简易模糊控制器设计及MATLAB仿真
模糊控制及其MATLAB仿真教学设计 (2)

模糊控制及其MATLAB仿真教学设计一、模糊控制简介1.1 模糊控制的概念模糊控制是一种基于模糊逻辑思想的控制方法。
与传统的精确控制方法不同,它允许在处理不确定性和模糊性时采用一种定性的方法。
在模糊控制中,运用了模糊集合论的理论和方法,能很好地解决那些传统方法难以解决的非线性、时变、模糊等问题。
1.2 模糊控制的原理模糊控制的基本原理是将问题抽象为一些模糊集合,然后通过模糊推理和模糊逻辑运算实现模糊控制。
模糊控制的输入是经过模糊化后的模糊变量,输出是某个或某些经过去模糊化的控制变量。
1.3 模糊控制的优点模糊控制在面对复杂、非线性的控制问题时往往比传统控制方法更为有效。
其主要优点有: - 基于定性的知识 - 可以有效处理模糊、不确定性问题 - 快速响应和适应性强二、MATLAB仿真教学设计2.1 MATLAB仿真工具MATLAB是一种强大、多功能的科学计算软件,可以在其中进行模拟仿真实验。
在仿真实验中,MATLAB提供了多种工具来方便用户模拟不同的控制算法。
其中,使用Simulink可以创建模型,在其中加入不同的模块来构建模拟仿真实验。
2.2 模糊控制仿真实验可以使用Simulink在MATLAB中创建一个模糊控制的仿真实验。
具体步骤如下:1. 打开MATLAB,点击Simulink新建一个模型; 2. 在Simulink中选择Fuzzy Logic Toolbox,并将Fuzzy Logic Controller加入模型; 3. 加入Fuzzy Logic Controller后,可以进入FIS Editor编辑器,设置输入和输出变量,构建模糊控制规则; 4. 设置好规则之后,添加输入信号源和输出信号源; 5. 进行仿真和调试。
2.3 仿真教学设计为了更好地进行模糊控制的MATLAB仿真教学,可以采用以下设计方案: - 设计实验1:基础概念实验,通过模拟一个简单的控制过程,让学生了解模糊控制基本概念和原理。
简易模糊控制器设计及MATLAB仿真

简易模糊控制器的设计及仿真摘要:模糊控制(Fuzzy Control )是以模糊集理论、模糊语言和模糊逻辑推理 为基础的一种控制方法,它从行为上模仿人的模糊推理和决策过程。
本文利用MATLAB/SIMULIN 与FUZZYTOOLBO 对给定的二阶动态系统,确定模糊控制器的 结构,输入和输出语言变量、语言值及隶属函数,模糊控制规则,比较其与常规 控制器的控制效果,用MATLA 实现模糊控制的仿真。
关键词:模糊控制参数整定MATLAB 仿真二阶动态系统模型:120 30s 1 140s 1采用simulink 图库,实现常规PID 和模糊自整定PID 一.确定模糊控制器结构模糊自整定PID 为2输入3输出的模糊控制器。
在MATLAB 勺命令窗口中键 入fuzzy 即可打开FIS 编辑器,其界面如下图所示。
此时编辑器里面还没有FIS系统,其文件名为Un titled ,且被默认为Man da ni 型系统。
默认的有一个输入, 一个输出,还有中间的规则处理器。
在FIS 编辑器界面上需要做一下几步工作。
Ready首先,模糊自整定PID 为2输入3输出的模糊控制器,因此需要增加一个输入两个输出,进行的操作为:选择 Edit 菜单下的Add Variable/Input菜单项<F1S Name: Untitled FIS Type: And method Or method implicertionAggregationDefuzzificatiorHelpJ{ Close ]File S.A11¥j. ez:Unt it leduntitled (mamdani)output 1Current VariableType Rangeoutputloutput [01]最后,保存系统。
单击File 菜单,选择Export 下的To Disk 项 建的系统命名为PID_auot.fi•定义输入、输出模糊集及隶属函数如下图-FIS Editor: UntitledFile Edit Vie*FJS Mame:Anci mrthod Or method Implication AggregationDetuzzificatioroutputsoutput[01]. dose IReady其次,给输入输出变量命名。
基于MATLAB模糊控制器设计和仿真

模块库中的模块到结构图编辑器中,再将它们适当 连接便构成自己的控制系统结构图,然后即可用
simulink进行仿真,并可通过示波器模块(scope) 观察仿真曲线。
为比较被控对象变化时模糊控制器的控制性
能,本文设计的模糊控制系统由三个模糊控制器组
成,被控对象是两个参数不同的二阶对象和一个一 阶对象。这三个模糊控制器的控制规则和比例因子 ke、kec、ku完全相同,并接入了相同的积分环节 以克服静差。
2 基于MATLAB的模糊控制器
的设计和仿真
①采用MAllLAB的模糊逻辑工具箱的GuI (Graph u鸵r Interface)工具设计模糊控制器
工具简介 主要使用模糊逻辑工具箱的五个
GuI工具:FIs(Fizzy Inference system)编辑器、隶 属函数编辑器、规则编辑器、规则观测器和曲面观 测器,它们之间是动态连接的。
.22.
基于mrⅡ,AB模糊控制器设计和仿真
基于MATLAB模糊控制器设计和仿真
李秀娟 天津大学 于 力 天津住宅集团房地产销售有限公司
摘要文中详细介绍用MATLAB6.1设计和仿真模糊控制器的方法,并给出仿真实例。 关键词 模糊控制 仿真MATLAB
Research of F眦zy Contr0Uer DIesi舯and Simulation B嬲ed on MA,Ⅱ。AB
第一部分:介绍国内和国外不稳定体控制的背景,将不稳定体的现有控制方法作以概括和描述,分析其优缺点,并引出自己的动态模糊控制方法。 第二部分:详细介绍模糊控制原理,包括模糊数学基础,模糊控制系统的结构设计,根据传统静态模糊控制器来构造出新的动态模糊控制器,并给 出动态模糊控制器的具体结构以及实现方法。 第三部分:建立“跷跷板”不稳定体系统数学模型,得出描述系统的微分方程。虽然在模糊控制的方法下是不需要知道被控对象的数学模型,但是 为了在计算机上的仿真需要,还是要推导出一个模型来执行仿真过程。对于“跷跷板”这个单输入、多输出的系统,我们选择用状态方程来描述它。 第四部分:详细介绍如何运用Simulink工具实现模糊控制的仿真。在仿真过程中针对传统的静态模糊控制器提出动态模糊控制器这一优化方法,并 用动态模糊控制器来完成“跷跷板”的仿真演示。通过比较两种方法的仿真结果,发现动态模糊控制器的控制效果明显优于传统模糊控制器。
基于matlab的模糊控制器的设计与仿真

基于MATLAB的模糊控制器的设计与仿真摘要:本文对模糊控制器进行了主要介绍。
提出了一种模糊控制器的设计与仿真的实现方法,该方法利用MA TLB模糊控制工具箱中模糊控制器的控制规则和隶属度函数,建立模型,并进行模糊控制器设计与仿真。
关键词:模糊控制,隶属度函数,仿真,MA TLAB1 引言模糊控制是一种特别适用于模拟专家对数学模型未知的较复杂系统的控制,是一种对模型要求不高但又有良好控制效果的控制新策略。
与经典控制和现代控制相比,模糊控制器的主要优点是它不需要建立精确的数学模型。
因此,对一些无法建立数学模型或难以建立精确数学模型的被控对象,采用模糊控制方法,往往能获得较满意的控制效果。
模糊控制器的设计比一般的经典控制器如PID控制器要复杂,但如果借助MATLAB则系统动态特性良好并有较高的稳态控制精度,可提高模糊控制器的设计效率。
本文在MATLAB环境下针对某个控制环节对模糊控制系统进行了设计与仿真。
2 模糊控制器简介模糊控制器是一种以模糊集合论,模糊语言变量以及模糊推理为数学基础的新型计算机控制方法。
显然,模糊控制的基础是模糊数学,模糊控制的实现手段是计算机。
本章着重介绍模糊控制的基本思想,模糊控制的基本原理,模糊控制器的基本设计原理和模糊控制系统的性能分析。
随着科学技术的飞速发展,在那些复杂的,多因素影响的严重非线性、不确定性、多变性的大系统中,传统的控制理论和控制方法越来越显示出局限性。
长期以来,人们期望以人类思维的控制方案为基础,创造出一种能反映人类经验的控制过程知识,并可以达到控制目的,能够利用某种形式表现出来。
而且这种形式既能够取代那种精密、反复、有错误倾向的模型建造过程,又能避免精密的估计模型方程中各种方程的过程。
同时还很容易被实现的,简单而灵活的控制方式。
于是模糊控制理论极其技术应运而生。
3 模糊控制的特点模糊控制是以模仿人类人工控制特点而提出的,虽然带有一定的模糊性和主观性,但往往是简单易行,而且是行之有效的。
模糊控制器的设计与MATLAB仿真

模糊控制器的设计与MATLAB仿真模糊控制器的设计与MATLAB仿真王桥( 安庆师范学院物理与电气工程学院安徽安庆246011)指导教师:吴文进摘要:随着现代科学技术的迅速发展,生产系统的规模越来越大,形成了复杂的大系统,导致了控制对象与控制器以及控制任务和目的的日益复杂化。
系统的复杂性主要表现在,被控对象模型的不确定性、系统信息的模糊性、高度非线性、输入信息多样化、多层次和多目标的控制要求、计算复杂性和庞大的数据处理以及严格的性能指标。
该设计分析了模糊控制理论原理,给出了常规模糊控制器的设计方法,并在MATLAB中进行仿真实验,实验结果验证了控制器的有效性。
关键词:模糊控制,PID控制,MATLAB仿真1引言智能控制是当前国内外人工智能,自动化,计算机技术领域中的热门话题,受到学术界、工程界和企业界的广泛关注。
正在积极进行有关智能控制的理论方法和应用技术的研究与开发工作,取得了许多新进展和新成果。
智能控制系统的发展,为智能自动化提供了理论基础,必将推动自动化向前发展。
智能控制主要包括以下几个方面,基于知识系统的专家控制、基于模糊系统的智能控制、基于学习及适应性的智能控制、基于神经网络的智能控制系统。
模糊控制指的是应用模糊集合理论统筹考虑控制的一种控制方式。
模糊控制的基本思想是把人类专家对特定的被控对象或过程的控制策略总结成一系列以:“IF(条件)…THEN(作用)”形式表示的控制规则,通过模糊推理得到控制作用集,作用于被控对象或过程。
控制作用集为一组条件语句,状态条件和控制作用均为一组被量化了的模糊语言集,如”正大”、”负大”、”高”等。
它们共同构成控制过程的模糊算法,定义模糊子集与建立模糊控制规则、由基本论域转变为模糊集合论域、模糊关系矩阵运算、模糊推理合成与求出控制输出模糊子集、进行清晰化运算,得到精确控制量。
本论文主要是对基于模糊系统的智能控制器中的常规模糊控制器和模糊自整定PID控制器进行设计。
模糊控制的Matlab仿真实例

其他例子
模型Shower.mdl―淋浴温度调节模糊控制系统仿真; 模型slcp.mdl―单级小车倒摆模糊控制系统仿真; 模型 slcp1.mdl―变长度倒摆小车模糊控制系统仿
真; 模型 slcpp1.mdl—定长、变长二倒摆模糊控制系
统仿真; 模型slbb.mdl―球棒模糊控制系统仿真; 模型sltbu.mdl―卡车智能模糊控制倒车系统仿真; 模型sltank2.mdl ― 用子系统封装的水箱控制仿
为简单起见,我们直接利用系统里已经编辑好的 模糊推理系统,在它的基础上进行修改。这里我 们采用与tank . fis中输入输出变量模糊集合完 全相同的集合隶属度函数定义,只是对模糊规则 进行一些改动,来学习模糊工具箱与仿真工具的 结合运用。对于这个问题,根据经验和直觉很显 然可以得到如下的模糊度示 波器
冷水阀子系统
这个仿真模型的输出是用示波器来表示的,如 图所示。通过示波器上的图形我们可以清楚地 看到温度和水流量跟踪目标要求的性能。
水温示波器
水流示波器
水温偏差区间模糊划分及隶属度函数
水流量偏差区间模糊划分及隶属度函数
输出对冷水阀控制策略的模糊化分及隶属度函数
选Edit菜单,选择Rules, 弹出一新界面Rule Editor. 在底部的选择框内,选择相应的 IF…AND…THEN 规则,点击Add rule 键,上部 框内将显示相应的规则。本例中用9条左右的规 则,依次加入。如下图所示:
模糊逻辑工具箱仿真结果
模糊规则浏览器用于显示各条模糊控制规则对 应的输入量和输出量的隶属度函数。通过指定 输入量,可以直接的显示所采用的控制规则, 以及通过模糊推理得到相应输出量的全过程, 以便对模糊规则进行修改和优化。
这样的结果与实际情况还是有些不符。通常顾客都是给15%的 小费,只有服务特别好或特别不好的时候才有改变,也就是说, 希望在图形中间部分的响应平坦些,而在两端(服务好或坏) 有凸起或凹陷。这时服务与小费是分段线性的关系。例如,用 下面 MATLAB 语句绘出的下图的情况。
模糊控制MATLAB仿真

模糊控制MATLAB仿真
实验报告本课程名称:MATLAB模糊控制上机实验
2013~2014学年第⼀学期
⼴东⽯油化⼯学院计算机与电⼦信息学院
实验⽬的:
1、了解MATLAB中各种仿真⼯具。
2、掌握MATLAB仿真⼯具中图形化界⾯以及模糊逻辑⼯具箱函数的仿真⽅法。
上机实验⼀:
设计⼀个温度模糊控制器,具体要求见课本P59要求采⽤下⾯两种MATLAB⼯具进⾏仿真。
1、⼯具箱提供的图形化界⾯
2、模糊逻辑⼯具箱函数
仿真⽅法:
1、采⽤MATLAB语⾔根据具体的控制算法编程
2、利⽤MATLAB提供的模糊逻辑⼯具箱函数
3、利⽤模糊逻辑⼯具箱的图形界⾯与Simulink动态仿真环境
在matlab⼯作窗⼝输⼊:fuzzy+回车或fuzzy + ⽂件名(.fis)进⼊图形界⾯编辑
增加输⼊变量
输⼊mfedit或选择编辑⾪属度函数菜单输⼊误差e的⾪属度函数
输⼊误差变化de的⾪属度函数
输出u的⾪属度函数
输⼊ruleedit,或选择编辑模糊规则菜单
浏览模糊规则
模糊推理输⼊输出曲⾯视图,完成模糊推理系统的构建。
matlab下模糊控制器设计步骤

MATLAB下模糊控制器设计步骤模糊控制器简介模糊控制是指采用专家经验知识来处理模糊、不确定或复杂问题的一种控制方法。
模糊控制器是一个基于模糊逻辑的控制器,能够将输入变量和输出变量之间的映射关系进行模糊化,从而设计出具有模糊推理能力的控制器。
MATLAB下模糊控制器的设计步骤步骤一:确定系统控制目标在设计模糊控制器之前,需要明确系统控制的目标,如控制系统的稳态误差、响应时间、超调量等。
根据控制目标,设计模糊控制器的输入变量和输出变量。
步骤二:确定模糊控制器的输入变量与输出变量输入变量是控制系统的输入参数,包括状态量和操作量。
例如,在温度控制系统中,输入变量可以是温度传感器的输入、加热器控制器的输出等。
输出变量是控制系统的输出结果,影响系统的控制效果。
例如,在温度控制系统中,输出变量可以是加热器的功率、温度的变化率等。
步骤三:构建模糊集合对于每个输入和输出变量,构建一组模糊集合。
模糊集合是一种模糊变量值的表示方法,能够准确地描述模糊情况下的变量。
例如,对于温度控制系统中的温度传感器输入变量,可以构建模糊集合:{冷、凉、温、热、很热}。
每个模糊集合由若干个模糊语言变量组成,以便对该变量进行模糊控制。
步骤四:确定模糊规则库模糊规则库是模糊控制器的核心,描述输入变量与输出变量之间的映射关系。
模糊规则库是根据专家经验知识或试验数据得出的,其形式一般为:如果输入变量A是模糊集合X,且输入变量B是模糊集合Y,那么输出变量C是模糊集合Z。
例如,对于温度控制系统,一个模糊规则库可以是:如果输入变量为“温”且输出变量为“较强”则输出结果为“右转”。
步骤五:进行模糊推理模糊推理是利用模糊控制器的输入变量、模糊规则库和模糊推理算法来确定输出变量的过程。
在MATLAB中,可以使用Fuzzy Logic Toolbox工具箱来进行模糊推理。
步骤六:模糊控制器的评估在完成模糊推理后,需要对模糊控制器进行评估,以确定其控制效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简易模糊控制器的设计及仿真
摘要:模糊控制(Fuzzy Control )是以模糊集理论、模糊语言和模糊逻辑推理为基础的一种控制方法,它从行为上模仿人的模糊推理和决策过程。
本文利用MATLAB/SIMULINK 与FUZZY TOOLBOX 对给定的二阶动态系统,确定模糊控制器的结构,输入和输出语言变量、语言值及隶属函数,模糊控制规则,比较其与常规控制器的控制效果,用MATLAB 实现模糊控制的仿真。
关键词:模糊控制 参数整定 MATLAB 仿真
二阶动态系统模型:
()()1140130120
++s s
采用simulink 图库,实现常规PID 和模糊自整定PID 。
一.确定模糊控制器结构
模糊自整定PID 为2输入3输出的模糊控制器。
在MATLAB 的命令窗口中键入fuzzy 即可打开FIS 编辑器,其界面如下图所示。
此时编辑器里面还没有FIS 系统,其文件名为Untitled ,且被默认为Mandani 型系统。
默认的有一个输入,一个输出,还有中间的规则处理器。
在FIS 编辑器界面上需要做一下几步工作。
首先,模糊自整定PID 为2输入3输出的模糊控制器,因此需要增加一个输入两个输出,进行的操作为:选择Edit 菜单下的Add Variable/Input 菜单项。
如下图。
其次,给输入输出变量命名。
单击各个输入和输出框,在Current Variable 选项区域的Name文本框中修改变量名。
如下图
最后,保存系统。
单击File菜单,选择Export下的To Disk项。
这里将创建的系统命名为PID_auot.fi。
二.定义输入、输出模糊集及隶属函数
语言变量值域的选取:输入语言变量e和ec的值域取值“大”(B)、“中”(M)、“小”(s)和“零”(Z) 4种;输出语言变量Kp、Ki、Kd的值域取值为“很大”(VB)、“大”(B)、“中”(M)、“小”(s) 4种。
在FIS编辑器中双击输入或输出变量的图框就能进入隶属度函数编辑器。
在隶属度函数编辑器中,需要对各个变量的论域范围、隶属度函数进行编辑。
该模糊控制器是以e和ec为输入语言变量,Kp、Ki、Kd为输出语言变量,其各语言变量的论域如下:
误差绝对值:e={0,3,6,10};
误差变化率绝对值:ec={0,2,4,6};
输出Kp:Up={0,0.5,1.0,1.5};
输出Ki:Ui={0,0.002,0.004,0.006};
输出Kd:Ud={0,3,6,9}。
如图是编辑完成后的隶属度函数编辑器的GUI。
图中显示的为对应边变量e的隶属度函数。
三.建立模糊规则及模糊控制表
双击FIS编辑器图标部分中间的方框即可打开规则编辑器。
规则的制定:根据PID参数整定原则及运行经验,可列出输出变量Kp、Ki、Kd的控制规则表。
添加完成后的规则编辑器如下图所示。
四.模糊推理规则及输出特性
对于建好的FIS结构,利用File菜单下的Export的子菜单To Disk,将FIS 结构保存到磁盘上。
到此,利用FUZZYTOOLS的GUI工具建立了模糊控制器(PID_auot.fis)。
可用GUI工具查看该推理系统,在View菜单中选择Rules命令,可打开规则观测器,查看模糊推理规则。
如下图:
在View菜单中选择surface命令,可打开曲面观测器,查看模糊推理输出特性
曲面:
五.建模及仿真
在Simulink环境下,构建模糊自整定PID和常规PID控制系统。
在MATLAB 的命令窗口直接键入“Sinmulink”并回车,即可运行Sinmulink。
运行后显示如下图所示的Simulink模块库浏览器。
然后单击工具条左边建立新模型的快捷方式,如下图
最后构建的模糊自整定PID和常规PID控制仿真系统模型如下图。
其中模糊逻辑控制器的推理系统用模糊逻辑推理GUI工具建立的FIS。
先启动Fuzzy,导入PID_auot.fis,然后将其导出到workspace。
然后运行,运行结果如下图:
六.总结
通过学习了智能控制这门课程并做了相关的实验设计,我对模糊控制有了一定的了解,比如模糊控制系统的原理,组成,分类以及简单的模糊控制器设计过程等;但学到的这些都是比较浅显的,由于后面还有必修课要复习考试,故不做深入的研究,望老师海涵。
感谢老师的指导!
七.参考文献
[1].智能控制(第2版)--刘金琨。