中考数学旋转与相似的典型类型总结
初中数学专题复习:旋转(类型全面)

旋转旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度成为与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫做旋转中心,图形转动的角叫做旋转角.旋转特征:图形旋转时,图形中的每一点旋转的角都相等,都等于图形的旋转角。
(一)正三角形类型在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转600,使得AB与AC重合。
经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP中,此时ΔP'AP也为正三角形。
例1. 如图:(1-1):设P是等边ΔABC内的一点,PA=3,PB=4,PC=5,∠APB的度数是________.(二)正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转900,使得BA与BC重合。
经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。
例2. 如图(2-1):P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。
求此正方形ABCD面积。
(三)等腰直角三角形类型在等腰直角三角形ΔABC中,∠C=90°, P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转900,使得AC与BC重合。
经过这样旋转变化,在图(3-1-b)中的一个ΔP'CP为等腰直角三角形。
例3.如图,在ΔABC中,∠ACB =900,BC=AC,P为ΔABC内一点,且PA=3,PB=1,PC=2。
求∠BPC的度数。
旋转实际上是一种全等变换,由于具有可操作性,因而是考查同学们动手能力、观察能力的好素材,也就成了近几年中考试题中频繁出现的内容。
题型多以填空题、计算题呈现。
在解答此类问题时,我们通常将其转换成全等求解。
根据变换的特征,找到对应的全等形,通过线段、角的转换达到求解的目的。
最新中考数学专项复习图形的平移、旋转、对称与位似

22
考法1
考法2
考法3
考法4
考法5
考法1轴对称图形和中心对称图形的判定 例1(2017· 四川成都)下列图形中,既是轴对称图形又是中心对称 图形的是( )
答案:D 解析:只有D既是轴对称图形又是中心对称图形,故D符合题意. 方法总结判断轴对称图形的关键是寻找对称轴,使图形按照某条 直线折叠后,直线两旁的部分能够完全重合;中心对称图形是要寻 找对称中心,使图形绕该点旋转180°后与原图形重合.
(1)画出△A1B1C,直接写出点A1,B1的坐标; (2)求在旋转过程中,△ABC所扫过的面积.
4
考题·初做诊断
考点一
考点二
考点三
考点四
考点二图形的旋转(高频)
概 念 要 素
性 质
平面内,一个图形绕着一个定点,旋转一定的角度,得到另一个 图形的变换,叫做旋转 旋转中心、旋转角 、旋转方向(包括顺时针方向和逆时针 方向) (1)旋转前每一组对应点与旋转中心的连线段相等,两组对应点分别 与旋转中心的连线所成的角相等,都等于旋转角 ; (3)确定旋转中心的方法 :任意两组对应点连线段的垂直平分 线 的交点即旋转中心
(1)请画出△ABC关于原点O对称的△A1B1C1; (2)请写出点B关于y轴对称的点B2的坐标,若将点B2向上平移h个单 位,使其落在△A1B1C1内部,指出h的取值范围.
21
考法·必研突破
命题点1
命题点2
命题点3
命题点4
解 (1)△A1B1C1如图所示; 4分 (2)点B2的坐标为(2,-1), 6分 由图可知,点B2到B1与A1C1的中点的距离分别为2,3.5, 所以h的取值范围为2<h<3.5. 8分
(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍, 得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1; (2)将线段A1B1,绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1; (3)以A、A1、B1、A2为顶点的四边形AA1B1A2的面积是20 个平方 单位. 14
中考数学相似三角形中的重要模型手拉手模型

相似三角形中的重要模型-手拉手模型相似三角形是初中几何中的重要的内容,常常与其它知识点结合以综合题的形式呈现,其变化很多,是中考的常考题型。
手拉手模型相似是手拉手模型当中相对于手拉手全等模型较难的一种模型,在实际的应用和解题当中出现时,对于同学们来说,都比较困难。
而深入理解模型内涵,灵活运用相关结论可以显著提高解题效率,本专题重点讲解相似三角形的“手拉手”模型(旋转模型)。
手拉手相似证明题一般思路方法:①由线段乘积相等转化成线段比例式相等;②分子和分子组成一个三角形、分母和分母组成一个三角形;③第②步成立,直接从证这两个三角形相似,逆向证明到线段乘积相等; ④第②步不成立,则选择替换掉线段比例式中的个别线段,之后再重复第③步。
模型1.“手拉手”模型(旋转模型)【模型解读与图示】“手拉手”旋转型定义:如果将一个三角形绕着它的项点旋转并放大或缩小(这个顶点不变),我们称这样的图形变换为旋转相似变换,这个顶点称为旋转相似中心,所得的三角形称为原三角形的旋转相似三角形。
1)手拉手相似模型(任意三角形)条件:如图,∠BAC=∠DAE=α,A DA E kA BA C==; 结论:△ADE ∽△ABC ,△ABD ∽△ACE ;E CkB D=.2)手拉手相似模型(直角三角形)条件:如图,90A O BC OD ∠=∠=︒,O C O D kO AO B==(即△COD ∽△AOB );结论:△AOC ∽△BOD ;B DkA C=,AC ⊥BD ,12A B C DS A B C D=⨯.3)手拉手相似模型(等边三角形与等腰直角三角形)条件:M 为等边三角形ABC 和DEF 的中点; 结论:△BME ∽△CMF ;B EC F条件:△ABC 和ADE 是等腰直角三角形; 结论:△ABD ∽△ACE.例1.(2022·山西·寿阳县九年级期末)问题情境:如图1所示,在△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,在图1中将ADE 绕A 点顺时针旋转一定角度,得到图2,然后将BD 、CE 分别延长至M 、N ,使DM =12BD ,EN =12CE ,得到图3,请解答下列问题:(1)猜想证明:若AB =AC ,请探究下列数量关系:①在图2中,BD 与CE 的数量关系是_________. ②在图3中,猜想∠MAN 与∠BAC 的数量关系,并证明你的猜想;(2)拓展应用:其他条件不变,若AB ,按上述操作方法,得到图4,请你继续探究:∠MAN 与∠BAC的数量关系?AM 与AN 的数量关系?直接写出你的猜想.例2.(2022•新乡中考模拟)在△ABC中,CA=CB=m,在△AED中,DA=DE=m,请探索解答下列问题.【问题发现】(1)如图1,若∠ACB=∠ADE=90°,点D,E分别在CA,AB上,则CD与BE的数量关系是,直线CD与BE的夹角为;【类比探究】(2)如图2,若∠ACB=∠ADE=120°,将△AED绕点A旋转至如图2所示的位置,则CD 与BE之间是否满足(1)中的数量关系?说明理由.【拓展延伸】(3)在(1)的条件下,若m=2,将△AED绕点A旋转过程中,当B,E,D三点共线.请直接写出CD的长.例3.(2022·山东·九年级课时练习)【问题发现】如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为斜边BC上一点(不与点B,C重合),将线段AD绕点A顺时针旋转90°得到AE,连接EC,则线段BD与CE的数量关系是______,位置关系是______;【探究证明】如图2,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,将△ADE绕点A旋转,当点C,D,E在同一条直线上时,BD与CE具有怎样的位置关系,说明理由;【拓展延伸】如图3,在Rt△BCD中,∠BCD=90°,BC=2CD=4,过点C作CA⊥BD于A.将△ACD绕点A顺时针旋转,点C的对应点为点E.设旋转角∠CAE为α(0°<α<360°),当C,D,E在同一条直线上时,画出图形,并求出线段BE的长度.例4.(2022·山东·东营市一模)【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.例5.(2022•长垣市一模)在△AB=AC,点D为AB边上一动点,∠CDE=∠BAC=α,CD=ED,连接BE,EC.(1)问题发现:如图①,若α=60°,则∠EBA=,AD与EB的数量关系是;(2)类比探究:如图②,当α=90°时,请写出∠EBA的度数及AD与EB的数量关系并说明理由;(3)拓展应用:如图③,点E为正方形ABCD的边AB上的三等分点,以DE为边在DE上方作正方形DEFG,点O为正方形DEFG的中心,若OA=,请直接写出线段EF的长度.例6.(2022·成都市·九年级课时练习)一次小组合作探究课上,老师将两个正方形按如图所示的位置摆放(点E 、A 、D 在同一条直线上),发现B ED G=且B ED G⊥.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形A E F G 绕点A 按逆时针方向旋转(如图1),还能得到B E D G=吗?若能,请给出证明,请说明理由;(2)把背景中的正方形分别改成菱形A E F G 和菱形A B C D ,将菱形A E F G 绕点A 按顺时针方向旋转(如图2),试问当E A G ∠与B A D ∠的大小满足怎样的关系时,B ED G=;(3)把背景中的正方形分别改写成矩形A E F G 和矩形A B C D ,且23AE AB AGAD==,2A Ea=,2A Bb=(如图3),连接D E ,B G .试求22D E B G+的值(用a ,b 表示).课后专项训练1.如图,在△ABC与△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE,连接BD、CE,若AC:BC=3:4,则BD:CE为()A.5:3B.4:3C.√5:2D.2:√32.如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB与DE交于点O,AB=4,AC=3,F是DE的中点,连接BD,BF,若点E是射线CB上的动点,下列结论:①△AOD∽△FOB,②△BOD∽△EOA,③∠FDB+∠FBE=90°,④BF=56AE,其中正确的是()A.①②B.③④C.②③D.②③④3、如图,正方形A B C D的边长为8,线段C E绕着点C逆时针方向旋转,且3C E=,连接B E,以B E为边作正方形B E F G,M为A B边的中点,当线段F M的长最小时,ta n E C B∠=______.4.(2022•虹口区期中)如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)求证:△ABC∽△ADE;(2)判断△ABD与△ACE是否相似?并证明.5.(2023·浙江·九年级课时练习)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,求证:P A=DC;(2)如图2,当α=120°时,猜想P A和DC的数量关系并说明理由.(3)当α=120°时,若AB=6,BP D到CP的距离.6.(2022·重庆·九年级课时练习)观察猜想(1)如图1,在等边A B C中,点M 是边B C 上任意一点(不含端点B 、C ),连接A M ,以A M 为边作等边A M N,连接C N ,则A B C ∠与A C N ∠的数量关系是______. (2)类比探究:如图2,在等边A B C中,点M 是B C 延长线上任意一点(不含端点C ),(1)中其它条件不变,(1)中结论还成立吗?请说明理由. (3)拓展延伸:如图3,在等腰A B C中,B AB C=,点M 是边B C 上任意一点(不含端点B 、C ),连接A M ,以A M 为边作等腰A M N,使顶角A M NA B C∠=∠.连按C N .试探究A B C ∠与A C N ∠的数量关系,并说明理由.7.(2022·江苏·九年级课时练习)【问题发现】如图1,在Rt △ABC 中,∠BAC =90°,AB =AC ,D 为斜边BC 上一点(不与点B ,C 重合),将线段AD 绕点A 顺时针旋转90°得到AE ,连接EC ,则线段BD 与CE 的数量关系是______,位置关系是______;【探究证明】如图2,在Rt △ABC 和Rt △ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,将△ADE 绕点A 旋转,当点C ,D ,E 在同一条直线上时,BD 与CE 具有怎样的位置关系,说明理由;【拓展延伸】如图3,在Rt △BCD 中,∠BCD =90°,BC =2CD =4,过点C 作CA ⊥BD 于A .将△ACD 绕点A 顺时针旋转,点C 的对应点为点E .设旋转角∠CAE 为α(0°<α<360°),当C ,D ,E 在同一条直线上时,画出图形,并求出线段BE 的长度.8.(2022·山东·九年级课时练习)如图,A B C和A D E是有公共顶点直角三角形,90B A C D A E ∠=∠=︒,点P 为射线B D ,C E 的交点.(1)如图1,若A B C和A D E是等腰直角三角形,求证:C PB D⊥;(2)如图2,若30A D EA B C ∠=∠=︒,问:(1)中的结论是否成立?请说明理由.(3)在(1)的条件下,4A B =,3A D =,若把A D E 绕点A 旋转,当90E A C ∠=︒时,请直接写出P B 的长度9.(2023·广东·深圳市九年级期中)(1)如图1,Rt △ABC 与Rt △ADE ,∠ADE =∠ABC =90°,12A BA DB CD E==,连接BD ,CE .求证:5B DC E=.(2)如图2,四边形ABCD ,∠BAD =∠BCD =90°,且12A B A D=,连接BC ,BC 、AC 、CD 之间有何数量关系?小明在完成本题中,如图3,使用了“旋转放缩”的技巧,即将△ABC 绕点A 逆时针旋转90°,并放大2倍,点B 对应点D .点C 落点为点E ,连接DE ,请你根据以上思路直接写出BC ,AC ,CD 之间的关系. (3)拓展:如图4,矩形ABCD ,E 为线段AD 上一点,以CE 为边,在其右侧作矩形CEFG ,且12A B C EB CE F==,AB=5,连接BE,BF.求BE的最小值.510.(2023·绵阳市·九年级专题练习)在△ABC中,AB=AC,∠BAC=α,点P是△ABC外一点,连接BP,将线段BP绕点P逆时针旋转α得到线段PD,连接BD,CD,AP.观察猜想:的值为,直线CD与AP所成的较小角的度数为°;(1)如图1,当α=60°时,C DA P的值及直线CD与AP所成的较小角的度数;类比探究:(2)如图2,当α=90°时,求出C DA P拓展应用:(3)如图3,当α=90°时,点E,F分别为AB,AC的中点,点P在线段FE的延长线上,点A,D,P三点在一条直线上,BD交PF于点G,CD交AB于点H. 若CD=2BD的长.11.(2023·湖北·九年级专题练习)在A B C和A D E中,B A B C∠=∠=,点=,D A D E=,且A B C A D EαE在A B C的内部,连接EC,EB,EA和BD,并且90∠+∠=︒.A C E AB Eα=︒时,线段BD与CE的数量关系为__________,线段EA,EB,EC的【观察猜想】(1)如图①,当60数量关系为__________.α=︒时,(1)中的结论是否依然成立?若成立,请给出证明,若不成立,【探究证明】(2)如图②,当90请说明理由;【拓展应用】(3)在(2)的条件下,当点E在线段CD上时,若B C=B D E的面积.12.(2023··广西一模)如图,A C B△和D C E均为等腰直角三角形,,.现将D C E绕点C旋转.∠=∠=︒==A CB DC E A C B CD CE C90,(1)如图1,若,,A D E三点共线,A D=B到直线C E的距离;(2)如图2,连接,A EB D,点F为线段B D的中点,连接C F,求证:A E C F⊥;(3)如图3,若点G在线段A B上,且8,==,在A C G内部有一点O,请直接写出A C A G22O C A G++的最小值.13.(2022•南山区校级一模)(1)【问题发现】如图①,正方形AEFG 的两边分别在正方形ABCD 的边AB 和AD 上,连接CF .填空:①线段CF 与DG 的数量关系为 ;②直线CF 与DG 所夹锐角的度数为 .(2)【拓展探究】如图②,将正方形AEFG 绕点A 逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3)【解决问题】如图③,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,AB =AC =10,O 为AC 的中点.若点D 在直线BC 上运动,连接OE ,则在点D 的运动过程中,线段OE 长的最小值为 (直接写出结果).14、某校数学活动小组在一次活动中,对一个数学问题作如下探究:(1)问题发现:如图1,在等边A B C 中,点P 是边B C 上任意一点,连接A P ,以A P 为边作等边A P Q,连接CQ ,BP 与CQ 的数量关系是________; (2)变式探究:如图2,在等腰A B C中,A BB C=,点P 是边B C 上任意一点,以A P 为腰作等腰A P Q,使A PP Q=,A P QA B C∠=∠,连接C Q ,判断A B C ∠和A C Q ∠的数量关系,并说明理由;(3)解决问题:如图3,在正方形A D B C 中,点P 是边B C 上一点,以A P 为边作正方形A P E F ,Q 是正方形A P E F 的中心,连接C Q .若正方形A P E F 的边长为5,2C Q =A DBC 的边长.15、如图,四边形ABCD 和四边形AEFG 都是正方形,C ,F ,G 三点在一直线上,连接AF 并延长交边CD 于点M .(1)求证:△MFC ∽△MCA ;(2)求证△ACF ∽△ABE ; (3)若DM =1,CM =2,求正方形AEFG 的边长.16、已知,ABC 中,AB =AC ,∠BAC =2α°,点D 为BC 边中点,连接AD ,点E 为线段AD 上一动点,把线段CE绕点E顺时针旋转2α°得到线段EF,连接FG,FD.(1)如图1,当∠BAC=60°时,请直接写出B F的值;(2)如图2,当∠BAC=90°时,(1)中的结论是A E否仍然成立?若成立,请给出证明;若不成立,请写出正确的结论,并说明理由;(3)如图3,当点E在AD上移动时,请直接写出点E运动到什么位置时D F的值最小.最小值是多少?(用含α的三角函数表示)D C。
最全相似模型专题(中考数学必考)

几何模型09——相似模型三角形相似是每一年中考必考的知识点,相似模型主要包括:“A”型和“X”型相似,母子模型相似(共边共角型),一线三等角,双垂直模型和旋转相似,中考命题者经常把这些模型放在圆,四边形,或函数图象当中,特别要留意母子模型相似的一种特殊情况:射影定理中的知二求四和一线三垂直(k型相似),下面对这些类型做如下总结:一、“A”型和“X”型相似例1.如图,在△ABC中,点D是AC上的点,且AD=2CD,过D作DE∥BC交AB于E,过D作DF∥AB交BC于F.(1)若BC=15,求线段DE的长.(2)若△ADE的面积为16,求△CDF的面积.变式1.如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.变式2.如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.变式3.如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D,连接OD.作BE⊥CD于点E,交半圆O于点F.已知CE=12,BE=9.(1)求证:△COD∽△CBE.(2)求半圆O的半径r的长.变式4.如图,AG是∠HAF的平分线,点E在AF上,以AE为直径的⊙O交AG于点D,过点D作AH的垂线,垂足为点C,交AF于点B.(1)求证:直线BC是⊙O的切线;(2)若AC=2CD,设⊙O的半径为r,求BD的长度.变式5.如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN 交AC于O.(1)求证:△COM∽△CBA;(2)求线段OM的长度.变式6.如图,已知AB为⊙O的直径,F为⊙O上一点,AC平分∠BAF且交⊙O于点C,过点C作CD⊥AF于点D,延长AB、DC交于点E,连接BC、CF.(1)求证:CD是⊙O的切线;(2)若AD=6,DE=8,求BE的长;变式7.如图,在△ABC中,∠C=90°,点O在CB上,⊙O经过点C,且与AB相切于点D,与CB的另一个交点为E.(1)求证:DE∥OA;(2)若AB=10,tan∠DEO=2,求⊙O的半径.例2.如图,在Rt△ABC中,∠A=90°,AC=9,BC=15.(1)求BC边上的高AD的长度;(2)正方形的一边FG在BC上,另两个顶点E、H分别在边AB、AC上,求正方形EFGH 的边长.(相似比等于高之比)例3.如图,⊙O的半径为5,点P在⊙O外,PB交⊙O于A、B两点,PC交⊙O于D、C 两点.求证:PA•PB=PD•PC(割线定理);变式1.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.变式2.如图,以△ABC 的边BC 为直径的⊙O 分别交AB ,AC 于点D ,E ,且点E 是的中点,连接DE .(1)求证:△ABC 是等腰三角形.(2)若BC =10,CE =6,求线段AD 的长.变式3.如图,在△ABC 中,AB =AC ,以AB 为直径的半圆O 分别交BC ,AC 于点D ,E ,连结EB ,OD ,DE .(1)求证:OD ⊥EB .(2)若DE =,AB =10,求AE 的长.例4.如图,在△ABC 中,D ,E 分别是边AC ,AB 的中点,BD 与CE 交于点O ,连接DE . 求证:2OE CO OD BO ==变式1.如图,AB 、CD 相交于点O ,连接AC 、BD ,点E 、F 分别为AC 、BD 的中点,连接OE 、OF ,若∠A =∠D ,OA =OF =6,OD =9,求OE 的长.变式2.如图,已知圆O,弦AB、CD相交于点M.(1)求证:AM•MB=CM•MD;(相交弦定理)(2)若M为CD中点,且圆O的半径为3,OM=2,求AM•MB的值.变式3.如图,在⊙O中,弦AB、CD相交于点P,且PD<PC.(1)求证:△P AD∽△PCB;(2)若P A=3,PB=8,CD=10,求PD.例5.如图,过△ABC的边AC的中点D作直线交AB于E,交BC的延长线于F.求证:=;(梅捏劳斯定理特殊情况)变式1.如图,已知△ABC的边AB上有一点D,边BC的延长线上有一点E,且AD=CE.DE 交AC于点F,试证明:AB•DF=BC•EF.变式2.如图,△ABC中,D为BC的中点,过D的直线交AC于E,交AB的延长线于F.求证:=.变式3.如图,△ABC中,D是BC边的中点,过点D的直线交AB于点E,交AC的延长线于点F,且BE=CF.求证:AE=AF.二、共边共角型相似例1.如图,在△ABC中,D为BC边上的一点,且∠CAD=∠B.(1)求证:;(2)若AC=2,BC=4,设△ADC面积为S1,△ABD面积为S2,求证:S2=3S1.变式1.如图,在△ABC中,D为边AB上一点,∠ACD=∠B,若AC=6,BC=5,CD=4,求AD,AB的长.变式2.如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.变式3.如图,在Rt△ABC中,∠C=90°,以AB上一点O为圆心,OA的长为半径作⊙O,交AC、AB分别于D,E两点,连接BD,且∠A=∠CBD.若CD=1,BC=2,求AD 的长度.例2.如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:AG=CG.(2)求证:AG2=GE•GF.变式1.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于点E,交BA的延长线于点F.(1)求证:PC2=PE•PF;(2)若菱形边长为8,PE=2,EF=6,求FB的长.例3.如图,CD是⊙O的切线,点C在直径AB的延长线上.(切割线模型)(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.变式1.如图,O为线段PB上一点,以O为圆心,OB长为半径的⊙O交PB于点A,点C 在⊙O上,连接PC,满足PC2=P A•PB.若AB=3P A,求的值.例4.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.(1)(射影定理)求证:AC2=AD•AB;BC2=BD•BA;CD2=AD•BD;(2)若AD=2,DB=8,求AC,BC,CD的长;(知二求四)(3)若AC=6,DB=9,求AD,CD,BC的长;(知二求四)(4)求证:AC•BC=AB•CD.(等面积法)变式1.如图,AB是⊙O的直径,点C是圆上一点,连接AC和BC,过点C作CD⊥AB于点D.若CD=4,BD=3,求⊙O的半径长.(直径所对的圆周角为直角)变式2.如图,在Rt△ABC中,∠BAC=90°,∠BAD=∠C,点D在BC边上,以AD为直径的⊙O交AB于点E,交AC于点F.已知:AB=6,AC=8,求AF的长.变式3.在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,点E是边BC的中点,连结DE.(1)求证:DE是⊙O的切线;(2)若AD=4,BD=9,求⊙O的半径.例4.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若AB=3DE,求tan∠ACB的值.(射影定理知二求四)(3)若AB=5CE,求tan∠ACB的值.(射影定理知二求四)变式1.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求证:DF是⊙O的切线;(2)若AC=2DE,求tan∠ABD的值.三、双垂直例1.如图,在矩形ABCD中,点E在边BC上,AF⊥DE,垂足为F,AD=4,CE=2,DE =2,求DF的长.变式1.如图,点P是正方形ABCD边AD上一点,Q是边BC延长线上一点,若AB=12,P A=5,PQ⊥BP.求CQ的长.变式2.如图,△ABC中,BD、CE分别是AC、AB边上的高,若AE=5,AD=6,CD=2.求EB的长.变式3.如图,在Rt△ABC中,∠ABC=90°,E是边AC上一点,且BE=BC,过点A作BE的垂线,交BE的延长线于点D,求证:△ADE∽△ABC.四、一线三等角例1.已知:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;例2.如图,E是正方形ABCD的边AB上的点,过点E作EF⊥DE交BC于点F.(1)求证:△ADE∽△BEF;(2)若AB=6,AE=2,求线段CF的长.变式1.如图,将一个直角的顶点P放在矩形ABCD的对角线BD上滑动,并使其一条直角边始终经过点A,另一条直角边与边BC相交于点E.且AD=8,DC=6,则=.五、旋转相似例1.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.变式1.如图,△ABC和△CEF中,AB=BC,CF=EF,∠CBA=∠CFE=90°,E在△ABC 内,∠CAE+∠CBE=90°,连接BF.(1)求证:△CAE∽△CBF;(2)若BE=1,AE=2,求EF的长.。
中考数学几何专项——相似模型(相似三角形)

中考数学几何专项——相似模型(相似三角形)相似模型相似模型一:A字型特征:DE∥BC模型结论:根据A字型相似模型,可以得出以下结论:C∠B=∠XXXAC²=AD×AB相似模型二:X型特征:AC∥BD模型结论:根据X型相似模型,可以得出以下结论:AO×OB=OC×ODBOC∽△DOACAOC∽△DOB相似模型三:旋转相似特征:成比例线,段共端点模型结论:根据旋转相似模型,可以得出以下结论:BEF∽△BCDDEF∽△DABAEB∽△DEC相似模型四:三平行模型特征:AB∥EF∥CD模型结论:根据三平行模型,可以得出以下结论:ABE∽△CDF相似模型五:半角模型特征:90度,45度;120度,60度模型结论:根据半角模型,可以得出以下结论:ABN∽△MAN∽△MCAABD∽△CAE∽△CBA相似模型六:三角形内接矩形模型特征:矩形EFGH或正方形EFGH内接与三角形模型结论:根据三角形内接矩形模型,可以得出以下结论:ABC∽△EFH相似模型七:十字模型特征:正方形HDGB模型结论:根据十字模型,可以得出以下结论:若AF=BE,则AF⊥BE,且为长方形若AF⊥BE,则AF=BEBDBC平行四边形,且△GME∽△HNF,△MED≌△BFA。
下面给出几个几何问题。
1.在△ABC中,AB=AC,且有以下七个结论:①D为AC中点;②AE⊥BD;③BE:EC=2:1;④∠ADB=∠CDE;⑤∠AEB=∠CED;⑥∠BMC=135°;⑦BM:MC=2:1.求AC和CD的比值。
2.在平行四边形ABCD中,AB∥CD,线段BC,AD相交于点F,点E是线段AF上一点且满足∠BEF=∠C,其中AF=6,DF=3,CF=2,求AE的长度。
3.在Rt△ABD中,过点D作CD⊥BD,垂足为D,连接XXX于点E,过点E作EF⊥BD于点F,若AB=15,CD=10,求4.在□ABCD中,E为BC的中点,连接AE,AC,分别交BD于M,N,求5.在平行四边形ABCD中,AB∥CD,AD,BC相交于点E,过E作EF∥AB交BD于点F。
中考数学压轴题之旋转(中考题型整理,突破提升)及详细答案

在△ DAG 与△ DCG 中, ∵ AD=CD,∠ ADG=∠ CDG,DG=DG, ∴ △ DAG≌ △ DCG. ∴ AG=CG. 在△ DMG 与△ FNG 中, ∵ ∠ DGM=∠ FGN,FG=DG,∠ MDG=∠ NFG, ∴ △ DMG≌ △ FNG. ∴ MG=NG 在矩形 AENM 中,AM=EN. 在 Rt△ AMG 与 Rt△ ENG 中, ∵ AM=EN, MG=NG, ∴ △ AMG≌ △ ENG. ∴ AG=EG ∴ EG=CG. (3)(1)中的结论仍然成立.
4.如图(1)所示,将一个腰长为 2 等腰直角△ BCD 和直角边长为 2、宽为 1 的直角△ CED 拼在一起.现将△ CED 绕点 C 顺时针旋转至△ CE’D’,旋转角为 a. (1)如图(2),旋转角 a=30°时,点 D′到 CD 边的距离 D’A=______.求证:四边形 ACED′ 为矩形; (2)如图(1),△ CED 绕点 C 顺时针旋转一周的过程中,在 BC 上如何取点 G,使得 GD’=E’D;并说明理由.
【答案】(1)详见解析;(2)FE·sin( -90°) 【解析】 【分析】 (1)由四边形 ABCD 是平行四边形得 AF∥ BE,所以∠ FAE=∠ BEA,由折叠的性质得 ∠ BAE=∠ FAE,∠ BEA=∠ FEA,所以∠ BAE=∠ FEA,故有 AB∥ FE,因此四边形 ABEF 是平行四 边形,又 BE=EF,因此可得结论; (2)根据点 M 在线段 BE 上和 EC 上两种情况证明∠ ENG=90°- ,利用菱形的性质得到
中考数学解答题压轴题突破 重难点突破八 几何综合题 类型六:旋转在几何综合题中的应用

(2)证明:BE=AH+DF.
(2)证明:将△ABH绕着点B顺时针旋转90° 得到△BCM,∵四边形ABCD是正方形, ∴AD=BC,∠ADC=∠C=90°,∴∠ADF=∠C, ∵AF∥BE,∴∠F=∠BEC,∴△ADF≌△BCE(AAS), ∴DF=CE.又由旋转可知AH=CM,∠AHB=∠M,∠BAH=∠BCM=90°, ∵∠BCD=90°,∴∠BCD+∠BCM=180°, ∴点E,C,M在同一直线.∴AH+DF=EC+CM=EM.
类型六:旋转在几何综合 题中的应用
模型一:旋转构造基本图形 【解题方法模型构建】 若题干中出现“共顶点、等线段(相邻等线段)”这一特征.常考虑构造 旋转,通过旋转可以将线段转移,将已知条件集中,从而解决问题.
1.遇60°旋转60°,构造等边三角形(等边三角形旋转模型).
通过旋转可将线段AP,BP,CP转移在同一个三角形中(△CPP′). 注:根据“旋转的相互性”也可绕A点旋转△APC,或绕B,C点旋转相应 三角形(还有5种构造方法).
模型二:旋转构造模型 【解题方法模型构建】 1.如图,在△OAB中,OA=OB,在△OCD中,OC=OD,∠AOB=∠COD=
α,将△OCD绕点O旋转一定角度后,连接AC,BD,相交于点E.简记 为:双等腰,共顶点,顶角相等,旋转得全等.
【结论】(1)△AOC≌△BOD(SAS); (2)AC=BD; (3)两条拉手线AC,BD所在直线的夹角与∠AOB相等或互补.
【结论】△ABD≌△AEC;△ABE∽△ADC.
2.请阅读下列材料: 问题:如图①,在等边三角形ABC内有一点P,且PA=2,PB= 3 ,PC= 1,求∠BPC度数的大小和等边三角形ABC的边长. 李明同学的思路:将△BPC绕点B逆时针旋转60°,画出旋转后的图形 (如图②),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角 三角形(由勾股定理的逆定理可证),∴∠AP′B=150°,而∠BPC=∠ AP′B=150°,进而求出等边角形ABC的边长为 7,问题得到解决.
中考数学常见的几种旋转模型

旋转常见模型一、遇60°旋转60°, 构造等边三角形1.点P是等边△ABC内一点, 且PC=3, PB=4, PA=5。
求∠BPC的度数。
2.如图6-2, 是等边外一点, 若, 求的度数。
图6-23.(2018年广州市节选)如图, 在四边形ABCD 中,∠B ( 60( ,∠D ( 30( ,AB ( BC.(1)∠A ∠C= °(2)连接BD , 探究AD , BD , CD 三者之间的数量关系, 并说明理由.二、遇90°旋转90°, 构造等腰直角三角形1.如图, 在正方形ABCD内部有一点P, PA= , PB= , PC=1, 求∠BPC的度数。
2.在△ABC中,∠BAC=90°,AB=AC,P是△ABC内一点,PA=2,PB=1,PC=3,求∠APB的度数.三、遇等腰旋转顶角, 构造旋转全等FED CBA GABCDEABCDEF1.在 中, , ( ), 将线段 绕点 逆时针旋转60°得到线段 . (1)如图1, 直接写出 的大小(用含 的式子表示); (2)如图2, , 判断 的形状并加以证明; (3)在(2)的条件下, 连结 , 若 , 求 的值.四、半角模型说明: 旋转半角的特征是相邻等线段所成角含一个二分之一角, 通过旋转将另外两个和为二分之一的角拼接在一起, 成对称全等。
秘籍: 角含半角要旋转: 构造两次全等FED CBAG FED CBA1.如图, 在正方形ABCD 中, E 、F 分别在BC.CD 上, 且∠EAF=45°连接EF. 求证:EF=BE+DF.如图, 在正方形ABCD中, E、F分别在BC.CD上, 且∠EAF=45°连接AD, 与AE、AF分别交于M、N,求证: MN2=BM2+DM23.如图, 在正方形ABCD 的边长为2, 点E, 点F分别在边AD,CD上, 若∠EBF=45°,则△EDF的周长等于。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旋转与全等、相似的典型类型总结25. 含30°角的直角三角板ABC 中,∠A =30°.将其绕直角顶点C 顺时针旋转α角(0120α︒<<︒且α≠ 90°),得到Rt △''A B C ,'A C 边与AB 所在直线交于点D ,过点 D 作DE ∥''A B 交'CB 边于点E ,连接BE .(1)如图1,当''A B 边经过点B 时,α= °;(2)在三角板旋转的过程中,若∠CBD 的度数是∠CBE 度数的m 倍,猜想m 的值并证明你的结论;(3) 设 BC =1,AD =x ,△BDE 的面积为S ,以点E 为圆心,EB 为半径作⊙E ,当S =13ABC S ∆时,求AD 的长,并判断此时直线'A C 与⊙E 的位置关系.! 如图,在△ABC 中,∠A=90°,AB=8,AC=6,M 是AB 上的动点(不与A 、B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 中作内接矩形AMPN .令AM=x . (1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切(3)在点M 的运动过程中,设△MNP 与梯形BCNM 重合的面积为y ,求y 关于x 的函数关系式,并求x 为何值时,y 的值最大,最大值是多少.(`B(第24题)B(第24题)已知:在四边形ABCD中,AD∥BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD,试探究AE与EF之间的数量关系.(1)如图①,若AB=BC=AC,则AE与EF之间的数量关系为________.(2)如图②,若AB=BC,你在(1)中得到的结论是否发生变化写出你的猜想,并加以证明.(3)如图③,若AB=kBC,你在(1)中得到的结论是否发生变化写出你的猜想,并加以证明.[第25题图图1EDCBA图2CBAF 图3ED CBA在△ABC 中,∠ACB 为锐角.点D 为射线BC 上一动点,连接AD , 将线段AD 绕点A 逆时针旋转90 o 得到AE ,连结EC .(1)如果AB =AC ,∠BAC =90o .①当点D 在线段BC 上时(与点B 不重合),如图1,请你判断线段CE 、BD 之间的位置和数量关系(直接写出结论);②当点D 在线段BC 的延长线上时,请你在图2画出图形,判断①中的结论是否仍然成立,并证明你的判断;(2)如图3,当点D 在线段BC 上运动时,DF ⊥AD 交线段CE 于点F ,且∠ACB =45 o , AC=CF 长的最大值.已知:在△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,点E 在AC 上,BE 交CD 于点G ,EF ⊥BE 交AB 于点F . 如图甲,当AC=BC ,且CE=EA 时,则有EF=EG ;(1)如图乙①,当AC=2BC ,且CE=EA 时,则线段EF 与EG 的数量关系是:EF EG ;(2)如图乙②,当AC=2BC ,且CE=2EA 时,请探究线段EF 与EG 的数量关系,并证明你的结论;(3)当AC=mBC ,且CE=nEA 时,请探究线段EF 与EG 的数量关系,直接写出你的结论(不必证明图乙②图乙①图甲(第25题)已知正方形ABCD ,边长为3,对角线AC ,BD 交点O ,直角MPN 绕顶点P 旋转,角的两边分别与线段AB ,AD 交于点M ,N (不与点B ,A ,D 重合). 设DN =x ,四边形AMPN 的面积为y .在下面情况下,y 随x 的变化而变化吗若不变,请求出面积y 的值;若变化,请求出y 与x 的关系式. (1)如图1,点P 与点O 重合;(2)如图2,点P 在正方形的对角线AC 上,且AP =2PC ; (3)如图3,点P 在正方形的对角线BD 上,且DP =2PB .25.在Rt △ABC 中,∠ACB =90°,tan ∠BAC =12. 点D 在边AC 上(不与A ,C 重合),连结BD ,F 为BD 中点. (1)若过点D 作DE ⊥AB 于E ,连结CF 、EF 、CE ,如图1. 设CF kEF ,则k = ;(2)若将图1中的△ADE 绕点A 旋转,使得D 、E 、B 三点共线,点F 仍为BD 中点,如图2所示.求证:BE -DE =2CF ;(3)若BC =6,点D 在边AC 的三等分点处,将线段AD 绕点A 旋转,点F 始终为BD 中点,求线段CF 长度的最大值.东城图1(P )N DM OC B A 图2PA B C O MD N 图3P A B C OM D N B CADE FB DEA FCBAC1图2图备图24. 等边△ABC 边长为6,P 为BC 边上一点,∠MPN =60°,且PM 、PN 分别于边AB 、AC 交于点E 、F . (1)如图1,当点P 为BC 的三等分点,且PE ⊥AB 时,判断△EPF 的形状;(2)如图2,若点P 在BC 边上运动,且保持PE ⊥AB ,设BP =x ,四边形AEPF 面积的y ,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)如图3,若点P 在BC 边上运动,且∠MPN 绕点P 旋转,当CF =AE =2时,求PE 的长.图1 图2 图3已知:如图,正方形ABCD 中,,AC BD 为对角线,将BAC ∠绕顶点A 逆时针旋转α°(045α<<),旋转后角的两边分别交BD 于点P 、点Q ,交,BC CD 于点E 、点F ,联结,EF EQ .(1)在BAC ∠的旋转过程中,AEQ ∠的大小是否改变,若不变写出它的度数,若改变,写出它的变化范围(直接在答题卡上写出结果,不必证明);(2)探究△APQ 与△AEF 的面积的数量关系,写出结论并加以证明.QP FEDC BA24. 解:(1)不变; ……………………………………………………………………1分45°;………………………………………………………………………2分(2)结论:S △AEF =2 S △APQ ………………………………………………………………3分 证明:∵AEQ ∠=45°,45EAF ∠=︒∴90EQA ∠=︒ …………………… ∴2AE AQ =…………………… ………4分同理2AF AP = …………………… ………5分 过点P 作PH AF ⊥于H …………… ………6分∴S △AEF 11222AF EQ AP AQ =⋅=⨯⋅222AP AQ PH AQ S =⋅=⋅=△APQ …………………………………7分22. 如图,在AOB 中,8OA OB ==,90AOB ∠=︒,矩形CDEF 的顶点C 、D 、E 、F 分别在边AO 、OB 、AB 上。
HQ P FE DC B A图1O E D CB A R Q P 图2O E D C B A (1)若C 、D 恰好是边AO ,OB 的中点,求矩形CDEF 的面积; (2)若4tan 3CDO,求矩形CDEF 面积的最大值。
24. 如图1,在△ABC 中,AB =BC =5,AC =6. △ECD 是△ABC 沿CB 方向平移得到的,连结AE ,AC 和BE 相交于点O . (1)判断四边形ABCE 是怎样的四边形,并证明你的结论; (2)如图2,P 是线段BC 上一动点(不与点B 、C 重合),连接PO 并延长交线段AE 于点Q ,QR ⊥BD ,垂足为点R .①四边形PQED 的面积是否随点P 的运动而发生变化若变化,请说明理由;若不变,求出四边形PQED 的面积; ②当线段BP 的长为何值时,以点P 、Q 、R 为顶点的三角形与△BOC 相似23. 如图,在△ABC 中,BC =3,AC =2,P 为BC 边上一个动点,过点P 作PD ∥AB ,交AC 于点D ,连结BD . (1)如图1,若∠C =45°,请直接写出:当BPPC= 时, △BDP 的面积最大; (2)如图2,若∠C =α为任意锐角,则当点P 在BC 上何处时, △BDP 的面积最大24.现场学习:我们知道,若锐角α的三角函数值为sin α = m ,则可通过计算器得到角α的大小,这时我们用arc sin m 来表示α,记作:α=arc sin m ;若cos α = m ,则记α = arc cos m ;若tan α = m ,则记α = arc tan m .解决问题:如图,已知正方形ABCD ,点E 是边AB 上一动点,点F 在AB 边或其延长线上,点G 在边AD 上.连结ED ,FG ,交点为H .(1)如图1,若AE =BF =GD ,请直接写出∠EHF = °;图1AB C DP 图2ABPC D(2)如图2,若EF =25CD ,GD =25AE ,设∠EHF =α.请判断当点E 在AB 上运动时, ∠EHF 的大小是否发生变化若发生变化,请说明理由;若不发生变化,请求出α.24.已知在△ABC 和△DBE 中,AB =AC ,DB =DE ,且∠BAC =∠BDE .(1)如图1,若∠BAC =∠BDE =60°,则线段CE 与AD 之间的数量关系是 ;(2)如图2,若∠BAC =∠BDE =120°,且点D 在线段AB 上,则线段CE 与AD 之 间的数量关系是__________________; (3)如图3,若∠BAC =∠BDE =α,请你探究线段CE 与AD 之间的数量关系(用含α的式子表示),并证明你的结论..已知:AOB △中,2AB OB ==,COD △中,3CD OC ==,ABO DCO =∠∠. 连接AD 、BC ,点M 、N 、P 分别为OA 、OD 、BC 的中点.图1H FG ED CB A 图2A B CD EG FH ADB图1BACDE图3E BAC D图2图1 图2(1) 如图1,若A 、O 、C 三点在同一直线上,且60ABO =∠,则PMN △的形状是________________,此时ADBC=________; (2) 如图2,若A 、O 、C 三点在同一直线上,且2ABO α=∠,证明PMN BAO △∽△,并计算ADBC的值(用含α的式子表示);(3) 在图2中,固定AOB △,将COD △绕点O 旋转,直接写出PM 的最大值..如图1,在□ABCD 中,AE ⊥BC 于E ,E 恰为BC 的中点,2tan =B .(1)求证:AD =AE ;(2)如图2,点P 在BE 上,作EF ⊥DP 于点F ,连结AF .求证:AF EF DF 2=-;(3)请你在图3中画图探究:当P 为射线E C 上任意一点(P 不与点E 重合)时,作EF ⊥DP 于点F ,连结AF ,线段DF 、EF 与AF 之间有怎样的数量关系直接写出你的结论.如图10-1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系: (1)①请直接写出图10-1中线段BG 、线段DE 的数量关系及所在直线的位置关系;图1E B C A D 图3 E B C A D 图2 E C B A DF P②将图10-1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图10-2、如图10-3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图10-2证明你的判断.(2)将原题中正方形改为矩形(如图10-4~10-6),且kb CG ka CE b BC a AB ====,,, )0,( k b a ≠ ,试判断(1)①中得到的结论哪个成立,哪个不成立并写出你的判断,不必证明. (3)在图10-5中,连结DG 、BE ,且21,2,4===k b a ,则22BE DG += .(1)已知:如图1,△ABC 中,分别以AB 、AC 为一边向△ABC 外作正方形ABGE 和ACHF ,直线AN ⊥BC 于N ,若EP AN ⊥于P ,FQ AN ⊥于Q . 判断线段EP FQ 、的数量关系,并证明;(2)如图2,梯形ABCD 中,AD ∥BC , 分别以两腰AB 、CD 为一边向梯形ABCD 外作正方形ABGE 和DCHF ,线段AD 的垂直平分线交线段AD 于点M ,交BC 于点N ,若EP MN ⊥于P ,FQ MN ⊥于Q .(1)中结论还成立吗请说明理由.图2FF图1HN Q GHMPEPQGEDC BA N CBA已知:如图,在Rt ACB △中,90C ∠=,4cm AC =,3cm BC =,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为(s)t (02t <<),解答下列问题:(1)当t为何值时,PQ BC∥(2)设AQP△的面积为y(2cm),求y与t 之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把△的周长和面积同时平分若存在,求出Rt ACB此时t的值;若不存在,说明理由;!。