中常考题型,这种题型主要考察学生对图形的认知,特别是考察轴对称的性质、全等三角形、勾股定理、相似三角形等知识综合运用。
【解题策略】有关图形折叠的相关计算,首先要熟知折叠是一种轴对称变换,即位于折痕两侧的图形关于折痕成轴对称;然后根据图形折叠的性质,即折叠前、后图形的对应边和对应角相等,对应点的连线被折痕垂直平分并结合勾股定理或相似三角形的性质进行相关计算.【典例解析】类型一:三角形折叠问题例题1:(2016·浙江省湖州市·3分)如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4 B. C.3D.2【考点】翻折变换(折叠问题);四点共圆;等腰三角形的性质;相似三角形的判定与性质.【分析】只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴=,∴BE===.故选B.变式训练1:(2016·吉林·3分)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为(用含a的式子表示).类型二:平行四边形折叠问题例题2:(2016·湖北武汉·3分)如图,在□ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为_______.【考点】平行四边形的性质【解析】∵四边形ABCD为平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠EAD,=∠DAE=20°,∠AED,=∠AED=180°-∠DAE-∠D=180°-20°-52°=108°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∴∠FED′=108°-72°=36°.变式训练2:(2016河北3分)如图,将ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为()第13题图A.66°B.104°C.114°D.124°类型三:矩形折叠问题例题3:(2016贵州毕节3分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D 落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6【解析】正方形的性质;翻折变换(折叠问题).根据折叠的性质可得DH=EH,在直角△CEH中,若设CH=x,则DH=EH=9﹣x,CE=3cm,可以根据勾股定理列出方程,从而解出CH的长.【解答】解:由题意设CH=xcm,则DH=EH=(9﹣x)cm,∵BE:EC=2:1,∴CE=BC=3cm∴在Rt△ECH中,EH2=EC2+CH2,即(9﹣x)2=32+x2,解得:x=4,即CH=4cm.故选(B)变式训练3:(2016·四川南充)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为()A.30°B.45°C.60°D.75°类型四:菱形折叠问题例题4:(2016·四川攀枝花)如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4,其中OGD正确的结论个数为()A.2 B.3 C.4 D.5【考点】四边形综合题.【分析】①由四边形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折叠的性质,可求得∠ADG的度数;②由AE=EF<BE,可得AD>2AE;③由AG=GF>OG,可得△AGD的面积>△OGD的面积;④由折叠的性质与平行线的性质,易得△EFG是等腰三角形,即可证得AE=GF;⑤易证得四边形AEFG是菱形,由等腰直角三角形的性质,即可得BE=2OG;⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF时等腰直角三角形,由S△OGF=1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论.【解答】解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确.∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确.∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OGF时等腰直角三角形.∵S△OGF=1,∴OG2=1,解得OG=,∴BE=2OG=2,GF===2,∴AE=GF=2,∴AB=BE+AE=2+2,∴S正方形ABCD=AB2=(2+2)2=12+8,故⑥错误.∴其中正确结论的序号是:①④⑤.故选B.【点评】此题考查的是四边形综合题,涉及到正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识.此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.变式训练4:(2016·黑龙江齐齐哈尔·3分)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为﹣1 .类型五:圆的折叠问题例题5:(2015•聊城)如图,点O是圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使和都经过圆心O,则阴影部分的面积是⊙O面积的()A. 12B.13C.23D.352. 解:作OD⊥AB于点D,连接AO,BO,CO,∵OD=AO,∴∠OAD=30°,∴∠AOB=2∠AOD=120°,同理∠BOC=120°,∴∠AOC=120°,∴阴影部分的面积=S扇形AOC=×⊙O面积.故选:B.变式训练5:(2016·山东省德州市·4分)如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是.【能力检测】1.(2016·黑龙江龙东·3分)如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为.2.(2015•湘潭)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.3.(2016·浙江省绍兴市·5分)如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF的长为.4.(2016·重庆市A卷·4分)正方形ABCD中,对角线AC,BD相交于点O,DE平分∠ADO交AC于点E,把△ADE沿AD翻折,得到△ADE′,点F是DE的中点,连接AF,BF,E′F.若AE=.则四边形ABFE′的面积是多少?5.(2015•咸宁)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D 的坐标;若不能,请说明理由.【参考答案】变式训练1:(2016·吉林·3分)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为3a (用含a的式子表示).【解析】翻折变换(折叠问题).由折叠的性质得出BE=EF=a,DE=BE,则BF=2a,由含30°角的直角三角形的性质得出DF=BF=a,即可得出△DEF的周长.【解答】解:由折叠的性质得:B点和D点是对称关系,DE=BE,则BE=EF=a,∴BF=2a,∵∠B=30°,∴DF=BF=a,∴△DEF的周长=DE+EF+DF=BF+DF=2a+a=3a;故答案为:3a.变式训练2:(2016河北3分)如图,将ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为()第13题图A.66°B.104°C.114°D.124°【解析】平行线的性质,折叠关系。
中考数学翻折问题考点类型

中考数学翻折问题考点类型·最新说明:本文档整理了中考数学翻折问题的考点类型、试题类型、难度系统等内容,详细讲解了各种类型题目的解法和技巧,本文是翻折问题的专项训练,望对老师和同学们有所帮助。
目录一、知识与方法 (3)二、典型题 (4)一、知识与方法1. 轴对称的定义把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,对应点叫对称点,直线叫对称轴,两个图形关于某条直线对称也叫轴对称.2. 轴对称的性质(1)关于某条直线对称的两个图形是全等形;(2)对称轴这条直线是对应点连线段的垂直平分线.3. 轴折叠两侧的部分对应相等,如①对应角相等、②对应边相等、③折痕上的点到对应点的距离相等;4. 对应点的连线段被折痕所在直线垂直平分,这会出现垂直于中点;5. 折叠问题中,常常结合角平分线、等腰三角形、三线合一、设未知数解勾股定理等综合知识点;6. 在平面直角坐标系中出现折叠,常常还会用到求解析式法、两点间距离公式、中点坐标公式等。
二、典型题【题1】如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠EFG 的值为.【解析】如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.∵四边形ABCD是菱形,AB=4,∠DAB=60°,∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB∴∠HDE=∠DAB=60°,∵点E是CD中点,∴DE=CD=2在Rt△DEH中,DE=2,∠HDE=60°∴DH=1,HE=,∴AH=AD+DH=5在Rt△AHE中,AE==2∵折叠,∴AN=NE=,AE⊥GF,AF=EF∵CD=BC,∠DCB=60°∴△BCD是等边三角形,且E是CD中点∴BE⊥CD,∵BC=4,EC=2,∴BE=2∵CD ∥AB ,∴∠ABE =∠BEC =90°在Rt △BEF 中,EF 2=BE 2+BF 2=12+(AB ﹣EF )2.∴EF =,∴sin ∠EFG ===,故答案为:【点评】“对应点的连线段被折痕所在直线垂直平分”,“三线合一”,“转化目标角”【题2】如图,在矩形ABCD 中,AB =3,BC =4,点E 是边AB 上一点,且AE =2EB ,点P 是边BC 上一点,连接EP ,过点P 作PQ ⊥PE 交射线CD 于点Q .若点C 关于直线PQ 的对称点正好落在边AD 上,求BP 的值.【解析】过点P 作PE ⊥AD 于点E ,∴∠PEC '=90°∵矩形ABCD 中,AB =3,BC =4∴∠EAB =∠B =∠C =∠QDC '=90°,CD =AB =3∴四边形CPED 是矩形∴DE =PC ,PE =CD =3∵AE =2EB ,∴AE =2,EB =1设BP =x ,则DE =PC =4﹣x∵点C 与C '关于直线PQ 对称∴△PC 'Q ≌△PCQ ∴PC '=PC =4﹣x ,C 'Q =CQ ,∠PC 'Q =∠C =90°∵PE ⊥PQ法2:亦可过C`作C`G ⊥BC ,连接CC`∴∠BPE+∠CPQ=90°又∵∠BEP+∠BPE=90°∴∠BEP=∠CPQ∴△BEP∽△CPQ同理可证:△PEC'∽△C'DQ∴,,∴CQ==x(4﹣x)∴C'Q=x(4﹣x),DQ=3﹣x(4﹣x)=x2﹣4x+3∴,∴C'D=3x,EC'=∵EC'+C'D=DE,∴,解得:x1=1,x2=∴BP的值为1或【题3】如图,矩形OABC中,OA=4,AB=3,点D在边BC上,且CD=3DB,点E是边OA上一点,连接DE,将四边形ABDE沿DE折叠,若点A的对称点A′恰好落在边OC上,则OE的长为_________.【解析】连接A′D,AD,∵四边形OABC是矩形,∴BC=OA=4,OC=AB=3,∠C=∠B=∠O=90°,∵CD=3DB,∴CD=3,BD=1,法2:亦可过D作DG⊥AO,连接AA`∴CD =AB ,∵将四边形ABDE 沿DE 折叠,若点A 的对称点A ′恰好落在边OC 上, ∴A ′D =AD ,A ′E =AE , 在Rt △A ′CD 与Rt △DBA 中,,∴Rt △A ′CD ≌Rt △DBA (HL ),∴A ′C =BD =1,∴A ′O =2,∵A ′O 2+OE 2=A ′E 2,∴22+OE 2=(4﹣OE )2,∴OE =,【点评】“对应点的连线段被折痕垂直平分”,“全等相似”,“十字架”,“勾股定理解方程”【题4】如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为 .【解析】连接BF ,∵BC =6,点E 为BC 的中点,∴BE =3,又∵AB =4,∴AE ==5,∴BH =,则BF =, 法2:亦可过E 作EG ⊥FC ;或者过F 作MN 分别垂直AD 和BC∵FE=BE=EC,∴∠BFC=90°,根据勾股定理得,CF===.故答案为:.【题5】如图,将边长为6的正方形纸片ABCD对折,使AB与DC重合,折痕为EF,展平后,再将点B折到边CD上,使边AB经过点E,折痕为GH,点B的对应点为M,点A的对应点为N(1)若CM=x,则CH=(用含x的代数式表示);(2)求折痕GH的长.【解析】(1)∵CM=x,BC=6,∴设HC=y,则BH=HM=6﹣y,故y2+x2=(6﹣y)2,整理得:y=﹣x2+3,∵∠HMC+∠MHC=90°,∴∠EMD=∠MHC,∴△EDM∽△MCH,∴=,∴=,解得:HC=﹣x2+2x,故答案为:﹣x2+3或﹣x2+2x;(2)方法一:∵四边形ABCD为正方形,∴∠B=∠C=∠D=90°,设CM=x,由题意可得:ED=3,DM=6﹣x,∠EMH=∠B=90°,故∠HMC+∠EMD=90°,∵∠HMC+∠MHC=90°,∴∠EMD=∠MHC,∴△EDM∽△MCH,∴=,即=,解得:x1=2,x2=6,当x=2时,∴CM=2,∴DM=4,∴在Rt△DEM中,由勾股定理得:EM=5,∴NE=MN﹣EM=6﹣5=1,∵∠NEG=∠DEM,∠N=∠D,∴△NEG∽△DEM,∴=,∴=,解得:NG=,由翻折变换的性质,得AG=NG=,过点G作GP⊥BC,垂足为P,则BP=AG=,GP=AB=6,当x=2时,CH=﹣x2+3=,∴PH=BC﹣HC﹣BP=6﹣﹣=2,在Rt△GPH中,GH===2.当x=6时,则CM=6,点H和点C重合,点G和点A重合,点M在点D处,点N在点A处.MN同样经过点E,折痕GH的长就是AC的长.所以,GH长为6.方法二:有上面方法得出CM=2,连接BM,可得BM⊥GH,则可得∠PGH=∠HBM,在△GPH和△BCM中,∴△GPH≌△BCM(SAS),∴GH=BM,∴GH=BM==2.【题6】已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(1)如图①,当∠BOP=30°时,求点P的坐标;(2)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,求m(用含有t的式子表示);(3)在(2)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果).【解析】(1)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(2,6);(2)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ,又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴=,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴=,∴m=t2﹣t+6(0<t<11);(3)过点P作PE⊥OA于E,如图3,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴=,在△PC′E和△OC′B′中,,∴△PC′E≌△OC′B′(AAS),∴PC'=OC'=PC,∴BP=AC',∵AC′=PB=t,PE=OB=6,AQ=m,EC′=11﹣2t,∴=,∵m=t2﹣t+6,∴3t2﹣22t+36=0,解得:t1=,t2=故点P的坐标为(,6)或(,6).1.如图,在菱形纸片ABCD中,AB=15,tan∠ABC=,将菱形纸片沿折痕FG 翻折,使点B落在AD边上的点E处,若CE⊥AD,则cos∠EFG的值为.【解析】如图,过点A作AH⊥BC于点H,连接BE,过点P作PE⊥AB,∵AB=15,tan∠ABC=,∴AH=9,BH=12,∴CH=3,∵四边形ABCD是菱形,∴AB=BC=15,AD∥BC,∵AH⊥BC,∴AH⊥AD,且AH⊥BC,CE⊥AD,∴四边形AHCE是矩形∴EC=9,AE=CH=3,∴BE===3,∵将菱形纸片沿折痕FG翻折,使点B落在AD边上的点E处,∴BF=EF,BE⊥FG,BO=EO=∵AD∥BC,∴∠ABC=∠P AE,∴tan∠ABC=tan∠P AE=,且AE=3,∴AP=,PE=,∵EF2=PE2+PF2,∴EF2=+(15﹣EF+)2,∴EF=,∴FO===∴cos∠EFG==,故答案为:2.如图,在菱形ABCD中,AB=5,tan D=,点E在BC上运动(不与B,C重合),将四边形AECD沿直线AE翻折后,点C落在C′处,点D′落在D处,C′D′与AB交于点F,当C′D'⊥AB时,CE长为.【解析】如图,作AH⊥CD于H,交BC的延长线于G,连接AC′.由题意:AD=AD′,∠D=∠D′,∠AFD′=∠AHD=90°,∴△AFD′≌△AHD(AAS),∴∠F AD′=∠HAD,∵∠EAD′=∠EAD,∴∠EAB=∠EAG,∴=(角平分线的性质定理,可以用面积法证明)∵AB∥CD,AH⊥CD,∴AH⊥AB,∴∠BAG=90°,∵∠B=∠D,∴tan B=tan D==,∴=,∴AG=,∴BG===,∴BE:EG=AB:AG=4:3,∴EG=BG=,在Rt△ADH中,∵tan D==,AD=5,∴AH=3,CH=4,∴CH=1,∵CG∥AD,∴=,∴CG=,∴EC=EG﹣CG=﹣=.故答案为.3.如图,已知E为长方形纸片ABCD的边CD上一点,将纸片沿AE对折,点D 的对应点D′恰好在线段BE上.若AD=3,DE=1,则AB=5.【解析】∵折叠,∴△ADE≌△AD'E,∴AD=AD'=3,DE=D'E=1,∠DEA=∠D'EA,∵四边形ABCD是矩形,∴AB∥CD,∴∠DEA=∠EAB,∴∠EAB=∠AEB,∴AB=BE,∴D'B=BE﹣D'E=AB﹣1,在Rt△ABD'中,AB2=D'A2+D'B2,∴AB2=9+(AB﹣1)2,∴AB=5故答案为:54.如图,矩形ABCD中,AB=8,BC=10,点N为边BC的中点,点M为AB边上任意一点,连接MN,把△BMN沿MN折叠,使点B落在点E处,若点E 恰在矩形ABCD的对称轴上,则BM的长为5或.【解析】①当E在矩形的对称轴直线PN上时,如图1此时∠MEN=∠B=90°,∠ENB=90°,∴四边形BMEN是矩形.又∵ME=MB,∴四边形BMEN是正方形.∴BM=BN=5.②当E在矩形的对称轴直线FG上时,如图2,过N点作NH⊥FG于H点,则NH=4.根据折叠的对称性可知EN=BN=5,∴在Rt△ENH中,利用勾股定理求得EH=3.∴FE=5﹣3=2.设BM=x,则EM=x,FM=4﹣x,在Rt△FEM中,ME2=FE2+FM2,即x2=4+(4﹣x)2,解得x=,即BM=.故答案为5或.5.如图,在矩形ABCD中,AB=6,点E在边AD上且AE=4,点F是边BC上的一个动点,将四边形ABFE沿EF翻折,A、B的对应点A1、B1与点C在同一直线上,A1B1与边AD交于点G,如果DG=3,那么BF的长为.【解析】∵△CDG∽△A'EG,A'E=4∴A'G=2∴B'G=4由勾股定理可知CG'=则CB'=由△CDG∽△CFB'设BF=x∴解得x=故答案为6.如图,已知扇形AOB的半径为6,圆心角为90°,E是半径OA上一点,F是上一点.将扇形AOB沿EF对折,使得折叠后的圆弧恰好与半径OB相切于点G.若OE=4,则O到折痕EF的距离为2.【解析】过点G作O′G⊥OB,作AO′⊥O′G于O′,如图,连结OO′交EF于H,则四边形AOGO′为矩形,∴O′G=AO=6,∵沿EF折叠后所得得圆弧恰好与半径OB相切于点G,∴与所在圆的半径相等,∴点O′为所在圆的圆心,∴点O与点O′关于EF对称,∴OO′⊥EF,OH=HO′,设OH=x,则OO′=2x,∵∠EOH=∠O′OA,∴Rt△OEH∽Rt△OO′A,∴=,即=,解得x=2,即O到折痕EF的距离为2.故答案为2.7.如图,矩形ABCD中,AD=4,O是BC边上的点,以OC为半径作⊙O交AB 于点E,BE=AE,把四边形AECD沿着CE所在的直线对折(线段AD对应A′D′),当⊙O与A′D′相切时,线段AB的长是.【解析】设⊙O与A′D′相切于点F,连接OF,OE,则OF⊥A′D′,∵OC=OE,∴∠OCE=∠OEC,∵四边形ABCD是矩形,∴∠A=∠B=A′=90°,由折叠的性质得:∠AEC=∠A′EC,∴∠B+∠BCE=∠A′EO+∠OEC,∴∠OEA′=∠B=90°,∵OE=OF,∴四边形A′FOE是正方形,∴A′E=AE=OE=OC,∵BE=AE,设BE=3x,AE=5x,∴OE=OC=5x,∵BC=AD=4,∴OB=4﹣5x,在R t BOE中,OE2=BE2+OB2,∴(5x)2=(3x)2+(4﹣5x)2,解得:x=,x=4(舍去),∴AB=8x=.故答案为:.9.如图,矩形ABCD中,AB=2BC,E是AB上一点,O是CD上一点,以OC 为半径作⊙O,将△ADE折叠至△A′DE,点A′在⊙O上,延长EA′交BC延长线于F,且恰好过点O,过点D作⊙O的切线交BC延长线于点G.若FG=1,则AD=2,⊙O半径=.【解析】作OH⊥DG于H,如图,设DA=x,则AB=2x,∵△ADE折叠至△A′DE,∴DA′=DA=x,∠DA′E=∠A=90°,∴DA′与⊙O相切,在△ODA′和△OCF中∴△DOA′≌△FOC.∴DA′=CF=x,∵DG是⊙O的切线,OH⊥DG,∴H点为切点,∴DH=DA′=x,GH=GC=CF+GF=x+1,在Rt△DCG中,∵DC2+CG2=DG2,∴(2x)2+(x+1)2=(x+x+1)2,解得x1=0(舍去),x2=2,∴AD=2,设⊙O的半径为r,则OC=OA′=r,OD=2x﹣r=4﹣r,在Rt△DOA′中,∵DA′2+OA′2=DO2,∴22+r2=(4﹣r)2,解得r=,即⊙O的半径为.故答案为2,.10.如图1,在△ABC中,AC=6,BC=8,AB=10,分别以△ABC的三边AB,BC,AC为边在三角形外部作正方形ABDE,BCIJ,AFGC.如图2,作正方形ABDE 关于直线AB对称的正方形ABD′E′,AE′交CG于点M,D′E′交IC于点N点D′在边IJ上.则四边形CME′N的面积是24.【解析】∵正方形ABDE关于直线AB对称的正方形ABD′E′,∴AE′=AB=10,∠E′AB=90°,∠AE′N=90°,∵AC=6,BC=8,AB=10,∴AC2+BC2=AB2,∴△ACB为直角三角形,∴AC2=BC•MC,∴MC==,∵∠MAC=∠NAE′,∴Rt△ACM∽Rt△AE′N,∴=,即=,∴E′N=,∴四边形CME′N的面积=S△AE′N﹣S△ACM=×10×﹣×6×=24.故答案为24.11.如图,菱形ABCD中,∠A=60°,将纸片折叠,点A,D分别落在A′,D′处,且A′D′经过点B,EF为折痕,当D′F⊥CD时,的值为.【解析】设BC与D′F交于点K.CF=a,D′K=b,∵四边形ABCD是菱形,∠A=60°,∴∠C=60°,∠D′=∠D=120°,∵KF⊥CD,∴∠KFC=90°,∴∠FKC=∠BKD′=30°,∴∠KBD′=180°﹣∠D′﹣∠BKD′=30°,∴BD′=b,BK=b,KC=2a,KF=a,∵BC=CD=D′F+CF,∴b+2a=b+a+a,∴(﹣1)a=(﹣1)b,∴a=b,∴==,故答案为.12.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=﹣1.【解析】如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故答案为:﹣1.13.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D是边BC的中点,点E是边AB上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B 落在点F处,连接AF,当线段AF=AC时,BE的长为.【解析】连接AD,作EG⊥BD于G,如图所示:则EG∥AC,∴△BEG∽△BAC,∴==,设BE=x,∵∠ACB=90°,AC=3,BC=4,∴AB==5,∴==,解得:EG=x,BG=x,∵点D是边BC的中点,∴CD=BD=2,∴DG=2﹣x,由折叠的性质得:DF=BD=CD,∠EDF=∠EDB,在△ACD和△AFD中,,∴△ACD≌△AFD(SSS),∴∠ADC=∠ADF,∴∠ADF+∠EDF=×1880°=90°,即∠ADE=90°,∴AD2+DE2=AE2,∵AD2=AC2+CD2=32+22=13,DE2=DG2+EG2=(2﹣x)2+(x)2,∴13+(2﹣x)2+(x)2=(5﹣x)2,解得:x=,即BE=;故答案为:.14.在正方形ABCD中,(1)如图1,若点E,F分别在边BC,CD上,AE,BF交于点O,且∠AOF=90°.求证:AE=BF.(2)如图2,将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G.若DC=5,CM=2,求EF的长.【解析】(1)如图1,∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,∵∠AOF=90°,∴∠BAE+∠OBA=90°,又∵∠FBC+∠OBA=90°,∴∠BAE=∠CBF,在△ABE和△BCF中∵,∴△ABE≌△BCF(ASA).∴AE=BF.(2)由折叠的性质得EF⊥AM,过点F作FH⊥AD于H,交AM于O,则∠ADM=∠FHE=90°,∴∠HAO+∠AOH=90°、∠HAO+∠AMD=90°,∴∠POF=∠AOH=∠AMD,又∵EF⊥AM,∴∠POF+∠OFP=90°、∠HFE+∠FEH=90°,∴∠POF=∠FEH,∴∠FEH=∠AMD,∵四边形ABCD是正方形,∴AD=CD=FH=5,在△ADM和△FHE中,∵,∴△ADM≌△FHE(AAS),∴EF=AM===.15.如图,已知E是正方形ABCD的边AB上一点,点A关于DE的对称点为F,∠BFC=90°,求的值.【解析】如图,延长EF交CB于M,连接CM,∵四边形ABCD是正方形,∴AD=DC,∠A=∠BCD=90°,∵将△ADE沿直线DE对折得到△DEF,∴∠DFE=∠DFM=90°,在Rt△DFM与Rt△DCM中,,∴Rt△DFM≌Rt△DCM,∴MF=MC,∴∠MFC=∠MCF,∵∠MFC+∠BFM=90°,∠MCF+∠FBM=90°,∴∠MFB=∠MBF,∴MB=MC,设MF=MC=BM=a,AE=EF=x,∵BE2+BM2=EM2,即(2a﹣x)2+a2=(x+a)2,解得:x=a,∴AE=a,∴==3.16.在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D落在点F处.(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为18°.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG的长.【解析】(1)∵四边形ABCD是矩形,∴∠BAD=90°,∵∠BAC=54°,∴∠DAC=90°﹣54°=36°,由折叠的性质得:∠DAE=∠F AE,∴∠DAE=∠DAC=18°;故答案为:18;(2)∵四边形ABCD是矩形,∴∠B=∠C=90°,BC=AD=10,CD=AB=6,由折叠的性质得:AF=AD=10,EF=ED,∴BF===8,∴CF=BC﹣BF=10﹣8=2,设CE=x,则EF=ED=6﹣x,在Rt△CEF中,由勾股定理得:22+x2=(6﹣x)2,解得:x=,即CE的长为;(3)连接EG,如图3所示:∵点E是CD的中点,∴DE=CE,由折叠的性质得:AF=AD=10,∠AFE=∠D=90°,FE=DE,∴∠EFG=90°=∠C,在Rt△CEG和△FEG中,,∴Rt△CEG≌△FEG(HL),∴CG=FG,设CG=FG=y,则AG=AF+FG=10+y,BG=BC﹣CG=10﹣y,在Rt△ABG中,由勾股定理得:62+(10﹣y)2=(10+y)2,解得:y=,即CG的长为.17.(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=46°,则∠DBE的度数为23°.(2)小明手中有一张矩形纸片ABCD,AB=4,AD=9.【画一画】如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);【算一算】如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A′,B′处,若AG=,求B′D 的长;【验一验】如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由.【解析】(1)如图1中,∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC=46°,由翻折不变性可知,∠DBE=∠EBC=∠DBC=23°,故答案为23.(2)【画一画】,如图2中,【算一算】如图3中,∵AG=,AD=9,∴GD=9﹣=,∵四边形ABCD是矩形,∴AD∥BC,∴∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,∴DF=DG=,∵CD=AB=4,∠C=90°,∴在Rt△CDF中,CF==,∴BF=BC﹣CF=,由翻折不变性可知,FB=FB′=,∴DB′=DF﹣FB′=﹣=3.【验一验】如图4中,小明的判断不正确.理由:连接ID,在Rt△CDK中,∵DK=3,CD=4,∴CK==5,∵AD∥BC,∴∠DKC=∠ICK,由折叠可知,∠A′B′I=∠B=90°,∴∠IB′C=90°=∠D,∴△CDK∽△IB′C,∴==,即==,设CB′=3k,IB′=4k,IC=5k,由折叠可知,IB=IB′=4k,∴BC=BI+IC=4k+5k=9,∴k=1,∴IC=5,IB′=4,B′C=3,在Rt△ICB′中,tan∠B′IC==,连接ID,在Rt△ICD中,tan∠DIC==,∴tan∠B′IC≠tan∠DIC,∴B′I所在的直线不经过点D.。
中考数学常见的几种旋转模型

旋转常见模型一、遇60°旋转60°, 构造等边三角形1.点P是等边△ABC内一点, 且PC=3, PB=4, PA=5。
求∠BPC的度数。
2.如图6-2, 是等边外一点, 若, 求的度数。
图6-23.(2018年广州市节选)如图, 在四边形ABCD 中,∠B ( 60( ,∠D ( 30( ,AB ( BC.(1)∠A ∠C= °(2)连接BD , 探究AD , BD , CD 三者之间的数量关系, 并说明理由.二、遇90°旋转90°, 构造等腰直角三角形1.如图, 在正方形ABCD内部有一点P, PA= , PB= , PC=1, 求∠BPC的度数。
2.在△ABC中,∠BAC=90°,AB=AC,P是△ABC内一点,PA=2,PB=1,PC=3,求∠APB的度数.三、遇等腰旋转顶角, 构造旋转全等FED CBA GABCDEABCDEF1.在 中, , ( ), 将线段 绕点 逆时针旋转60°得到线段 . (1)如图1, 直接写出 的大小(用含 的式子表示); (2)如图2, , 判断 的形状并加以证明; (3)在(2)的条件下, 连结 , 若 , 求 的值.四、半角模型说明: 旋转半角的特征是相邻等线段所成角含一个二分之一角, 通过旋转将另外两个和为二分之一的角拼接在一起, 成对称全等。
秘籍: 角含半角要旋转: 构造两次全等FED CBAG FED CBA1.如图, 在正方形ABCD 中, E 、F 分别在BC.CD 上, 且∠EAF=45°连接EF. 求证:EF=BE+DF.如图, 在正方形ABCD中, E、F分别在BC.CD上, 且∠EAF=45°连接AD, 与AE、AF分别交于M、N,求证: MN2=BM2+DM23.如图, 在正方形ABCD 的边长为2, 点E, 点F分别在边AD,CD上, 若∠EBF=45°,则△EDF的周长等于。
中考几何综合变换旋转翻折对称

中考几何综合变换一.折叠类问题折叠问题的思考方式:折叠问题会出现在特殊三角形,平行四边形,矩形以及正方形中,一般在矩形和正方形中出现较多。
1.当折叠图形有直角时,一定并且可以构造出一线三等角模型,通过相似和全等来寻找线段之间的关系从而求解。
2.折叠问题一定会伴随着勾股定理出现,如果求线段长,可以设线段为x,通过折叠前后图形全等,在一个rt△中利用勾股定理建立方程思想,从而求解。
如果复杂,需要用到上面说的一线三等角来转化线段,进而利用勾股定理。
3.利用对称的性质:对应点连线所形成的线段一定被折痕垂直平分,可以通过此性质,延伸出多种做题方式(1)利用垂直,以及正方形,矩形中的垂直,构造双垂直模型,即射影定理,母子相似(2)利用中点,可以构造中位线,用中位线定理(3)利用中垂线的性质:中垂线上一点到线段两端点距离相等。
4.注:如果题目中出现对称的字眼,其本质也是折叠。
1.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.2.如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE 的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.二.旋转类旋转类题目一般伴随着手拉手模型和半角模型,在我之前的资料中有半角模型的收录。
1.其第一问通常是证明三角形全等,给出特殊条件,如旋转角为30 60 902.其第二问一般是将特殊条件取消,证明三角形相似,证明过程和1一样,都是手拉手sas3.其第三问往往是最难得题型,可以问当。
初中数学知识归纳平移旋转和翻折的基本操作

初中数学知识归纳平移旋转和翻折的基本操作初中数学知识归纳——平移、旋转和翻折的基本操作初中数学中,平移、旋转和翻折是几个重要的几何变换操作。
这些操作不仅在几何题中常常出现,而且在解决实际问题时也起着重要作用。
本文将对平移、旋转和翻折的基本概念,操作规则以及实际应用进行归纳总结。
一、平移的基本概念及操作规则平移是指物体在平面上沿着某个方向移动一段距离,同时保持形状和大小不变。
在平移中,可以将物体的每个点都沿着相同的方向和距离进行移动。
具体操作规则如下:1. 平移的操作规则- 平移前后物体保持形状和大小不变。
- 平移前后物体上的所有点与平移向量保持平行。
2. 平移的表示方法平移可以使用向量表示。
假设平移向量为共点向量〈a,b〉,则平移的规则可以表示为:新位置的坐标 = 旧位置的坐标 + 平移向量。
二、旋转的基本概念及操作规则旋转是指物体在平面上围绕一个点旋转一定的角度,同时保持形状和大小不变。
在旋转中,可以将物体的每个点都绕着旋转中心点按照一定的角度进行旋转。
具体操作规则如下:1. 旋转的操作规则- 旋转前后物体保持形状和大小不变。
- 旋转前后物体上的所有点与旋转中心的距离保持不变。
2. 旋转的表示方法旋转可以使用旋转角度来表示。
设旋转中心为点O,顺时针旋转θ角度,则旋转的规则可以表示为:新位置的坐标 = 旋转中心点O的坐标 + 旋转后点O'的坐标。
三、翻折的基本概念及操作规则翻折是指物体在平面上沿着某一直线对称翻转,同时保持形状和大小不变。
在翻折中,可以将物体的每个点都绕着对称轴进行翻折。
具体操作规则如下:1. 翻折的操作规则- 翻折前后物体保持形状和大小不变。
- 翻折前后物体上的所有点关于对称轴对称。
2. 翻折的表示方法翻折可以通过对称轴进行表示。
设对称轴为线l,则翻折的规则可以表示为:新位置的坐标 = 原位置点关于对称轴的对称点。
四、平移、旋转和翻折的实际应用平移、旋转和翻折不仅是几何题中经常出现的概念,也在日常生活和实际问题中得到广泛应用。
中考数学中的旋转翻折类问题专项训练经典汇编(共30题)

中考数学中的旋转翻折类问题专项训练经典汇编(共30题)1.阅读下面材料.小炎遇到这个一个问题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF =45°,连接EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中,她先尝试了翻折、旋转、平移的方法,最后发现线段AB、AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)写出小炎的推理过程;(2)如图3,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD 上,∠EAF=45°,若∠B、∠D都不是直角,则当∠B与∠D满足于关系时,仍有EF=BE+DF;(3)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE =45°,若BD=1,EC=2,求DE的长.2.如图1,把△ABC沿直线BC平移线段BC的长度,得到△ECD;如图2,以BC为轴,把△ABC沿BC翻折180°,可以得到△DBC;如图3,以点A为中心,把△ABC旋转180°,可以得到△AED.像这样,其中一个三角形是由另一个三角形按平移、翻折、旋转等方法得到的,这种只改变位置,不改变形状、大小的图形变换,叫做三角形的全等变换.回答下列问题:(1)在图4中,可以使△ABE通过平移、翻折、旋转中的哪一种方法得到△ADF?(2)图中线段BE与DF相等吗?为什么?3.阅读材料并解答问题:探究:小明遇到这样一个问题:如图1,在正方形ABCD,点E、F分别为BC、CD边上的点,且∠EAF=45°,求证:BE+DF=EF.小明是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段集中到同一条线段上.他先后尝试了平移、翻折、旋转的方法,发现通过旋转可以解决此问题.他的方法是将△ADF绕点A顺时针旋转90°得到△ABG(如图1),此时GE即是BE+DF.请回答:在图1中,∠GAF的度数是.理解:如图2,已知Rt△ABC中,∠ACB=90°,AC=BC,点D、E在斜边AB上,且∠DCE=45°,请写出AD、DE、BE三条线段之间的数量关系,并证明.应用:如图3,正方形ABCD中,△AMN的顶点M、N分别在BC、CD边上,AH⊥MN,且AH=AB,连接BD分别交AM、AN于点E,若MH=2,NH=3,DF=2,求AH、EF的长.4.阅读下面材料:小炎遇到这样一个问题:如图1,点E、F分别在正方形ABCD的边BC,CD上,∠EAF =45°,连接EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足关系时,仍有EF=BE+DF;(2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE =45°,若BD=1,EC=2,求DE的长.5.如图,在正方形ABCD中,E为AD的中点,F是BA延长线上一点,AF=AB.(1)图中的全等三角形是哪一对?(2)在图中,可以通过平移、翻折、旋转中哪一种方法,使△ABE变换到△ADF的位置?(3)图中线段BE与DF之间有怎样的关系?为什么?6.已知点E是△ABC内部一点.将△ABE沿BE翻折,点A落在BC上的点F′处.(1)如图1,若∠BAC﹣80°,∠C﹣40°,EF∥AC.求∠BEF的度数;(2)如图2,若∠C=2∠BAE,请说明.(3)如图3.连接AF,若AE⊥BC,∠ABC﹣70°,∠C=40°,将△BEF绕点B顺时针方向旋转一个角度α(0<α<180°)得到ΔBE1F1,则在这个旋转过程中,当E1F1与△AFC的某一边垂直时,直接写出旋转角α的度数.7.如图1,在Rt△ABC中,∠A=90°,AB=21,AC=28,点D为BC边上一点,过点作DE⊥AB于点E,作DF⊥AC于点F,且DE=DF.(1)求证:四边形AEDF为正方形;(2)如图2,将△CDF沿DF翻折,得△GDF,DG交AB于点H,求证:DH=DB;(3)将(2)中的△BDH绕点D逆时针旋转α(0°<α<180°)得△B′DH′(点B的对应点为B′,点H的对应点为H′,连接GH′,CB′,点M为线段GH′的中点,连接DM.当△B′DC为直角三角形时,直接写出线段DM的长.8.如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.9.在Rt△ABC中,∠ABC=90°,过B点作BE⊥AC于点E,点D为线段AC的中点,连接BD.(1)如图1,AB=2,AC=6,求ED的长度;(2)如图2,将线段DB绕着点D逆时针旋转45°得到线段DG,此时DG⊥AC,连接BG,点F为BG的中点,连接EF,求证:BC=2EF;(3)如图3,∠ACB=30°,AB=3,点P是线段BD上一点,连接AP,将△APB沿AP 翻折到同一平面内得到△APB',连接CB′,将线段绕点CB′顺时针旋转60°得线段CQ,连接BQ,当BQ最小时,直接写出△BCQ的面积.10.如图,CD为△ABC的中线,以CD为直角边在其右侧作直角△CDE,CD⊥DE,BC与DE交于点F,∠E=30°.(1)如图1,若CF=EF=5,求CD的长;(2)如图2,若将BC绕点C逆时针旋转120°得CG,连接AG、AE,探究AG、AE的数量关系,并说明理由;(3)如图3,若∠ACB=90°,AC=2,.直线CE上有一点M,连接MF,将△CFM沿着MF翻折至△ABC所在的平面内得到△NFM.取NF的中点P,连接AP,当AP最小时,请直接写出△APB的面积.11.已知△ABC为等边三角形,D是边AB上一点,连接CD,点E为CD上一点,连接BE.(1)如图1,延长BE交AC于点F,若∠ABF=15°,.求AF的长;(2)如图2,将△BEC绕点C顺时针旋转60°到△AGC,延长BC至点H,使得CH=BD,连接AH交CG于点N,猜想线段CE,GN,DE之间存在的数量关系,并证明你的猜想;(3)如图3,AB=8,点H是BC上一点,且BD=2CH,连接DH,点K是AC上一点,CK=AD,连接DK,BK,将△BKD沿BK翻折到△BKQ,连接CQ,当△ADK的周长最小时,直接写出△CKQ的面积.12.在边长为8的等边三角形ABC中,D为BC的中点,E,F分别为AC、AD上任意一点,连接EF,将线段EF绕点E顺时针旋转60°得到线段EG,连接FG交AC于点N,连接AG.(1)如图1,点E与点C重合,且GF的延长线过点B,证明:四边形AFEG是菱形;(2)如图2,EF的延长线交AB于点M,当AM+MF=AE时,求∠EAG的度数;(3)如图3,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH 沿EH翻折至△ABC所在平面内,得到△B′EH,连接B′G,直接写出线段B′G长度的最小值.13.在△ABC中,∠ACB=90°,AC=BC,D是AC边上一动点,连接BD.(1)如图1,在平面内将线段DC绕点C顺时针旋转90°得到线段CK,点F为BC边上一点,连接AF交BD于M,连接AK.若∠CAF=2∠DBA,AF=8,AK=10,求CF的长;(2)如图2,在平面内将线段DB绕点B顺时针旋转一定角度得到线段BE,连接AE交BC于G,连接DE,若∠CDE=∠DBA,猜想线段AD,CG的数量关系,并证明你的猜想;(3)在(2)的条件下,将△CDB沿BD直线BD翻折至△ABC所在平面内得到△BDC1,连接AC1,若AC=2+,在点D运动过程中,当线段AC1取得最小值时,请直接写出△ABE与四边形BCDC1重叠部分的面积.14.在△ABC中,∠BAC=90°,AB=AC,点D为BC边上一动点,连接AD,将AD绕着D点逆时针方向旋转90°得到DE,连接AE.(1)如图1,AH⊥BC,点D恰好为CH中点,AE与BC交于点G,若AB=4,求AE 的长度;(2)如图2,DE与AB交于点F,连接BE,在BA延长线上有一点P,∠PCA=∠EAB,求证:AB=AP+BD;(3)如图3,DE与AB交于点F,且AB平分∠EAD,点M为线段AF上一点,点N为线段AD上一点,连接DM,MN,点K为DM延长线上一点,将△BDK沿直线BK翻折至△BDK所在平面内得到△BQK,连接DQ,在M,N运动过程中,当DM+MN取得最小值,且∠DKQ=45°时,请直接写出的值.15.在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q 两点同时出发.(1)连接AQ,当△ABQ是直角三角形时,则点Q的坐标为;(2)当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数;(3)若将AP绕点A逆时针旋转,使得P落在线段BQ上,记作P',且AP'∥PQ,求此时直线PQ的解析式.16.(1)特殊发现如图1,正方形BEFG与正方形ABCD的顶点B重合,BE、BG分别在BC、BA边上,连接DF,则有:①=;②直线DF与直线AG所夹的锐角等于度;(2)理解运用将图1中的正方形BEFG绕点B逆时针旋转,连接DF、AG.①如图2,(1)中的结论是否仍然成立?请说明理由;②如图3,若D、F、G三点在同一直线上,且过AB边的中点O,BE=4,直接写出AB的长;(3)拓展延伸如图3,点P是正方形ABCD的AB边上一动点(不与A、B重合),连接PC,沿PC将△PBC翻折到△PEC位置,连接DE并延长,与CP的延长线交于点F,连接AF,若P A =3PB,则的值是否是定值?请说明理由.17.已知:如图①,在矩形ABCD中,AB=8,AD=6,连接AC,将△ABC沿AC翻折,使B点落在E点处,连接EC、AE,AE交DC于F点.(1)求DF的长.(2)若将△CEF沿着射线CA方向平移,设平移的距离为m(平移距离指点C沿CA方向所经过的线段长度).当点F平移到线段AD上时,如图②,求出相应的m的值.(3)如图③,将△CEF绕点C逆时针旋转一个角a(0°<a<∠ECB),记旋转中的△CEF为△CE'F',过E'作E'G⊥AD于G点,在旋转过程中,当△DCE'为等腰三角形时,求出线段E'G的长度.18.已知矩形ABCD中,AB=2,BC=m,点E是边BC上一点,BE=1,连接AE.(1)沿AE翻折△ABE使点B落在点F处.①连接CF,若CF∥AE,求m的值;②连接DF,若≤DF≤,求m的取值范围.(2)△ABE绕点A顺时针旋转得△AB1E1,点E1落在边AD上时旋转停止.若点B1落在矩形对角线AC上,且点B1到AD的距离小于时,求m的取值范围.19.如图,四边形OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x 轴的正半轴上,点C在y轴的正半轴上,点B的坐标为(10,8),在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处.(1)求CE和OD的长;(2)求DE所在直线的解析式;(3)若直线y=kx+b与直线DE的比例系数相等,当它与矩形OABC有公共点时,请直接写出b的取值范围.20.如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段、,S矩形AEFG:S▱ABCD=;(2)▱ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=9,EH=12,求AD的长;(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=12,CD=13,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并直接写出AD、BC的长.(写出一种即可)21.如图1,在平面直角坐标系xOy中,直线y=﹣x+8分别交x轴、y轴于A、B两点,已知点C(3,0),点D是线段AB上的一个动点.(1)判断△ABO的形状;(2)OD+CD的最小值为;(3)如图2,点P为y轴正半轴上一点,连接BC、PC,若∠BCP与△ABC中的一个角相等,求点P的坐标;(4)如图3,将△ACD沿CD翻折,点A恰好落在y轴上的点A′处,求此时点D的坐标.22.在等腰△ABC中,AB=BC,高AD,BE所在的直线相交于点F,将△ACD沿直线AD 翻折,点C的对称点C′落在直线BC上,连接FC′.(1)如图1,当∠ABC=45°时,①求证:BF=AC;②求∠FC′D的度数.(2)当∠ABC=135°时,补全图2,并求证:C′F∥AB.23.如图1,在平面直角坐标系中,点A坐标为(6,3),过点A作AB⊥x轴,交x轴于点B,点P是x轴上一动点,将△ABP沿直线AP翻折,使得点B落在点B'处,点E是翻折后AB'延长后与y轴的交点.(1)若点E的坐标为(0,3),则点P坐标为;(2)如图2,若点E的坐标为(0,),直线AE与x轴交于点F.①求点F的坐标;②求直线AP的函数关系式.24.如图,在矩形ABCD中,E是BC边上的一个动点,沿着AE翻折△ABE,使点B落在点F处,AB=2,BC=AB.(1)当点E运动到点C时,求CF的长;(2)当FC∥AE时,试判断E是否为BC的中点?并说明理由;(3)当点F在矩形ABCD内部,且DF=CD时,求BE的长.25.如图,在平面直角坐标系中,四边形OABC的边OC在x轴上,OA在y轴上,O为坐标原点,AB∥OC,线段OA,AB的长分别是方程x2﹣9x+20=0的两个根(OA<AB),延长CB交y轴于点H,=.(1)求点B,C的坐标;(2)P为OA上一点,Q为OC上一点,OQ=5,将△POQ翻折,使点O落在AB上的点O'处,双曲线y=的一分支过点O′,求k的值;(3)在(2)的条件下,M为坐标轴上一点,在平面内是否存在点N,使以O',Q,M,N为顶点四边形为矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.26.如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.(1)求证AE=MN;(2)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(3)如图3,若该正方形ABCD边长为10,将正方形沿着直线MN翻折,使得BC的对应边B′C′恰好经过点A,过点A作AG⊥MN,垂足分别为G,若AG=6,请直接写出AC′的长.27.如图1,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(6,8).D是AB边上一点(不与点A、B重合),将△BCD沿直线CD翻折,使点B落在点E处.(1)求直线AC所表示的函数的表达式;(2)如图2,当点E恰好落在矩形的对角线AC上时,求点D的坐标;(3)如图3,当以O、E、C三点为顶点的三角形是等腰三角形时,求△OEA的面积.28.已知在平行四边形ABCD中,AB≠BC,将△ABC沿直线AC翻折,点B落在点E处,AD与CE相交于点O,连接DE.(1)如图1,求证:AC∥DE;(2)如图2,如果∠B=90°,AB=,BC=,求△OAC的面积;(3)如果∠B=30°,AB=2,当△AED是直角三角形时,求BC的长.29.如图,矩形ABCD中,已知AB=6.BC=8,点E是射线BC上的一个动点,连接AE 并延长,交射线DC于点F.将△ABE沿直线AE翻折,点B的对应点为点B'.(1)如图1,若点E为线段BC上一点,延长AB'交CD于点M,求证:AM=FM;(2)如图2,若点B'恰好落在对角线AC上,求的值;(3)若=,求∠DAB'的正弦值.30.如图1,四边形ABCD是矩形,点O位于对角线BD上,将△ADE,△CBF分别沿DE、BF翻折,点A,点C都恰好落在点O处.(1)求证:∠EDO=∠FBO;(2)求证:四边形DEBF是菱形:(3)如图2,若AD=2,点P是线段ED上的动点,求2AP+DP的最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考常考题型(一)正三角形类型在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转600,使得AB与AC 重合。
经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP中,此时ΔP'AP也为正三角形。
例1. 如图:(1-1):设P是等边ΔABC内的一点,PA=3,PB=4,PC=5,∠APB的度数是________.(二)正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转900,使得BA与BC重合。
经过旋转变化,将图(2-1-a)中的PA、PB、PC 三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。
例2. 如图(2-1):P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。
求此正方形ABCD面积。
(三)等腰直角三角形类型在等腰直角三角形ΔABC中,∠C=Rt∠, P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转900,使得AC与BC重合。
经过这样旋转变化,在图(3-1-b)中的一个ΔP'CP为等腰直角三角形。
例3.如图,在ΔABC中,∠ACB =900,BC=AC,P为ΔABC内一点,且PA=3,PB=1,PC=2。
求∠BPC的度数。
平移、旋转和翻折是几何变换中的三种基本变换。
所谓几何变换就是根据确定的法则,对给定的图形(或其一部分)施行某种位置变化,然后在新的图形中分析有关图形之间的关系.这类实体的特点是:结论开放,注重考查学生的猜想、探索能力;便于与其它知识相联系,解题灵活多变,能够考察学生分析问题和解决问题的能力.在这一理念的引导下,近几年中考加大了这方面的考察力度,特别是2006年中考,这一部分的分值比前两年大幅度提高。
为帮助广大考生把握好平移,旋转和翻折的特征,巧妙利用平移,旋转和翻折的知识来解决相关的问题,下面以近几年中考题为例说明其解法,供大家参考。
一.平移、旋转平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.“一定的方向”称为平移方向,“一定的距离”称为平移距离。
平移特征:图形平移时,图形中的每一点的平移方向都相同,平移距离都相等。
旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度成为与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫做旋转中心,图形转动的角叫做旋转角.旋转特征:图形旋转时,图形中的每一点旋转的角都相等,都等于图形的旋转角。
例1.(2006年绵阳市中考试题)如图,将ΔABC绕顶点A顺时针旋转60o后得到ΔAB′C′,且C′为BC的中点,则C′D:DB′=()A.1:2 B.1: C.1: D.1:3分析:由于ΔAB′C′是ΔABC绕顶点A顺时针旋转60o后得到的,所以,旋转角∠CAC′=60o,ΔAB′C′≌ΔABC,∴AC′=AC,∠CAC′=60o,∴ΔAC′C是等边三角形,∴AC′=AC′.又C′为BC的中点,∴BC′=CC′,易得ΔAB′C、ΔABC是含30o角的直角三角形,从而ΔAC′D也是含30o角的直角三角形点评:本例考查灵活运用旋转前后两个图形是全等的性质、等边三角形的判断和含30 o角的直角三角形的性质的能力,解题的关键是发现ΔAC′C是等边三角形.二、翻折翻折:翻折是指把一个图形按某一直线翻折180o后所形成的新的图形的变化。
翻折特征:平面上的两个图形,将其中一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么说这两个图形关于这条直线对称,这条直线就是对称轴。
解这类题抓住翻折前后两个图形是全等的,弄清翻折后不变的要素。
翻折在三大图形运动中是比较重要的,考查得较多.另外,从运动变化得图形得特殊位置探索出一般的结论或者从中获得解题启示,这种由特殊到一般的思想对我们解决运动变化问题是极为重要的,值得大家留意。
例2.(2006年江苏省宿迁市)如图,将矩形ABCD沿AE折叠,若∠BAD′=30°,则∠AED′等于()A.30°B.45°C.60°D.75°分析:由已知条件∠BAD′=30°,易得∠DAD′=60o,又∵D、D′关于AE 对称,∴∠EAD=∠EAD′=30o,∴∠AED=∠AED′=60o.故选C点评:本例考查灵活运用翻折前后两个图形是全等的性质的能力,解题的关键是发现∠EAD=∠EAD′,∠AED=∠AED′点评:图形沿某条线折叠,这条线就是对称轴,利用轴对称的性质并借助方程的的知识就能较快得到计算结果。
由此看出,近几年中考,重点突出,试题贴近考生,贴近初中数学教学,图形运动的思想(图形的旋转、翻折、平移三大运动)都一一考查到了.因此在平时抓住这三种运动的特征和基本解题思路来指导我们的复习,将是一种事半功倍的好方法。
平移与旋转实际上是一种全等变换,由于具有可操作性,因而是考查同学们动手能力、观察能力的好素材,也就成了近几年中考试题中频繁出现的内容。
题型多以填空题、计算题呈现。
在解答此类问题时,我们通常将其转换成全等求解。
根据变换的特征,找到对应的全等形,通过线段、角的转换达到求解的目的。
例1:如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心,逆时针旋转90°至ED,连结AE、CE,则△ADE的面积是()A 1B 2C 3D 不能确定分析:解题的关键是求△ADE的边AD上的高。
可先求作直角梯形的高DF,想到将△CDF绕D逆时针旋转90°至△EDG,由EG=GF,只要CF的长,就可以求出△ADE的面积。
解:过D做DF⊥BC于F,过E做EG⊥,交AD的延长线于G∵∠B=90°,AD∥BC∴四边形ABFD为矩形∴FC=BC-AD=3-2=1,∠EDC=∠FDC =90°∴∠FDC =∠EDG,又∵∠DFC =∠G =90°,ED=CD∴△EDG≌△CDF,∴EG=CF=1因此,选择A点评:明确△ADE的边AD上的高的概念不要误写成DE,作梯形高是常见的解题方法之一。
变式题1:如图,已知△ABC中AB=AC,∠BAC =90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB、AC于点E、F,给出以下五个结论:(1)AE=CF(2)∠APE=∠CPF(3)△EPF是等腰直角三角形(4)EF=AP (5)S四边形AEPF=S△ABC÷2,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合)上述结论中始终正确的序号有___例2D、E为AB的中点,将△ABC沿线段DE折叠,使点A落在点F处。
若∠B=50°,则∠BDF=___分析:通过折纸实验,多次尝试,得出结论。
解:∵D、E为AB的中点,∴DE∥BC,∠ADE=∠B=50°由折纸实验得:∠ADE=∠FDE∴∠BDF=180°-∠ADE-∠FDE=180°-2×50°=80°点评:几何变换没有可套用的模式,关键是同学们要善于多角度、多层次、多侧面地思考问题,观察问题、分析问题。
变式题2:如图,矩形纸片ABCD,AB=2,∠ADB=30°,将它沿对角线BD折叠(使△ABD和△EBD落在同一平面内)则A、E两点间的距离为___旋转具有以下特征:(1)图形中的每一点都绕着旋转中心旋转了同样大小的角度;(2)对应点到旋转中心的距离相等;(3)对应角、对应线段相等;(4)图形的形状和大小都不变。
利用旋转的特征,可巧妙解决很多数学问题,如一.求线段长.例:如图,已知长方形ABCD 的周长为20,AB=4,点E在BC上,且AE⊥EF,AE=EF,求CF的长。
【解析】:将△ABE以点E为旋转中心,顺时针旋转90°,此时点B旋转到点B' 处,AE与EF重合,由旋转特征知:B'E⊥BC ,四边形B'ECF 为长方形,∴CE=BF'=AB∵CF+CE=B'E+CE=BE+EC=BC=6∴CF=BC-CE=6-4=2二.求角的大小例:如图,在等边△ABC中,点E、D分别为AB、BC上的两点,且BE=CD,AD与CE交于点M,求∠AME 的大小。
【解析】:因为BC=AC,∠ABC=∠ACD=60°,BE=CD,所以以△ABC的中心(等边三角形三条中线的交点)O为旋转中心,将△ADC顺时针旋转120°就得到了△CEB,∴∠AME=180°-∠AMC=180°-120°=60°三.进行几何推理例:如图,点F在正方形ABCD的边BC上,AE平分∠DAF ,请说明DE=AF-BF 成立的理由。
数学思想是解数学题的精髓和重要的指导方法,在平移和旋转中的应用也相当的广泛,一般可以归结为两种思想——对称的思想和旋转的思想,具体的分析如下:1 、对称的思想:在平移、旋转、对称这些概念中,对称这一概念非常重要.它包括轴对称、旋转对称、中心对称.对称是一种种要的思想方法,在解题的应用非常广泛.例:观察图中所给的图案,它可以看成由哪个较基本的图形经过哪些运动变换产生的?它是不是轴对称图形?旋转对称图形?中心对称图形?分析:这是一个涉及轴对称平移、旋转的综合性例子。
解题思路主要通过直观观察取得。
这个图案较基本的图形是正方形,一个小正方形沿对角线方向平移一个对角线长、两个对角线长后得一正方形串,然后在串的轴线上找一点O为旋转中心,旋转三个90°后得到题目中给出的图案,整个过程如图所示。
这个图形是轴对称、旋转对称.中心对称图形。
方法探究:这里的较基本图形也可以看成线段。
一线段经平移、旋转后得一正方形,然后重复上面的过程。
2、旋转的思想:旋转也是图形的一种基本变换,通过图形旋转变换,从而将一些简单的平面图形按要求旋转到适当的位置,使问题获得简单的解决,它是一种要的解题方法。
例:如图,正方形ABCD内一点P,∠PAD=∠PDA=15°,连结PB、PC,请问:ΔPBC是等边三角形吗?为什么?分析:本题关键是说明∠PCD=∠PBA=30°,利用条件可以设想将ΔAPD 绕点D逆时针方向旋转90°,而使A与C重合,此时问题得到解决.解:将ΔAPD绕点D逆时针旋转90°,得ΔDP’C,再作ΔDP’C 关于DC的轴对称图形ΔDQC,得ΔCDQ与ΔADP经过对折后能够重合。
∵PD=QD∴∠PDQ=90°-15°-15°=60°,∴△PDQ为等边三角形,∴∠PQD=60°.∵∠DQC=∠APD=180°-15°-15°=150°,∴∠PQC=360°-60°-150°=150°=∠DQC,,∵PQ=QD=CQ,∴∠PCQ=∠DCQ=15°∴∠PCD=30°∴∠PCB=60°∵PC=BC=CD∴ΔPBC为等边三角形观察思考:旋转是几何变换中的基本变换,它一般先对给定的图形或其中一部分,通过旋转,改变位置后得新组合,然后在新的图形中分析有关图形之间的关系,进而揭示条件与结论之间的内在联系,找出证题途径。