(浙大第四版)概率论与数理统计
概率论与数理统计课后习题答案浙江大学第四版完整版.pdf

完全版概率论与数理统计课后习题答案第四版盛骤(浙江大学)浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一]写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一]1)nn n n o S1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一]2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一](3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二]设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A 或A -(AB+AC )或A -(B ∪C )(2)A ,B 都发生,而C 不发生。
表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S -(A+B+C)或CB A(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生相当于C A C B B A ,,中至少有一个发生。
故表示为:C A C B B A 。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故表示为:ABCC B A 或(8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
故表示为:AB +BC +AC6.[三]设A ,B 是两事件且P (A )=0.6,P (B )=0.7.问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少?解:由P (A )=0.6,P (B )=0.7即知AB ≠φ,(否则AB =φ依互斥事件加法定理,P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾).从而由加法定理得P (AB )=P (A )+P (B )-P (A ∪B )(*)(1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为P (AB )=P (A )=0.6,(2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为P (AB )=0.6+0.7-1=0.3。
概率论与数理统计浙大第四版习题答案全

概率论与数理统计习题答案 完全版 浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。
表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
概率论与数理统计浙江大学第四版课后习题答案

法一:用组合做 在10只中任取两只来组合,每一个组合看作一个根本结果,每种取法等可能。
法二:用排列做 在10只中任取两个来排列,每一个排列看作一个根本结果,每个排列等可能。
法三:用事件的运算与概率计算法那么来作。
记A1,A2分别表第一、二次取得正品。
〔2〕二只都是次品〔记为事件B〕
〔4〕对某工厂出厂的产品进展检查,合格的盖上“正品〞,不合格的盖上“次品〞,如连续查出二个次品就停顿检查,或检查4个产品就停顿检查,记录检查的结果。
查出合格品记为“1〞,查出次品记为“0〞,连续出现两个“0〞就停顿检查,或查满4次才停顿检查。〔[一](3)〕
S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}
对E:铆法有 种,每种装法等可能
对A:三个次钉必须铆在一个部件上。这种铆法有〔 〕×10种
法二:用古典概率作
把试验E看作是在50个钉中任选30个钉排成一列,顺次钉下去,直到把部件铆完。〔铆钉要计先后次序〕
对E:铆法有 种,每种铆法等可能
对A:三支次钉必须铆在“1,2,3〞位置上或“4,5,6〞位置上,…或“28,29,30〞位置上。这种铆法有 种
26.[二十一]男人中有5%是色盲患者,女人中有0.25%是色盲患者。今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少?
解:A1={男人},A2={女人},B={色盲},显然A1∪A2=S,A1A2=φ
由条件知
由贝叶斯公式,有
[二十二] 一学生接连参加同一课程的两次考试。第一次及格的概率为P,假设第一次及格那么第二次及格的概率也为P;假设第一次不及格那么第二次及格的概率为 〔1〕假设至少有一次及格那么他能取得某种资格,求他取得该资格的概率。〔2〕假设他第二次已经及格,求他第一次及格的概率。
理学概率论与数理统计浙江大学第四版盛骤概率论部分

例:
✓ ✓ ✓ ✓
抛一枚硬币,观察试验结果; 对某路公交车某停靠站登记下车人数; 对某批电子产品测试其输入电压; 对听课人数进行一次登记;
9
§2 样本空间·随机事件
(一)样本空间
定义:随机试验E的所有结果构成的集合称为E的 样本空间,记为S={e},
例:
➢ ➢
称S中的元素e为基本事件或样本点.
一枚硬币抛一次 S={正面,反面}; 记录一城市一日中发生交通事故次数
概率论与数理统计是研究随机现象 数量规律的一门学科。
1
第一章 概率论的基本概念
• 1.1 随机试验 • 1.2 样本空间 • 1.3 概率和频率 • 1.4 等可能概型(古典概型) • 1.5 条件概率 • 1.6 独立性
第二章 随机变量及其分布
• 2.1 随机变量 • 2.2 离散型随机变量及其分布 • 2.3 随机变量的分布函数 • 2.4 连续型随机变量及其概率密度 • 2.5 随机变量的函数的分布
第十二章 平稳随机过程
• 12.1 平稳随机过程的概念 • 12.2 各态历经性 • 12.3 相关函数的性质 • 12.4 平稳过程的功率谱密度
5
概率论
第一章概率论的基本概念
6
第一章 概率论的基本概念
关键词: 样本空间 随机事件 频率和概率 条件概率 事件的独立性
7
§1 随机试验
确定性现象
解:假设接待站的接待时间没有规定,而各来访者在一周 的任一天中去接待站是等可能的,那么,12次接待来 访者都是在周二、周四的概率为 212/712 =0.000 000 3.
人们在长期的实践中总结得到“概率很小的事件在一次 试验中实际上几乎是不发生的”(称之为实际推断原理)。 现在概率很小的事件在一次试验中竟然发生了,因此有理由 怀疑假设的正确性,从而推断接待站不是每天都接待来访者, 即认为其接待时间是有规定的。
浙江大学概率论与数理统计第4版课后答案及笔记

浙江⼤学概率论与数理统计第4版课后答案及笔记浙江⼤学《概率论与数理统计》(第4版)笔记和课后习题(含考研真题)详解第1章 概率论的基本概念1.1 复习笔记⼀、随机事件1事件间的关系(见表1-1-1)表1-1-1 事件间的关系2事件的运算设A,B,C为事件,则有:(1)交换律:A∪B=B∪A;A∩B=B∩A;(2)结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C;(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C);(4)德摩根律:;。
⼆、频率与概率概率的性质(1)若A⊂B,则P(B-A)=P(B)-P(A)与P(B)≥P(A)(2)(逆事件的概率)P(A_)=1-P(A);(3)(加法公式)P(A∪B)=P(A)+P(B)-P(AB);推⼴:对于任意n个事件A1,A2,…,A n,三、等可能概型(古典概型)计算公式四、条件概率1乘法定理(1)乘法公式:若P(A)>0,则P(AB)=P(B|A)P(A)。
(2)若P(A1A2…A n-1)>0,则有2全概率公式和贝叶斯公式(1)全概率公式P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+…+P(A|B n)P(B n)(2)贝叶斯公式注:全概率公式和贝叶斯公式的最简单形式五、独⽴性1两个事件独⽴(1)P(AB)=P(A)P(B)(2)两个定理①若P(A)>0,A,B相互独⽴,则P(B|A)=P(B),反之同样。
②若事件A与B独⽴,则A与B_独⽴,A_与B独⽴,A_与B_独⽴。
2三个事件独⽴设A,B,C是三个事件,如果满⾜等式则称A,B,C两两独⽴,若也成⽴,则A,B,C相互独⽴。
3n个事件独⽴设A1,A2,…,A n是n(n≥2)个事件,∀1≤i<j<k<…≤n,则A1,A2,…,A n相互独⽴。
概率论与数理统计 浙江大学第四版 课后习题答案 word 完整版

概率论与数理统计浙江大学第四版课后习题答案word 完整版完全版概率论与数理统计课后习题答案第四版盛骤浙江大学浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1),n表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S10,11,12,………,n,………(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] 3)S00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,2.[二] 设A,B,C为三事件,用A,B,C的运算关系表示下列事件。
(1)A发生,B与C不发生。
表示为: 或A- AB+AC或A- B∪C(2)A,B都发生,而C不发生。
表示为: 或AB-ABC或AB-C(3)A,B,C中至少有一个发生表示为:A+B+C(4)A,B,C都发生,表示为:ABC(5)A,B,C都不发生,表示为:或S- A+B+C或(6)A,B,C中不多于一个发生,即A,B,C中至少有两个同时不发生相当于中至少有一个发生。
故表示为:。
(7)A,B,C中不多于二个发生。
相当于:中至少有一个发生。
故表示为:(8)A,B,C中至少有二个发生。
相当于:AB,BC,AC中至少有一个发生。
故表示为:AB+BC+AC6.[三] 设A,B是两事件且P A0.6,P B0.7. 问1在什么条件下P AB取到最大值,最大值是多少?(2)在什么条件下P AB取到最小值,最小值是多少?解:由P A 0.6,P B 0.7即知AB≠φ,(否则AB φ依互斥事件加法定理, PA∪BP A+P B0.6+0.71.31与P A∪B≤1矛盾).从而由加法定理得P ABP A+P B-P A∪B*(1)从0≤PAB≤PA知,当ABA,即A∩B时PAB取到最大值,最大值为PABPA0.6,(2)从*式知,当A∪BS时,PAB取最小值,最小值为PAB0.6+0.7-10.3 。
概率论与数理统计浙大第四版

不可能事件——不包含任何样本点的事件, 记为 ,每次试验必定不发生的事件.
事件的关系和运算 文氏图 ( Venn diagram )
A
随机事件的关系和运算 雷同集合的关系和运算
1. 事件的包含
A B —— A 包含于B
事件 A 发生必 导致事件 B 发生
非负性: A , P( A) 0
归一性: P( ) 1
可列可加性:P
i 1
Ai
P ( Ai )
i 1
其中 A1, A2 , 为两两互斥事件,
概率的性质
P() 0
有限可加性: 设 A1,A2,An 两两互斥
P
n i1
Ai
n i1
P(Ai )
P(A)1P(A) P(A)1
解 P(AB) P(A)P(B)P(AB)
P(AB) P(A) P(B) P(AB)
P(A)P(B)10.3 —— 最小值
最小值在 P( A B) 1 时取得
P( A B) P( A) 0.6 —— 最大值
最大值在 P(AB) P(B) 时取得
§1.4 古典概型
概率的 设 随机试验E 具有下列特点: 古典定义 基本事件的个数有限
(2) nB C31C122C150C55
P( A) 25 91
P(B) 6 91
例2 把标有 1,2,3,4 的 4 个球随机地放入 标有1,2,3,4 的 4 个盒子中,每盒放一球, 求有至少有一个盒子的号码与放入的球 的号码一致的概率。
解 n A44 4!
设 Ai 表示 i 号球入 i 号盒, i = 1,2,3,4
§1.1 随机事件
《概率论与数理统计》浙江大学第四版课后习题答案

概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。
表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1° 0 F(x) 1, x ;
2° F(x) 是单调不减的函数,即 x1 x2 时,有 F(x1) F (x2) ;
3° F() lim F(x) 0, F() lim F(x) 1;
x
x
4° F(x 0) F(x) ,即 F(x) 是右连续的;
5° P(X x) F(x) F(x 0) 。
n 种方法来完成,则这件事可由 m×n 种方法来完成。
(3)一些 常见排列
重复排列和非重复排列(有序) 对立事件(至少有一个) 顺序问题
(4)随机 试验和随 机事件
如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个, 但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试 验。 试验的可能结果称为随机事件。
常称为可列(完全)可加性。
则称 P(A)为事件 A 的概率。
(8)古典 概型
1° 1, 2 n ,
2°
P(1 )
P( 2
)
P( n
)
1 n
。
设任一事件 A ,它是由1, 2 m 组成的,则有
P(A)=(1 ) (2 ) (m ) = P(1 ) P(2 ) P(m )
m n
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
并且同时满足 P(ABC)=P(A)P(B)P(C)
那么 A、B、C 相互独立。
对于 n 个事件类似。
(15)全概 公式
设事件 B1, B2,, Bn 满足 1° B1, B2,, Bn 两两互不相容, P(Bi) 0(i 1,2,, n) ,
P( X
k)
Pn(k )
C
k n
p k q nk
,
q 1 p,0 p 1, k 0,1,2,, n ,
其中
则称随机变量 X 服从参数为 n , p 的二项分布。记为
X ~ B(n, p) 。 当 n 1时, P( X k) p k q1k , k 0.1,这就是(0-1)分
布,所以(0-1)分布是二项分布的特例。
_
(4)分布
设 X 为随机变量, x 是任意实数,则函数
函数
F(x) P(X x)
称为随机变量 X 的分布函数,本质上是一个累积函数。
P(a X b) F(b) F(a) 可以得到 X 落入区间 (a,b] 的概率。分布
函数 F(x) 表示随机变量落入区间(– ∞,x]内的概率。
分布函数具有如下性质:
P(B | A) P( AB) P( A)P(B) P(B)
P( A)
P( A)
若事件 A 、B 相互独立,则可得到 A 与 B 、 A 与 B 、 A 与 B 也都相互独
立。
(14)独立
必然事件 和不可能事件 Ø 与任何事件都相互独立。
Ø 与任何事件都互斥。
性
②多个事件的独立性
设 ABC 是三个事件,如果满足两两独立的条件,
e 2 2 , x ,
2
其中 、 0 为常数,则称随机变量 X 服从参数为 、
的正态分布或高斯(Gauss)分布,记为 X ~ N (, 2 ) 。
f (x) 具有如下性质:
1° f (x) 的图形是关于 x 对称的;
2° 当 x 时, f () 1 为最大值;
_
(1)排列
第 1 章 随机事件及其概率
Pmn
m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能数
组合公式
Cmn
m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能数
加法原理(两种方法均能完成此事):m+n
(2)加法 和乘法原 理
某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由
公式
当 P(AB)=0 时,P(A+B)=P(A)+P(B)
(11)减法 公式
P(A-B)=P(A)-P(AB)
当 B A 时,P(A-B)=P(A)-P(B) 当 A=Ω时,P( B )=1- P(B)
(12)条件 概率
定义 设 A、B 是两个事件,且 P(A)>0,则称 P( AB) 为事件 A 发生条件下, P( A)
泊松分布 设随机变量 X 的分布律为
P( X k) k e , 0 , k 0,1,2, k!
则称随机变量 X 服从参数为 的泊松分布,记为 X ~ () 或
者 P( )。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
超几何分布
P( X
k)
CMk
•
C nk N M
CNn
k 0,1,2,l , l min(M , n)
事件 B 发生的条件概率,记为 P(B / A) P( AB) 。 P( A)
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如 P(Ω/B)=1 P( B /A)=1-P(B/A)
_
(13)乘法 公式
乘法公式: P(AB) P(A)P(B / A)
更一般地,对事件 A1,A2,…An,若 P(A1A2…An-1)>0,则有
密度
1° f (x) 0 。
f (x)dx 1
2°
。
(3)离散 P(X x) P(x X x dx) f (x)dx
与 连 续 型 积分元 f (x)dx 在连续型随机变量理论中所起的作用与 P( X xk) pk 在离
随 机 变 量 散型随机变量理论中所起的作用相类似。
的关系
ba
f
(
x)
b
1
a
,
0,
a≤x≤b 其他,
则称随机变量 X 在[a,b]上服从均匀分布,记为 X~U(a,b)。
分布函数为
0,
xa, ba
x
F (x) f (x)dx 1,
x<a, a≤x≤b x>b。
指数分布
当 a≤x1<x2≤b 时,X 落在区间( x1 , x2 )内的概率为
P( x1
pk 1
(2) k 1
。
_
(2)连续 型随机变 量的分布
设 F(x) 是随机变量 X 的分布函数,若存在非负函数 f (x) ,对任意实数 x ,有
x
F (x) f (x)dx
,
则称 X 为连续型随机变量。 f (x) 称为 X 的概率密度函数或密度函数,简称概
率密度。
密度函数具有下面 4 个性质:
“由果朔因”的推断。
我们作了 n 次试验,且满足
每次试验只有两种可能结果, A 发生或 A 不发生;
n 次试验是重复进行的,即 A 发生的概率每次均一样;
每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与
否是互不影响的。 (17)伯努
这种试验称为伯努利概型,或称为 n 重伯努利试验。
X
x2 )
x2 b
x1 a
。
ex ,
f (x)
0,
x 0, x 0,
其中 0 ,则称随机变量 X 服从参数为 的指数分布。
X 的分布函数为
F(x)
1 ex , 0,
x 0,
x<0。
记住积分公式:
x nex dx n!
0
_
正态分布
设随机变量 X 的密度函数为
f (x)
1
(x)2
对于离散型随机变量, F(x) pk ; xk x x
对于连续型随机变量, F (x) f (x)dx 。
(5)八大 0-1 分布
P(X=1)=p, P(X=0)=q
分布
_
二项分布
在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A 发生
的次数是随机变量,设为 X ,则 X 可能取值为 0,1,2,, n 。
A所包含的基本事件数 基本事件总数
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空
(9)几何 间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何
概型
概型。对任一事件 A,
P( A) L( A) 。其中 L 为几何度量(长度、面积、体积)。 L()
(10)加法 P(A+B)=P(A)+P(B)-P(AB)
P( A1A2 … An) P( A1)P( A2 | A1)P( A3 | A1A2) …… P( An | A1A2 … An 1) 。
①两个事件的独立性
设事件 A 、B 满足 P(AB) P( A)P(B) ,则称事件 A 、B 是相互独立的。
若事件 A 、 B 相互独立,且 P( A) 0 ,则有
利概型
用 p 表示每次试验 A 发生的概率,则 A 发生的概率为1 p q ,用 Pn(k) 表
示 n 重伯努利试验中 A 出现 k(0 k n) 次的概率,
C Pn(k)
k n
pk qnk
,
k
0,1,2,, n
。
第二章 随机变量及其分布
(1)离散
设离散型随机变量 X 的可能取值为 Xk(k=1,2,…)且取各个值的概率,即事
随机变量 X 服从参数为 n,N,M 的超几何分布,记为 H(n,N,M)。
几何分布
P( X k) q k1 p, k 1,2,3, ,其中 p≥0,q=1-p。
随机变量 X 服从参数为 p 的几何分布,记为 G(p)。