洗衣机模糊控制matlab仿真

合集下载

洗衣机模糊控制仿真实验报告

洗衣机模糊控制仿真实验报告

洗衣机模糊控制仿真实验报告一、实验目的本实验旨在通过对洗衣机运行过程的模糊控制仿真实验,帮助学生更好地了解模糊控制的基本原理和实现方法。

二、实验原理洗衣机模糊控制系统主要包括模糊控制器、模糊推理机和输出规则等三个部分。

模糊控制器是模糊系统的核心部分,其主要作用是将输入信号转化为模糊集,并将控制输出信号转化为真实输出信号。

模糊控制器的输入为洗衣机工作状态的一些参数,例如水位、温度等,输出为洗衣机运行状态的一些控制命令,例如加热、搅拌等。

模糊推理机是由一系列规则组成的系统,它负责根据输入的模糊集和一组先验规则,进行模糊推理,得到控制输出信号的模糊集,即模糊控制器的中间变量。

输出规则主要为控制输出信号的模糊集赋值,即将模糊集中各个元素映射到真实输出信号的取值范围内。

三、实验步骤1、建立洗衣机的模糊控制系统模型,包括模糊控制器、模糊推理机和输出规则等。

2、设置洗衣机的运行参数,例如水位、温度等,作为模糊控制器的输入。

3、根据洗衣机的运行状态,制定一组先验规则,作为模糊推理机的输入,并进行模糊推理。

4、根据模糊推理得到的控制输出信号的模糊集,进行输出规则的映射,得到洗衣机的真实控制命令。

5、根据洗衣机的控制命令,模拟洗衣机的工作流程。

6、对洗衣机的工作流程进行仿真实验,并记录实验结果。

四、实验结果分析经过多次实验,得到了洗衣机的模糊控制系统的优化参数,能够实现洗衣机的良好控制。

通过对实验结果的分析,可以发现,模糊控制系统可以有效地调节洗衣机的运行状态,使其在不同的工作状态下保持稳定且高效的运行。

同时,模糊控制系统也具有很强的适应性和鲁棒性,可以自适应地调节参数,应对各种不同的运行环境。

五、实验总结本实验通过模拟洗衣机的工作流程,对模糊控制系统的基本原理和实现方法进行了深入探究,能够有效地帮助学生掌握模糊控制系统的设计和应用方法。

同时,在实验过程中,也需要注意对实验数据和结论的分析和总结,以便更好地优化模糊控制系统的参数和性能,实现最佳控制效果。

模糊控制系统课件4.4(FIS的设计与仿真)

模糊控制系统课件4.4(FIS的设计与仿真)

坐标区
网格,可 填入3-100 之间的数 字
主菜单Options之下有两个子菜单:Plot(画图) 和Color Map(填色),都是关于绘图的。
实验一:用GUI设计Mamdani型FIS
洗衣机利用分光光度计传感器,通过检测洗涤液的
透明程度等方法,测出洗涤液中的污泥含量x∈[0,100]% 和油脂含量y∈[0,100]%。模糊控制规则根据x和y的数 据,选定洗涤时间t∈[0,60](分钟)。因为只考虑洗涤时 间,可以用双输入-单输出模糊控制器完成任务。
4.4 FIS的设计与仿真
启动MATLAB后,在主窗口键入fuzzy,回车。
模糊子集
把模糊推理系统改成T-S(Sugeno)型: File→New FIS…→Sugeno
线性函数
这两个编辑 框不允许填 入内容
相当于Mamdani推理中的蕴涵、综合、清晰化 三者的综合结果
模糊规则编辑器
以液位控制系统为例。
④if level is okay and rate is positive then valve is close slow
⑤if level is okay and rate is negative then valve is open slow 根据上述模糊规则,编辑这个“液位模糊控制器” 的仿真模型。
实验二:用GUI设计Sugeno型FIS
例:双输入(x和y)、单输出(u)系统,四条 模糊规则。
R1 : if R2 : if R3 : if R4 : if
x is x1 then u1 x 1; x is x2 and y is y1 then u 2 0.1x 4 y 1.2; x is x2 and y is y2 then u3 0.9 x 0.7 y 9; x is x3 and y is y2 then u4 0.2 x 0.1 y 0.2

智能控制实验-模糊控制

智能控制实验-模糊控制

实验一 洗衣机的模糊控制仿真一、实验目的本实验要求在学生掌握模糊控制器基本工作原理和设计方法基础上,熟悉MALAB 中的模糊控制工具箱,能针对实际问题设计模糊控制器,建立模糊控制系统,训练学生综合运用计算机来解决一些实际问题的能力。

二、实验设备计算机一台、MATLAB 软件三、实验要求设计一个模糊控制器,根据衣物的泥污和油污程度,输出衣物的洗涤时间,通过改变控制参数的大小,观察模糊控制的性能。

四、实验步骤1.确定模糊控制器的结构选用两输入单输出模糊控制器,控制器的输入为衣物的泥污和油污,输出为洗涤时间。

2. 定义输入、输出模糊集 将泥污分为三个模糊集:泥污少SD 、泥污中MD 、泥污大LD ;油污分为三个模糊集:油污少SG 、油污中MG 、油污大LG ;将洗涤时间分为五个模糊集:很短VS 、短S 、中等M 、长L 、很长VL 。

3. 定义隶属度函数选用三角形隶属度函数实现泥污、油污和洗涤时间的模糊化:(50)/50050/50050(100)/505010050100(50)/50x x x x x x x x μμμμ=-⎧≤≤⎪≤≤⎧⎪==⎨⎨-<≤⎩⎪⎪<≤=-⎩SD MD 泥污LD (50)/50050/50050(100)/505010050100(50)/50x x x x x x x x μμμμ=-⎧≤≤⎪≤≤⎧⎪==⎨⎨-<≤⎩⎪⎪<≤=-⎩SG MG 油污LG(50)/50010/50010(100)/501025/501025(100)/5025402540/504060(100)/504060(50)/50x z x z x z x z x z z x z x z x μμμμμμ=-⎧≤≤⎪⎧≤≤⎪=⎨⎪-<≤⎩⎪≤≤⎧⎪==⎨⎨-<≤⎩⎪⎪≤≤⎧⎪=⎨<≤-⎪⎩⎪≤≤=-⎩SG MG MG 洗涤时间MG LG实验结果:实验分析:6.模糊推理因模糊控制规则表对称,所以上图为input1 和input2分别为50时input2和input1与洗涤时间的关系。

唐浦华智能控制实验报告

唐浦华智能控制实验报告

实验报告(计算机类)课程名称: 智能控制课程代码: 106003599学生所在学院: 机械工程学院年级/专业/班:机电12(3)-2 学生姓名:吴丽学号: 3320120193208实验总成绩:任课教师:唐浦华开课学院: 机械工程学院实验中心名称:5A-107.西华大学实验报告(计算机类)开课学院及实验室: 机械工程学院 实验时间 : 年 月 日一、实验目的和任务采用matlab 仿真,进行验证性实验并分析。

二、验仪器、设备及材料Pc 机,matlab 软件,洗衣机模糊控制系统仿真程序三、实验原理及步骤以洗衣机洗涤时间的模糊控制系统设计为例,其控制是一个开环的模糊决策过程,模糊控制按以下步骤进行:① 确定模糊控制器的结构; ② 定义输入、输出模糊集; ③ 定义隶属度函数; ④ 建立模糊控制规则; ⑤ 建立模糊控制表; ⑥ 模糊推理; ⑦仿真实例。

四、实验结果① 污泥和油脂隶属度函数设计仿真结果,如图一; ② 洗涤时间隶属度函数设计仿真结果,如图二;图一图二③洗衣机模糊控制系统仿真结果:五、实验结果分析西华大学实验报告(计算机类)开课学院及实验室:机械工程学院实验时间:年月日采用matlab仿真,进行验证性实验并分析。

二、验仪器、设备及材料Pc机,matlab软件,模糊PID仿真程序三、实验原理及步骤被控对象为G(s)=133/(s2+25s)采样时间为1ms,采用z变换进行离散化,离散化后的被控对象为Y(k)=-den(2)y(k-1)-den(3)y(k-2)+num(2)u(k-1)+num(3)u(k-2)位置指令为幅值为1.0的阶跃信号,r(k)=1.0。

仿真时,先运行模糊推理系统设计程序chap4_7a.m,实现模糊推理系统fuzzpid.fis,并将此模糊推理系统调入内存中,然后运行模糊控制程序chap4_7b.m。

四、实验结果①模糊控制程序chap4_7a.m仿真结果:②模糊控制程序chap4_7b.m仿真结果:五、实验结果分析西华大学实验报告(计算机类)开课学院及实验室:机械工程学院实验时间:年月日并采用matlab仿真,进行验证性实验并分析。

基于MATLAB的洗衣机模糊控制设计

基于MATLAB的洗衣机模糊控制设计

基于MATLAB的洗衣机模糊控制设计MATLAB是一种功能强大的数学软件,可以用于模糊控制设计。

在本文中,我们将介绍如何使用MATLAB来设计一个基于模糊控制的洗衣机控制系统。

首先,我们需要定义洗衣机模糊控制系统的输入和输出变量。

在一个简单的洗衣机系统中,输入变量可以是衣物的脏度和水位,而输出变量可以是洗衣机的清洗时间和水温。

接下来,我们需要建立一个模糊控制器模型。

模糊控制器是一个基于模糊逻辑的控制器,能够处理模糊输入和输出变量。

在MATLAB中,我们可以使用Fuzzy Logic Toolbox来建立一个模糊控制器模型。

我们首先需要定义模糊输入变量的隶属函数。

在这个例子中,我们可以定义脏度变量的隶属函数为"低","中"和"高",水位变量的隶属函数为"低","中"和"高"。

然后,我们需要定义模糊输出变量的隶属函数。

在这个例子中,我们可以定义清洗时间变量的隶属函数为"短","适中"和"长",水温变量的隶属函数为"低","中"和"高"。

接下来,我们需要定义输入和输出变量之间的模糊规则。

在这个例子中,我们可以定义以下规则:规则1:如果脏度是低和水位是低,那么清洗时间是短和水温是低。

规则2:如果脏度是低和水位是中,那么清洗时间是适中和水温是中。

规则3:如果脏度是低和水位是高,那么清洗时间是长和水温是中。

规则4:如果脏度是中和水位是低,那么清洗时间是适中和水温是中。

规则5:如果脏度是中和水位是中,那么清洗时间是适中和水温是中。

规则6:如果脏度是中和水位是高,那么清洗时间是长和水温是高。

规则7:如果脏度是高和水位是低,那么清洗时间是长和水温是中。

规则8:如果脏度是高和水位是中,那么清洗时间是长和水温是高。

模糊控制的Matlab仿真实例

模糊控制的Matlab仿真实例

其他例子
模型Shower.mdl―淋浴温度调节模糊控制系统仿真; 模型slcp.mdl―单级小车倒摆模糊控制系统仿真; 模型 slcp1.mdl―变长度倒摆小车模糊控制系统仿
真; 模型 slcpp1.mdl—定长、变长二倒摆模糊控制系
统仿真; 模型slbb.mdl―球棒模糊控制系统仿真; 模型sltbu.mdl―卡车智能模糊控制倒车系统仿真; 模型sltank2.mdl ― 用子系统封装的水箱控制仿
为简单起见,我们直接利用系统里已经编辑好的 模糊推理系统,在它的基础上进行修改。这里我 们采用与tank . fis中输入输出变量模糊集合完 全相同的集合隶属度函数定义,只是对模糊规则 进行一些改动,来学习模糊工具箱与仿真工具的 结合运用。对于这个问题,根据经验和直觉很显 然可以得到如下的模糊度示 波器
冷水阀子系统
这个仿真模型的输出是用示波器来表示的,如 图所示。通过示波器上的图形我们可以清楚地 看到温度和水流量跟踪目标要求的性能。
水温示波器
水流示波器
水温偏差区间模糊划分及隶属度函数
水流量偏差区间模糊划分及隶属度函数
输出对冷水阀控制策略的模糊化分及隶属度函数
选Edit菜单,选择Rules, 弹出一新界面Rule Editor. 在底部的选择框内,选择相应的 IF…AND…THEN 规则,点击Add rule 键,上部 框内将显示相应的规则。本例中用9条左右的规 则,依次加入。如下图所示:
模糊逻辑工具箱仿真结果
模糊规则浏览器用于显示各条模糊控制规则对 应的输入量和输出量的隶属度函数。通过指定 输入量,可以直接的显示所采用的控制规则, 以及通过模糊推理得到相应输出量的全过程, 以便对模糊规则进行修改和优化。
这样的结果与实际情况还是有些不符。通常顾客都是给15%的 小费,只有服务特别好或特别不好的时候才有改变,也就是说, 希望在图形中间部分的响应平坦些,而在两端(服务好或坏) 有凸起或凹陷。这时服务与小费是分段线性的关系。例如,用 下面 MATLAB 语句绘出的下图的情况。

基于Matlab的洗衣机模糊控制 - 副本

基于Matlab的洗衣机模糊控制 - 副本

基于MATLAB的洗衣机模型模糊设计控制一、问题描述随着现代社会生活节奏的不断加快和人们生活水平的不断提高,人们对各种方便、快捷的家用电器需求量越来越大,为了提高人们的生活效率,全自动洗衣机应运而生。

洗衣机的技术发展日新月异,产品类型众多,但是从总体来看,人们对洗衣机的基本要求应该是:省时、省电、省水、磨损率小、操作方便、功能完善等。

模糊控制洗衣机不仅实现了洗衣机的全面自动化,也提高了洗衣的质量,具有很强的实用性和较好的发展前景。

本设计就是围绕着智能洗衣机进行研究。

本课题的主要目的就是设计一个比较合理的洗衣机模糊控制器,这种采用模糊控制的洗衣机能够自动检测洗衣桶内水的脏污程度和污渍性质(油污或者泥污);能自动预选洗涤时间,并适时调整这些运行参数,以达到最佳的洗涤效果。

二、解决方案本课题的主要是通过模糊控制来对洗衣机进行控制,通过MATLAB对其仿真。

课题的主要目的是设计一个比较合理的洗衣机模糊控制器,这种采用模糊控制的洗衣机能够自动检测洗衣桶内水的脏污程度和污渍性质(油污或者泥污);能自动预选水位和洗涤时间,并能够进行整个洗涤过程中实施监控,并适时调整这些运行参数,以达到最佳的洗涤效果。

模糊控制器的组成框图如图1所示图1三、实现步骤本设计选用两输入单输出模糊控制器。

控制器的输入为衣物的污泥和油脂,输出为洗涤时间。

将污泥分为3个模糊集:SD(污泥少),MD (污泥中),LD (污泥多);将油脂分为3个模糊集:NG (油脂少),MG (油脂中),LG (油脂多);将输出的洗涤时间分为5个模糊集:VS (很短),S (短),M (中等),L (长),VL (很长)。

1、定义隶属函数污泥含量选用如下隶属函数:()()()()()()⎪⎪⎩⎪⎪⎨⎧-=⎩⎨⎧-=-==50/5050/10050/50/50x x x x x x x μLDMD SD μμμ污泥1005010050500500≤<≤<≤≤≤≤x x x x采用三角隶属函数可实现污泥的模糊化采用Matlab 仿真,如图2所示。

洗衣机的神经网络模糊控制器的设计研究实验使用说明

洗衣机的神经网络模糊控制器的设计研究实验使用说明
xljg.m 目标样本的训练仿真
mbhsyc.m 目标样本和样本的差值比较仿真
实验使用说明
实验——洗衣机的神经网络模糊控制器的设计研究,具体实验环境描技术Ghost XP
版本 SP3简体中文版
软件环境
实验所应用的软件是MATLAB R2007a。MATLAB是美国Mathworks公司1982年推出的数学软件,它具有强大的数值计算能力和优秀的数据可视化能力。MATLAB软件针对各种学科相继推出了功能各异的工具箱,本实验主要应用它开发的神经网络工具箱。MATLAB中的神经网络工具箱编写完备、简单易用,因此是神经网络领域内人员的重要工具。实验中的软件版本号为MATLAB R2007a。
程序编写及运行
编写:
实验中的程序都在M文件中编写。单击MATLAB R2007a 中的File―New―M-File 即可进入文本编辑窗口,输入实验中的程序。输完程序后,单击保存按钮,在对话框中输入文件名,文件名开头必须是字母。把编写好的M文件放入到MATLAB安装文件夹下的work文档中。
运行:
打开MATLAB软件,单击File—Open—文件名。打开该文件编辑窗口,再单击Debug—Run即可运行该文件。即可清晰地看到对应网络训练的过程以及函数逼近曲线和误差曲线图。
文件功能说明:
syyb.m 实验样本的仿真
mbyb.m 目标样本的仿真
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

洗衣机模糊控制仿真
1.模糊控制背景
美国教授查徳(L.A.Zandeh)在1965年首先提出模糊集合的概念,由此打开了模糊数学及其应用的大门。

1974年英国教授马丹尼(E.H.Mamdani)首先将模糊集合理论应用于加热器的控制,创造了模糊控制的基本框架。

1980年,Sugeno开创了日本的首次模糊应用——控制一家富士电子水净化厂。

1983年他又开始研究模糊机器人。

随着模糊控制技术的不断发展,模糊控制逐渐被应用到日用家电产品的控制,例如电饭锅﹑照相机﹑吸尘器﹑洗衣机等。

2.仿真目的
本次仿真的主要目的是设计一个比较合理的洗衣机模糊控制器,它能够根据被洗涤衣物的污泥多少和油脂多少,综合得到洗涤时间,从而达到最佳的洗涤效果。

3.仿真方法
本次仿真借助matlab中集成的模糊控制工具箱,使用图形界面进行模糊控制器的设计。

最后随意给定几组输入,得到输出并作出简单分析。

4.模糊控制器的设计
4.1模糊控制器理论设计方法
①选择合适的模糊控制器类型;
②确定输入输出变量的实际论域;
③确定e,e
∆的模糊集个数及各模糊集的隶属度函数;
∆,u
④输出隶属度函数选为单点,可使解模糊简单;
⑤设计模糊控制规则集;
⑥选择模糊推理方法;
⑦解模糊方法。

4.2实际设计过程
①模糊控制器类型:选用两输入单输出模糊控制器,控制器输入为衣物的污泥和油脂,输出为洗涤时间。

②确定输入输出变量的实际论域:输入为Mud(污泥)和Grease (油脂),设置Range=[0 100](输入变化范围为[0,100]);输出为Time(洗涤时间),Range=[0 60](输出变化范围为[0,60])。

对应matlab 中模糊控制模块:
③确定模糊集个数及各模糊集的隶属度函数:将污泥分为3个模糊集:SD (污泥少)MD (污泥中)LD(污泥多);將油脂分为三个模糊集:NG (油脂少)MG (油脂中)LG (油脂多);将洗涤时间非为5个模糊集:VS (很短)S (短)M (中等)L (长)VL (很长)。

输入﹑输出隶属度函数都定为三角形隶属函数。

结合④输出隶属度函数选为单点,可使解模糊简单;定义污泥隶属函数如下 50)50()(x x SD -=μ 0≤x ≤50
50
x
0≤x ≤50
=Mad μ =)(x MD μ 50
)
100(x - 50<x ≤100
50)50()(-=x x LD μ 50<x ≤100
对应matlab 中隶属度函数仿真图如下:
由隶属函数设置污泥的3个模糊集参数为 [Input1] Name='Mud' NumMFs=3
MF1='SD':'trimf',[-50 0 50] MF2='MD':'trimf',[0 50 100] MF3='LD':'trimf',[50 100 150] 定义油脂隶属函数如下:
50)50()(y x SG -=μ 0≤y ≤50
50
y
0≤y ≤50
=Grease μ =)(x MG μ 50
)
100(y - 50<y ≤100 50)50()(-=y x LG μ 50<y ≤100
对应matlab中隶属度函数仿真图如下:
由隶属函数设置油脂3个模糊集参数为[Input2]
Name='Grease'
NumMFs=3
MF1='SG':'trimf',[-50 0 50]
MF2='MG':'trimf',[0 50 100]
MF3='LG':'trimf',[50 100 150]
定义输出时间隶属函数如下:
µVS(Z)=(10-Z)/10 0≤Z≤10
Z/10 0≤Z≤10
µS(Z)=
(25-Z)/15 10≤Z≤25
(Z-10)/15 10≤Z≤25
µM(Z)=
µ洗涤时间=(40-Z)/15 25≤Z≤40
(Z-25)/15 25≤Z≤40
µL(Z)=
(60-Z)/20 40≤Z≤60
µVL(Z)=(Z-40)/20 40≤Z≤60对应matlab中隶属度函数仿真图如下:
由隶属函数设置输出洗涤时间5个模糊集参数为
[Output1]
Name='Time'
NumMFs=5
MF1='S':'trimf',[0 10 25]
MF2='L':'trimf',[25 40 60]
MF3='VS':'trimf',[-10 0 10]
MF4='M':'trimf',[10 25 40]
MF5='VL':'trimf',[40 60 80]
⑤设计模糊控制规则:设计标准为污泥越多,油脂越多,洗涤时间越长;污泥适中,油脂适中,洗涤时间适中;污泥越少,油脂越少,洗涤时间越短。

建立模糊控制表如下:
洗涤时间Z
油脂y
SG MG LG
油脂X SD VS M L MD S M L LD M L VL
体现在matlab中模糊控制规则如下:
5.仿真实验
1.任給一输入[45,70],仿真结果如下,可以看出经过前面设计好的模糊控制器
得到输出时间为T=33.1。

2.输入为[0,0],仿真结果如下
分析:输出T=3.14,并不是0。

3.输入为[100,100],仿真结果如下
分析:输出为T=53.5,并不是60.
6.仿真结果综合分析
模糊推理方法常用的是Mamdani模糊推理法,由上面仿真结果能够看出虽然定义输出时间的变化范围是[0,60],但是仿真过程中并不能达到理想的最大最小输出时间。

这是因为在清晰化的过程中该仿真工具箱是采用一定的算法得到输出时间。

上面的仿真中总共设定了9条规则,当给定某一输入时,也就是给定了Mad与Grease的假定值,将该输入分别与9条规则中各自设定的隶属函数进行对应,并将两个输入综合作用的结果与相应规则中的输出时间Time对应得到一个输出结果,从而总共可以得到9个输出时间Time的隶属函数图,由仿真图就可以很方便的看到这个过程。

将9个输出按一定推理法整合在一个图上,这时再用到清晰化的方法比如最大隶属度法,中心法,加权平均法等进行解模糊,我们常使用的方法是取所有输出的中心或重心,最终确定一个输出时间,本仿真中最终输出就是最终洗涤时间Time。

另一方面,从输入分别为[0,0]和[100,100],输出时间为T=3.14和T=53.5可以看到,上面隶属函数的设定还是比较合理的。

相关文档
最新文档