PLC中英文说明

合集下载

PLC行业常用184个专业英语中英文词汇对照

PLC行业常用184个专业英语中英文词汇对照

PLC行业常用184个专业英语中英文词汇对照1. PLC 可编程逻辑控制器2. absolute 绝对位置3. absoluteoutput 绝对输出4 .actuator 执行器/作动器5. against 对比6. allocate 分配 7. alter 改变/修改8. ambient 环境周围ambient operating temperature 9. analog 模拟 analogoutput 10. analysis 分析 thecollection an and analysis of data 12. applicable 可用 the applicableCPU for the module13. assign 分配 14. back up battey 备用电池15. barcode reader/ID 条形码阅读器16. base unit 主基板17. baud 波特 18. beforehand 事先19. binary 二进制 20. buffer memory 缓冲存储器21. bus 总线22. case 外壳 do notremove the modules print board from the case23. characteristic 特征I/Ocharacterristic24. check 校验 the datalink status canbe checked25. child-station 子站26. common terminal 公共端27. compatible 兼容 compatiblewith the MODBUS protocol28. compound 混合 compoundsystem communication 29. condensation 结露30. condition 条件conditionsetting31. conductive 导电conductivemetal picees32. configuration 组态systemconfiguration33. configure 组态34. confirm 确认how toconfirm the operation of the module35. consumption 消耗currentconsumption36. content 目录37. control level 控制级38. convenient 方便 moreconvenient and easy-to-use39. conventionaly 传统whichconventionaly has been used 40. conversion 转换 Analog-Digital conversion module41. converter 转换器42. conveyor 传送 conveyorline 43. corrosive 腐蚀 corrosivegas 44. countermeasure 对策。

PLC中英文资料外文翻译

PLC中英文资料外文翻译

附录外文资料PLC technique discussion and future development Along with the development of the ages, the technique that is nowadays is also gradually perfect, the competition plays more more strong; the operation that list depends the artificial has already can't satisfied with the current manufacturing industry foreground, also can't guarantee the request of the higher quantity and high new the image of the technique business enterprise.The people see in produce practice, automate brought the tremendous convenience and the product quantities for people up of assurance, also eased the personnel's labor strength, reduce the establishment on the personnel. The target control of the hard realization in many complicated production lines, whole and excellent turn, the best decision etc., well-trained operation work, technical personnel or expert, governor but can judge and operate easily, can acquire the satisfied result. The research target of the artificial intelligence makes use of the calculator exactly to carry out, imitate these intelligences behavior, moderating the work through person's brain and calculators, with the mode that person's machine combine, for resolve the very complicated problem to look for the best pathWe come in sight of the control that links after the electric appliances in various situation, that is already the that time generation past, now of after use in the mold a perhaps simple equipments of grass-roots control that the electric appliances can do for the low level only;And the PLC emergence also became the epoch-making topic, adding the vivid software control through a very and stable hardware, making the automation head for the new high tide.The PLC biggest characteristics lie in: The electrical engineering teacher already no longer electric hardware up too many calculationses of cost, as long as order the importation that the button switch or the importation of the sensors order to link the PLC up can solve problem, pass to output to order the conjunction contact machine or control the start equipments of the big power after the electric appliances, but theexportation equipments direct conjunction of the small power can.PLC internal containment have the CPU of the CPU, and take to have an I/ O for expand of exterior to connect a people's address and saving machine three big pieces to constitute, CPU core is from an or many is tired to add the machine to constitute, mathematics that they have the logic operation ability, and can read the procedure save the contents of the machine to drive the homologous saving machine and I/ Os to connect after pass the calculation; The I/ O add inner part is tired the input and output system of the machine and exterior link, and deposit the related data into the procedure saving machine or data saving machine; The saving machine can deposit the data that the I/ O input in the saving machine, and in work adjusting to become tired to add the machine and I/ Os to connect, saving machine separately saving machine RAM of the procedure saving machine ROM and datas, the ROM can can do deposit of the data permanence in the saving machine, but RAM only for the CPU computes the temporary calculation usage of hour of buffer space.The PLC anti- interference is very and excellent, our root need not concern its service life and the work situation bad, these all problems have already no longer become the topic that we fail, but stay to our is a concern to come to internal resources of make use of the PLC to strengthen the control ability of the equipments for us, make our equipments more gentle.PLC language is not we imagine of edit collected materials the language or language of Cs to carry on weaving the distance, but the trapezoid diagram that the adoption is original after the electric appliances to control, make the electrical engineering teacher while weaving to write the procedure very easy comprehended the PLC language, and a lot of non- electricity professional also very quickly know and go deep into to the PLC.Is PLC one of the advantage above and only, this is also one part that the people comprehend more and easily, in a lot of equipmentses, the people have already no longer hoped to see too many control buttons, they damage not only and easily and produce the artificial error easiest, small is not a main error perhaps you can still accept; But lead even is a fatal error greatly is what we can't is tolerant of. Newtechnique always for bringing more safe and convenient operation for us, make we a lot of problems for face on sweep but light, do you understand the HMI? Says the HMI here you basically not clear what it is, also have no interest understanding, change one inside text explains it into the touch to hold or man-machine interface you knew, it combines with the PLC to our larger space.HMI the control not only only is reduced the control press button, increase the vivid of the control, more main of it is can sequence of, and at can the change data input to output the feedback with data, control in the temperature curve of imitate but also can keep the manifestation of view to come out. And can write the function help procedure through a plait to provide the help of various what lies in one's power, the one who make operate reduces the otiose error. Currently the HMI factory is also more and more, the function is also more and more strong, the price is also more and more low, the noodles of the usage are wide more and more. The HMI foreground can say that think ° to be good very.At a lot of situations, the list is is a smooth movement that can't guarantee the equipments by the control of the single machine, but pass the information exchanges of the equipments and equipments to attain the result that we want. For example fore pack and the examination of the empress work preface, we will arrive wrapping information feedback to examine the place, and examine the information of the place to also want the feedback to packing. Pass the information share thus to make both the chain connect, becoming a total body, the match of your that thus make is more close, at each other attain to reflect the result that mutually flick.The PLC correspondence has already come more more body now its value, at the PLC and correspondence between PLCs, can pass the communication of the information and the share of the datas to guarantee that of the equipments moderates mutually, the result that arrive already to repair with each other. Data conversion the adoption RS232 between PLC connect to come to the transmission data, but the RS232 pick up a people and can guarantee 10 meters only of deliver the distance, if in the distance of 1000 meters we can pass the RS485 to carry on the correspondence, the longer distance can pass the MODEL only to carry on deliver.The PLC data transmission is just to be called a form to it in a piece of and continuous address that the data of the inner part delivers the other party, we, the PLC of the other party passes to read data in the watch to carry on the operation. If the data that data in the watch is a to establish generally, that is just the general data transmission, for example today of oil price rise, I want to deliver the price of the oil price to lose the oil ally on board, that is the share of the data; But take data in the watch for an instruction procedure that controls the PLC, that had the difficulty very much, for example you have to control one pedestal robot to press the action work that you imagine, you will draw up for it the form that a procedure combine with the data sends out to pass by.The form that information transport contain single work, the half a work and the difference of a workses .The meaning of the single work also is to say both, a can send out only, but a can receive only, for example a spy he can receive the designation of the superior only, but can't give the superior reply; A work of half is also 2 and can can send out similar to accept the data, but can't send out and accept at the same time, for example when you make a phone call is to can't answer the phone, the other party also; But whole pair works is both can send out and accept the data, and can send out and accept at the same time. Be like the Internet is a typical example.The process that information transport also has synchronous and different step cent: The data line and the clock lines are synchronous when synchronous meaning lie in sending out the data, is also the data signal and the clock signals to be carry on by the CPU to send out at the same time, this needs to all want the specialized clock signal each other to carry on the transmission and connect to send, and is constrained, the characteristics of this kind of method lies in its speed very quick, but correspond work time of take up the CPU and also want to be long oppositely, at the same time the technique difficulty also very big. Its request lies in can'ting have an error margins in a datas deliver, otherwise the whole piece according to compare the occurrence mistake, this on the hardware is a bigger difficulty. Applied more and more extensive in some appropriative equipmentses, be like the appropriative medical treatment equipments, the numerical signal equipments...etc., in compare the one data deliver,its result is very good.And the different step is an application the most extensive, this receive benefit in it of technique difficulty is opposite and want to be small, at the same time not need to prepare the specialized clock signal, its characteristics to lie in, its data is partition, the long-lost send out and accept, be the CPU is too busy of time can grind to a stop sex to work, also reduced the difficulty on the hardware, the data throw to lose at the same time opposite want to be little, we can pass the examination of the data to observe whether the data that we send out has the mistake or not, be like strange accidentally the method, tired addition and eight efficacies method etc., can use to helps whether the data that we examine to send out have or not the mistake occurrence, pass the feedback to carry on the discriminator.A line of transmission of the information contain a string of and combine the cent of: The usual PLC is 8 machines, certainly also having 16 machines. We can be an at the time of sending out the data a send out to the other party, also can be 88 send out the data to the other party, an and 8 differentiationses are also the as that we say to send out the data and combine sends out the data. A speed is more and slowly, but as long as 2 or three lines can solve problem, and can use the telephone line to carry on the long range control. But combine the oscular transmission speed is very quick of, it is a string of oscular of 25600%, occupy the advantage in the short distance, the in view of the fact TTL electricity is even, being limited by the scope of one meter generally, it combine unwell used for the data transmission of the long pull, thus the cost is too expensive.Under a lot of circumstances we are total to like to adopt the string to combine the conversion chip to carry on deliver, under this kind of circumstance not need us to carry on to depositted the machine to establish too and complicatedly, but carry on the data exchanges through the data transmission instruction directly, but is not a very viable way in the correspondence, because the PLC of the other party must has been wait for your data exportation at the time of sending out the data, it can't do other works.When you are reading the book, you hear someone knock on door, you stop tostart up of affair, open the door and combine to continue with the one who knock on door a dialogue, the telephone of this time rang, you signal hint to connect a telephone, after connecting the telephone through, return overdo come together knock on door to have a conversation, after dialogue complete, you continue again to see your book, this kind of circumstance we are called the interruption to it, it has the authority, also having sex of have the initiative, the PLC had such function .Its characteristics lie in us and may meet the urgently abrupt affairs in the operation process of the equipments, we want to stop to start immediately up of work, the whereabouts manages the more important affair, this kind of circumstance is we usually meet of, PLC while carry out urgent mission, total will keep the current appearance first, for example the address of the procedure, CPU of tired add the machine data etc., be like to to stick down which the book that we see is when we open the door the page or simply make a mark, because we treat and would still need to continue immediately after book of see the behind. The CPU always does the affair that should do according to our will, but your mistake of give it an affair, it also would be same to do, this we must notice.The interruption is not only a, sometimes existing jointly with the hour several inside break, break off to have the preferred Class, they will carry out the interruption of the higher Class according to person's request. This kind of breaks off the medium interruption to also became to break off the set. The Class that certainly break off is relevant according to various resources of CPU with internal PLC, also following a heap of capacity size of also relevant fasten.The contents that break off has a lot of kinds, for example the exterior break off, correspondence in of send out and accept the interruption and settle and the clock that count break off, still have the WDT to reset the interruption etc., they enriched the CPU to respond to the category while handle various business. Speak thus perhaps you can't comprehend the internal structure and operation orders of the interruption completely also, we do a very small example to explain.Each equipments always will not forget a button, it also is at we meet the urgent circumstance use of, that is nasty to stop the button. When we meet the Human body trouble and surprised circumstances we as long as press it, the machine stops alloperations immediately, and wait for processing the over surprised empress recover the operation again.Nasty stop the internal I/ O of the internal CPU of the button conjunction PLC to connect up, be to press button an exterior to trigger signal for CPU, the CPU carries on to the I/ O to examine again, being to confirm to have the exterior to trigger the signal, CPU protection the spot breaks off procedure counts the machine turn the homologous exterior I/ O automatically in the procedure to go to also, be exterior interruption procedure processing complete, the procedure counts the machine to return the main procedure to continue to work.Have 1:00 can what to explain is we generally would nasty stop the button of exterior break off to rise to the tallest Class, thus guarantee the safety.When we are work a work piece, giving the PLC a signal, counting PLC inner part the machine add 1 to compute us for a day of workload, a count the machine and can solve problem in brief, certainly they also can keep the data under the condition of dropping the electricity, urging the data not to throw to lose, this is also what we hope earnestly.The PLC still has the function that the high class counts the machine, being us while accept some datas of high speed, the high speed that here say is the data of the in all aspects tiny second class, for example the bar code scanner is scanning the data continuously, calculating high-speed signal of the data processor DSP etc., we will adopt the high class to count the machine to help we carry on count. It at the PLC carries out the procedure once discover that the high class counts the machine to should of interruption, will let go of the work on the hand immediately. The trapezoid diagram procedure that passes by to weave the distance again explains the high class for us to carry out procedure to count machine would automatic performance to should of work, thus rise the Class that the high class counts the machine to high one Class.You heard too many this phrases perhaps:" crash", the meaning that is mostly is a workload of CPU to lead greatly, the internal resources shortage etc. the circumstance can't result in procedure circulate. The PLC also has the similar circumstance, there is a watchdog WDT in the inner part of PLC, we can establishtime that a procedure of WDT circulate, being to appear the procedure to jump to turn the mistake in the procedure movement process or the procedure is busy, movement time of the procedure exceeds WDT constitution time, the CPU turn but the WDT reset the appearance. The procedure restarts the movement, but will not carry on the breakage to the interruption.The PLC development has already entered for network ages of correspondence from the mode of the one, and together other works control the net plank and I/ O card planks to carry on the share easily. A state software can pass all se hardwares link, more animation picture of keep the view to carries on the control, and cans pass the Internet to carry on the control in the foreign land, the blast-off that is like the absolute being boat No.5 is to adopt this kind of way to make airship go up the sky.The development of the higher layer needs our continuous effort to obtain.The PLC emergence has already affected a few persons fully, we also obtained more knowledge and precepts from the top one experience of the generation, coming to the continuous development PLC technique, push it toward higher wave tide.摘自《可编程控制器技术讨论与未来发展》中文翻译可编程控制器技术讨论与未来发展随着时代的发展,当今的技术也日趋完善、竞争愈演愈烈;单靠人工的操作已不能满足于目前的制造业前景,也无法保证更高质量的要求和高新技术企业的形象.人们在生产实践中看到,自动化给人们带来了极大的便利和产品质量上的保证,同时也减轻了人员的劳动强度,减少了人员上的编制.在许多复杂的生产过程中难以实现的目标控制、整体优化、最佳决策等,熟练的操作工、技术人员或专家、管理者却能够容易判断和操作,可以获得满意的效果.人工智能的研究目标正是利用计算机来实现、模拟这些智能行为,通过人脑与计算机协调工作,以人机结合的模式,为解决十分复杂的问题寻找最佳的途径我们在各种场合看到了继电器连接的控制,那已经是时代的过去,如今的继电器只能作为低端的基层控制模块或者简单的设备中使用到;而PLC的出现也成为了划时代的主题,通过极其稳定的硬件穿插灵活的软件控制,使得自动化走向了新的高潮。

PLC中英文资料外文翻译

PLC中英文资料外文翻译

可编程控制器技术讨论与未来发展学生姓名: ******所在院系: ******所学专业: ******导师姓名: ******完成时间:******外文资料PLCtechnique discussion and future developmentWith the development of the times, today's technology is maturing, competition intensified。

rely on manual operation does not satisfy the current industry outlook, there is no guarantee of higher quality requirements and high-tech corporate image.People saw in the production practice, automation to bring great convenience and product quality assurance, but also reduce the labor intensity, reducing the staff on the establishment in many complex production process is difficult to achieve target control, the overall optimization, optimal decision-making, skilled operatives, technicians or specialists, managers can easily determine and operate it, you can get satisfactory results. artificial intelligence research is the use of computers to achieve the target, the analog These intelligent behavior, through coordination of the human brain and a computer to combine human models for solving very complex problem of finding the best way.PLC's most important feature is: electrical engineer electrical hardware no longer spend too much scheming, as long as the button switch or sensor input connected to the PLC input point will solve the problem by connecting the output point contacts or relay to control the power of the boot device, and small power output devices can be connected directly.Contained within the PLC having a central processor of the CPU, and with an external I / O port expansion I / O interface and the memory addresses of three major components, CPU core is formed by one or more accumulators, which have the logical math capabilities, and can read the contents of the program memory to drive through the calculation of the corresponding memory and I / O interface。

PLC 中英文翻译

PLC 中英文翻译

英文资料:Motivation Programmable Logic Controllers (PLC), a computing device invented by Richard E. Morley in 1968, have been widely used in industry including manufacturing systems, transportation systems, chemical process facilities, and many others. At that time, the PLC replaced the hardwired logic with soft-wired logic or so-called relay ladder logic (RLL), a programming language visually resembling the hardwired logic, and reduced thereby the configuration time from 6 months down to 6 days [Moody and Morley, 1999].Although PC based control has started to come into place, PLC based control will remain the technique to which the majority of industrial applications will adhere due to its higher performance, lower price, and superior reliability in harsh environments. Moreover, according to a study on the PLC market of Frost and Sullivan [1995], an increase of the annual sales volume to 15 million PLCs per year with the hardware value of more than 8 billion US dollars has been predicted, though the prices of computing hardware is steadily dropping. The inventor of the PLC, Richard E Morley, fairly considers the PLC market as a 5-billion industry at the present time.Though PLCs are widely used in industrial practice, the programming of PLC based control systems is still very much relying on trial-and-error. Alike software engineering, PLC software design is facing the software dilemma or crisis in a similar way. Morley himself emphasized this aspect most forcefully by indicating [Moody and Morley, 1999, P110]:If houses were built like software projects, a single woodpecker could destroy civilization.”Particularly, practical problems in PLC programming are to eliminate software bugs and to reduce the maintenance costs of old ladder logic programs. Though the hardware costs of PLCs are dropping continuously, reducing the scan time of the ladder logic is still an issue in industry so that low-cost PLCs can be used.In general, the productivity in generating PLC is far behind compared to other domains, for instance, VLSI design, where efficient computer aided design tools are in practice. Existent software engineering methodologies are not necessarily applicable to the PLC based software design because PLC-programming requires a simultaneous consideration of hardware and software. The software design becomes, thereby, more and more the major cost driver. In many industrial design projects,more than SO0/a of the manpower allocated for the control system design and installation is scheduled for testing and debugging PLC programs [Rockwell, 1999].In addition, current PLC based control systems are not properly designed to support the growing demand for flexibility and reconfigurability of manufacturing systems. A further problem, impelling the need for a systematic design methodology, is the increasing software complexity in large-scale projects.1.2 Objective and Significance of the ThesisThe objective of this thesis is to develop a systematic software design methodology for PLC operated automation systems. The design methodology involves high-level description based on state transition models that treat automation control systems as discrete event systems, a stepwise design process, and set of design rules providing guidance and measurements to achieve a successful design. The tangible outcome of this research is to find a way to reduce the uncertainty in managing the control software development process, that is, reducing programming and debugging time and their variation, increasing flexibility of the automation systems, and enabling software reusability through modularity. The goal is to overcome shortcomings of current programming strategies that are based on the experience of the individual software developer.A systematic approach to designing PLC software can overcome deficiencies in the traditional way of programming manufacturing control systems, and can have wide ramifications in several industrial applications. Automation control systems are modeled by formal languages or, equivalently, by state machines. Formal representations provide a high-level description of the behavior of the system to be controlled. State machines can be analytically evaluated as to whether or not they meet the desired goals. Secondly, a state machine description provides a structured representation to convey the logical requirements and constraints such as detailed safety rules. Thirdly, well-defined control systems design outcomes are conducive to automatic code generation- An ability to produce control software executable on commercial distinct logic controllers can reduce programming lead-time and labor cost. In particular, the thesis is relevant with respect to the following aspects.Customer-Driven ManufacturingIn modern manufacturing, systems are characterized by product and process innovation, become customer-driven and thus have to respond quickly to changing system requirements. A major challenge is therefore to provide enabling technologiesthat can economically reconfigure automation control systems in response to changing needs and new opportunities. Design and operational knowledge can be reused in real-time, therefore, giving a significant competitive edge in industrial practice.Higher Degree of Design Automation and Software QualityStudies have shown that programming methodologies in automation systems have not been able to match rapid increase in use of computing resources. For instance, the programming of PLCs still relies on a conventional programming style with ladder logic diagrams. As a result, the delays and resources in programming are a major stumbling stone for the progress of manufacturing industry. Testing and debugging may consume over 50% of the manpower allocated for the PLC program design. Standards [IEC 60848, 1999; IEC-61131-3, 1993; IEC 61499, 1998; ISO 15745-1, 1999] have been formed to fix and disseminate state-of-the-art design methods, but they normally cannot participate in advancing the knowledge of efficient program and system design.A systematic approach will increase the level of design automation through reusing existing software components, and will provide methods to make large-scale system design manageable. Likewise, it will improve software quality and reliability and will be relevant to systems high security standards, especially those having hazardous impact on the environment such as airport control, and public railroads.System ComplexityThe software industry is regarded as a performance destructor and complexity generator. Steadily shrinking hardware prices spoils the need for software performance in terms of code optimization and efficiency. The result is that massive and less efficient software code on one hand outpaces the gains in hardware performance on the other hand. Secondly, software proliferates into complexity of unmanageable dimensions; software redesign and maintenance-essential in modern automation systems-becomes nearly impossible. Particularly, PLC programs have evolved from a couple lines of code 25 years ago to thousands of lines of code with a similar number of 1/O points. Increased safety, for instance new policies on fire protection, and the flexibility of modern automation systems add complexity to the program design process. Consequently, the life-cycle cost of software is a permanently growing fraction of the total cost. 80-90% of these costs are going into software maintenance, debugging, adaptation and expansion to meet changing needs [Simmons et al., 1998].Design Theory DevelopmentToday, the primary focus of most design research is based on mechanical or electrical products. One of the by-products of this proposed research is to enhance our fundamental understanding of design theory and methodology by extending it to the field of engineering systems design. A system design theory for large-scale and complex system is not yet fully developed. Particularly, the question of how to simplify a complicated or complex design task has not been tackled in a scientific way. Furthermore, building a bridge between design theory and the latest epistemological outcomes of formal representations in computer sciences and operations research, such as discrete event system modeling, can advance future development in engineering design.Application in Logical Hardware DesignFrom a logical perspective, PLC software design is similar to the hardware design of integrated circuits. Modern VLSI designs are extremely complex with several million parts and a product development time of 3 years [Whitney, 1996]. The design process is normally separated into a component design and a system design stage. At component design stage, single functions are designed and verified. At system design stage, components are aggregated and the whole system behavior and functionality is tested through simulation. In general, a complete verification is impossible. Hence, a systematic approach as exemplified for the PLC program design may impact the logical hardware design.1.3 Structure of the ThesisFigure 1.1 illustrates the outline of the following thesis. Chapter 2 clarifies the major challenges and research issues, and discourses the relevant background and terminology. It will be argued that a systematic design of PLC software can contribute to higher flexibility and reconfigurability of manufacturing systems. The important issue of how to deal with complexity in engineering design with respect to designing and operating a system will be debated. The research approach applied in this thesis is introduced starting from a discussion of design theory and methodology and what can be learnt from that field.Chapter 3 covers the state-of-the-art of control technology and the current practice in designing and programming PLC software. The influences of electrical and software engineering are revealed as well as the potentially applicable methods from computer science are discussed. Pros and cons are evaluated and will lead to theconclusion that a new methodology is required that suffices the increasing complexity of PLC software design.Chapter 4 represents the main body of the thesis and captures the essential features of the design methodology. Though design theory is regarded as being in a pre- scientific stage it has advanced in mechanical, software and system engineering with respect to a number of proposed design models and their evaluation throughout real-world examples. Based on a literature review in Chapter 2 and 3 potential applicable design concepts and approaches are selected and applied to context of PLC software design. Axiomatic design is chosen as underlying design concept since it provides guidance for the designer without restriction to a particular design context. To advance the design concept to PLC software design, a formal notation based on statechart formalism is introduced. Furthermore, a design process is developed that arranges the activities needed in a sequential order and shows the related design outcomes.In Chapter 5, a number of case studies are given to demonstrate the applicability of the developed design methodology. The examples are derived from a complex reference system, a flexible assembly system. The achieved insights are evaluated in a concluding paragraph.Chapter 6 presents the developed computerized design tool for PLC software design on a conceptual level. The software is written in Visual Basic by using ActiveX controls to provide modularity and reuse in a web-based collaborative programming environment. Main components of the PLC software are modeling editors for the structural (modular) and the behavioral design, a layout specification interface and a simulation engine that can validate the developed model.Chapter 7 is concluding this thesis. It addresses the achievements with respect to the research objectives and questions. A critical evaluation is given alongside with an outlook for future research issues.中文翻译:动机可编程控制器(PLC),计算设备的发明人理查德e.莫莉1968年已被广泛应用于工业,包括制造系统,运输系统,化工设备等,不胜枚举. 当时,临立会取代hardwiredlogic软连线逻辑或所谓梯形图(左) 编程语言和视觉类似hardwired逻辑并因而减少了配置时间从6个月至6天[24,000莫莉,1999].虽然基于PLC控制已经开始进入的地方, 基于PLC的控制仍将技术中的大部分工业应用将坚持由于其较高性能,而且价格低廉,和优越的可靠性,在恶劣的环境中. 此外,根据一项研究PLC市场的霜冻和苏利文[1995], 增加的年销售量为15万PLCs每年提供硬件价值超过8亿美元,已预言,尽管价格计算硬件正在稳步下降. 发明者的临立会,理查德e莫莉, 认为公平的PLC市场为50亿元的产业在当前时间. 虽然PLCs 被广泛应用于工业实践, 编程控制器的控制系统仍然非常依赖试错. alike软件工程,PLC的软件设计,目前正面临两难的软件危机或以类似的方式. 莫莉强调自己在这方面最有力的说明[穆迪和莫莉,1999年,第110]:如果楼房像软件项目,一个单一的啄木鸟可以摧毁文明. 尤其是, 实际问题可编程才能消除软件错误,以减少维修费用的老梯子逻辑节目. 虽然硬件成本PLCs正在不断下降, 减少扫描时间梯形图仍然是一个问题,在业,使低成本PLCs可用. 在一般情况下,生产力的PLC发电是落后于其他领域,例如VLSI设计那里有效率的计算机辅助设计工具的作法. 现有的软件工程方法,不一定适用于PLC的软件设计,因为PLC的编程需要同时考虑硬件和软件. 软件设计变得,因此,越来越多的主要成本动因. 在许多工业设计项目,用于控制系统的设计与安装,预计进行测试和调试PLC程序〔40998,1999〕. 此外, 当前PLC的控制系统是不恰当的设计,以支持日益增长的需求弹性和可重构制造系统. 另外一个问题,推动需要有一个系统的设计方法论,是不断增加的软件复杂的大型项目. 目的和意义论文的目的这一论断,是建立一个有系统的软件设计方法可编程操作自动化系统. 设计方法涉及高层次的描述基于国家转型模式处理自动化控制系统为离散事件系统, 分步设计过程,并订定设计规则提供指导和测量,以建立一个成功的设计. 有形的结果,这项研究是为了找到一个方法,以减少不确定性,在管理控制软件发展过程中,即减少编程和调试的时间,它们的变化,越来越灵活的自动化系统并使软件的重用,通过模块. 其目的是为了克服目前的规划策略,是基于经验的个人软件开发商.一个有系统的方法来设计PLC的软件可以克服的缺陷,在传统的方式编程制造控制系统, 可以产生广泛影响的几个工业应用. 自动化控制系统是模拟的正式语言或,equivalently,由国家机器. 正式交涉,提供一个高层次的描述系统的行为被控制. 国家机器可以分析评价,以查明他们是否达到预期目标. 其次, 状态机的描述提供了一种结构性的代表转达的合理要求和制约因素,如详细的安全规则. 第三, 明确界定的控制系统的设计成果,有利于代码自动生成一个有能力生产控制软件可执行商业鲜明的逻辑控制可以减少编程的筹备时间及人力成本. 特别是,论文是有关对以下几方面. 客户导向的制造业,在现代制造系统的特点是产品和工艺创新, 成为客户导向的,因而很快地回应变化的系统要求. 一个重大的挑战就是要提供有利的技术,可以在经济reconfigure自动化控制系统,以回应变动需求和新的机遇. 设计和操作知识,可以重复使用的实时性,因此,给予相当大的竞争力,工业实践. 更高程度的自动化设计和软件质量的研究显示,编程方法自动化系统尚未能赶上急速增加,使用电脑资源. 比如,编程PLCs仍依靠传统的节目风格,梯形逻辑图. 由于延误和资源规划的一大绊脚石的进步制造业. 测试和调试可能消耗超过50%的统筹分配给PLC程序设计. 标准电工60848,1999年; 国际电工委员会61131-3,1993年; IEC61499标准,1998年;ISO15745-1, [1999]已形成固定和传播国家-国际艺术设计的方法, 但他们通常不能参与推进知识有效的计划和制度设计. 有系统的方式会增加设计水平的自动化,通过重用现有软件组件, 并将提供方法,使大规模的制度设计管理. 同样的,这将提高软件的质量和可靠性,将相关的系统高安全标准特别是那些有危害的环境影响,如机场的控制,以及公共铁路. 系统复杂的软件业,被视为表现破坏者和复杂发生器. 不断缩小的硬件价格有所斩获,需要软件的表现而言,代码优化和效益. 结果是,庞大而低效率的软件代码,一方面保持收益硬件性能另一方面. 其次,软件proliferates变成复杂到无法控制的程度; 软件重新设计并维持必要的现代自动化系统变得几乎不可能. 尤其PLC程序已从几行代码是25年前为上千行代码类似数目的算点. 提高安全性,比如新政策对防火而灵活的现代自动化系统加上复杂的程序设计过程. 因此,生命周期的软件成本,是一项长期生长所需的全部费用.80-90%这些费用都进入软件维修、调试, 改造和扩建,以满足不断变化的需求[蒙斯etal. ,1998].设计理论发展的今天,首要重点大部分设计开发研究,是基于机械和电器产品. 其中的副产品,这项研究是为了提高我们的基本了解设计理论和方法扩大到该领域的工程系统设计. 一个制度设计的理论,进行大规模而复杂的制度尚未完全建立. 尤其至于如何简化复杂或复杂的设计任务,尚未解决的一个科学的方法. 此外, 建设桥梁设计理论和最新成果的认识论的正式交涉,在计算机科学和运筹学如离散事件系统建模,可以促进未来的发展,工程设计. 应用在逻辑硬件设计,从逻辑的角度来看, PLC的软件设计类似的硬件集成电路设计. 现代超大规模集成电路设计是非常复杂的数百万件,产品开发时间为3年,[云妮,1996]. 设计过程通常是分离成组件设计和系统设计阶段. 在构件设计阶段,单一功能的设计和论证. 在系统设计阶段,部件的整理和整个系统的性能和功能测试,通过模拟. 一般来说,一个完整的验证是不可能的. 因此,一个系统的方法,如对PLC的程序设计可能会影响到逻辑的硬件设计. 结构的论文图显示提纲以下论文. 第二章阐明了重大的挑战和问题进行研究,并论述了有关的背景和术语. 有人会争辩说,一个系统的设计PLC的软件能有助于更高的灵活性和可重构制造系统. 重要的问题,就是如何处理复杂的工程设计等方面的设计和营运体系将辩论. 研究方法适用于这个论断是介绍从讨论设计理论和方法是什么可以从这一领域. 第三章涵盖了美国最先进的控制技术和当前的实践在设计和PLC编程软件. 影响电气和软件工程所揭示以及可能适用的方法,由计算机科学讨论. 利弊的评价,并会导致一个结论,即一种新的方法,是需要足够的面对日趋复杂的PLC软件设计. 第四章占主体的论断,抓住了本质特征的设计方法. 虽然设计理论视为处于前科学阶段,它有先进的机械, 软件和系统工程方面的一些建议的设计模式及其评价整个真实世界的例子. 根据文献,在第2和第3潜在适用的设计理念和方式的选择和应用语境PLC的软件设计. 公理化设计选定为基本设计理念,因为它提供了指导设计师不受任何限制某一设计方面. 提前设计概念PLC的软件设计,一个正式的五线谱基于状态形式主义介绍. 此外, 设计过程中,开发整理活动需要有优先顺序,显示了相关设计成果. 在第五章,增加了一些个案研究结果充分显示了适用性的开发设计方法. 这些例子都是从一个复杂的参考系统,以及灵活的组装系统. 所取得的见解评价结论段落. 第6章介绍先进的计算机设计工具,PLC的软件设计概念层次. 该软件是在VisualBasic中使用控件提供模块化和重用Web的协作编程环境. 其主要组成部分的PLC软件建模编辑结构(单元)与行为设计版面规格接口和模拟引擎,可以验证开发的模式. 第七章是结论性的论断. 它涉及的成就方面的研究目标和问题. 一个批判的评价是一起展望未来研究的问题.。

PLC常用专业英文词汇(附翻译),你能认识多少?

PLC常用专业英文词汇(附翻译),你能认识多少?

PLC常用专业英文词汇(附翻译),你能认识多少?在PLC编程中我们经常会遇到一些专业英文词汇,对于入门的学员来说过理解起来是非常困难的。

本文总结了一些PLC常用专业英文词汇,并做已翻译。

01a开头absolute 绝对位置Absolute output 绝对最大输出actuator 执行器/作动器against 对比allocate 分配alter 改变/修改ambient 环境周围ambient operating temperatureanalog 模拟analysis 分析applicable 可用assign 分配02b开头back up battey 备用电池barcode reader/ID 条形码阅读器base unit 主基板baud 波特beforehand 事先binary 二进制buffer memory 缓冲存储器bus 总线03c开头case 外壳characteristic 特征check 校验child-station 子站common terminal 公共端compatible 兼容compound 混合condensation 结露condition 条件conductive 导电configuration 组态configure 组态confirm 确认consumption 消耗content 目录control level 控制级convenient 方便conventionaly 传统conversion 转换converter 转换器conveyor 传送corrosive 腐蚀cutoff 切断countermeasure 对策04d开头debug 调试dedicated 屏蔽dedicated 专用default value 缺省值define 解释/阐明design 设计device level 现场级diagnosis 诊断digital 数字din rail 导轨diverse 不同的/各种各样的download 下载duplicate 完全一样dust 灰尘05e开头eliminate 免得enterprise level 管理级erase 清除exceed 超出execute 执行expand 扩展06f开头faulty 故障站field bus 现场总线fix 固定flexibly 灵活的flow 流量format 格式fuse 融丝07g开头graph图标坐标图曲线guaranteed 担保08h开头handle 处理hardware manual 硬件手册hint 提示humidity 湿度09i开头individual 独立的inductance 电感initiate 实施发起input 输入input point 输入点数install 安装instruction 指令insulation 隔离interface 接口interlocking 互锁internal 内部interrupt 中断invalid 无效10m开头magnetic 有磁性的main circuit 主回路/线电路malfunction 故障mandatory 强制mantenance 维护manual 手册mechanical 机械mechanical life 机械寿命module 模块/组件momentary power failure 瞬时断电monitor 监视mount 固定multiple 多样11n开头negative 负12o开头observation 观察occupy 占用occur 发生offline 离线offset gain 偏置增益oil mist 油雾optical loop 光缆回路optimum 最佳的output 输出overall 总的overview 总揽13p开头parameter 参数path 路径perform 进行performance specifations 性能规格peripheral 外围/外部设备phase 相point 要点port 接口positive 正power line 电源线power>precaution 注意事项print board 印刷电路板procedure 过程programing interface 编程接口/编程界面protocol 协议14r开头range 范围rated input voltage 额定输入电压ratio 比率refer to 参照recommend 建议reduce 减少/缩小register 数据寄存器relay 继电器remote I/O 远程网络reserved station 预留主站resistor 电阻器15l开头load bridging resistor 负载转移电阻load compensating resistor 负荷补偿电阻load shifting resistor 负载移动电阻器 ; 负荷转移电阻load-resistor contactor 负载电阻器接触器 ; 负荷电阻接触器anode load resistor 释义阳极负载电阻 ; 阳极负载电阻effect of load resistor 负载电阻效应16r开头resolution 分辨率Maximum resolution 最大分辨率restriction 限制retry 重试17s开头scan 扫描screw 螺丝seamless network 无缝网络sequence programme 顺控程序serial communications module 串口通信模块series 系列servo 伺服系统short 短路signal 信号sink 漏极slot 周边元件扩展插槽soures 源极specifications 特性stabilized power supply 稳压电源standby master station 备用主站start up 起动status 状态step drive 步进storage 存储store 存储witch off 切断swith 开关18t开头table 表格transfer 传送transistor 晶体管transmission speed 传输速度transmit 传送/传输triac 三端双向可控硅开关元件troubleshooting 故障处理19u开头unuseble 不可以使用upload 上传/上载utilize 利用20v开头verify 校验voltage 电压21w开头watchdog 看门狗定时器width 范围wire chips 线头。

PLC中文说明书

PLC中文说明书
控制器安装在控制柜内,控制器周围应有一定的空间方便布线。具体尺寸如下:
1、输入指示灯(IN):
00、01、02、03、04、05、06、07、
分别为对应输入开关量端子号20、19、18、17、16、15、14、13。
2、输出指示灯(OUT)
00、01、02、03、04、05、06、07、
08、09分别对应输出开关量端子号27、28、
当环境温度低于10℃时的首次启动,应先把PLC控制器设为手动
模式启动进行空载运转5分钟预热机器,再停机改变PLC控制器为自
动加载模式后进入正常运行!
二、控制面板说明及操作(SEC微电脑专用控制器)
1、通电:按说明书接线并检查无误后接通电源,把红色停止按钮往顺时针方向转动通电。通电后,画面首先显示“申行健”,5秒后进入现场主画面,显示现场温度,压力值以及故障状态,如无任何故障,显示屏底部将显示当前时间。如有故障将显示故障的名称,启动前应首先排除故障。开机2分钟后或停止按键操作2分钟后,背光电源关断,按“RT”键背光将再次点亮。
星角降压启动延时时间
加载延时时间
0020秒
星角降压启动完成后延时加载时间
空载延时时间
0020分钟
空车连续运行时间,超过此时间自动停车
停机延时时间
0015秒
停机时,空车后延时此时间才能停车
启动延时时间
0100秒
停机、空车过久停机需延时此时间后才能重新启动
备用延时时间
0000秒
附加功能
排水开延时时间
0002秒
尊敬的用户:
首先,我们感谢您选购SUCCESS ENGINE公司的SE系列螺杆式空气压缩机。
本公司的产品在出厂之前均已经过严格的检验和测试,但为了确保机器安全、可靠、耐久地投入运行,请您务必在使用本机器之前详细阅读本说明书,充分掌握该螺杆压缩机组操作规范和技能,使其设备长期处于良好的工作状态。

plc常用英语汇总

absolute 绝对位置Absolute output 绝对最大输出actuator 执行器/作动器against 对比allocate 分配alter 改变/修改ambient 环境周围ambient operating temperatureanalog 模拟analysis 分析applicable 可用assign 分配二、b开头back up battey 备用电池barcode reader/ID 条形码阅读器base unit 主基板baud 波特beforehand 事先binary 二进制buffer memory 缓冲存储器bus 总线case 外壳characteristic 特征check 校验child-station 子站common terminal 公共端compatible 兼容compound 混合condensation 结露condition 条件conductive 导电configuration 组态configure 组态confirm 确认consumption 消耗content 目录control level 控制级convenient 方便conventionaly 传统conversion 转换converter 转换器conveyor 传送corrosive 腐蚀cutoff 切断countermeasure 对策四、d开头debug 调试dedicated 屏蔽dedicated 专用default value 缺省值define 解释/阐明design 设计device level 现场级diagnosis 诊断digital 数字din rail 导轨diverse 不同的/各种各样的download 下载duplicate 完全一样dust 灰尘五、e开头eliminate 免得enterprise level 管理级erase 清除exceed 超出execute 执行expand 扩展五、f开头faulty 故障站field bus 现场总线fix 固定flexibly 灵活的flow 流量format 格式fuse 融丝graph图标坐标图曲线guaranteed 担保七、h开头handle 处理hardware manual 硬件手册hint 提示humidity 湿度八、i开头individual 独立的inductance 电感initiate 实施发起input 输入input point 输入点数install 安装instruction 指令insulation 隔离interface 接口interlocking 互锁internal 内部interrupt 中断invalid 无效九、m开头magnetic 有磁性的main circuit 主回路/线电路malfunction 故障mandatory 强制mantenance 维护manual 手册mechanical 机械mechanical life 机械寿命module 模块/组件momentary power failure 瞬时断电monitor 监视mount 固定multiple 多样十、n开头negative 负十一、o开头observation 观察occupy 占用occur 发生offline 离线offset gain 偏置增益oil mist 油雾optical loop 光缆回路optimum 最佳的output 输出overall 总的overview 总揽parameter 参数path 路径perform 进行performance specifations 性能规格peripheral 外围/外部设备phase 相point 要点port 接口positive 正power line 电源线power>precaution 注意事项print board 印刷电路板procedure 过程programing interface 编程接口/编程界面protocol 协议十三、r开头range 范围rated input voltage 额定输入电压ratio 比率refer to 参照recommend 建议reduce 减少/缩小register 数据寄存器relay 继电器remote I/O 远程网络reserved station 预留主站resistor 电阻器十四、l开头load bridging resistor 负载转移电阻load compensating resistor 负荷补偿电阻load shifting resistor 负载移动电阻器; 负荷转移电阻load-resistor contactor 负载电阻器接触器; 负荷电阻接触器anode load resistor 释义阳极负载电阻; 阳极负载电阻effect of load resistor 负载电阻效应十五、r开头resolution 分辨率Maximum resolution 最大分辨率restriction 限制retry 重试scan 扫描screw 螺丝seamless network 无缝网络sequence programme 顺控程序serial communications module 串口通信模块series 系列servo 伺服系统short 短路signal 信号sink 漏极slot 周边元件扩展插槽soures 源极specifications 特性stabilized power supply 稳压电源standby master station 备用主站start up 起动status 状态step drive 步进storage 存储store 存储witch off 切断swith 开关十七、t开头table 表格transfer 传送transistor 晶体管transmission speed 传输速度transmit 传送/传输triac 三端双向可控硅开关元件troubleshooting 故障处理十八、u开头unuseble 不可以使用upload 上传/上载utilize 利用二十、v开头verify 校验voltage 电压二十一、w开头watchdog 看门狗定时器width 范围wire chips 线头。

三菱plc fx2n指令中英文对照

三菱PLC-FX系列常用编程指令一程序流程—功能00~0900 CJ 条件转移01 CALL 调用子程序02 SRET 从子程序返回03 IRET 中断返回04 EI 开中断05 DI 关中断06 FEND 主程序结束07 WDT 监视定时器08 FOR 循环开始09 NEXT 循环结束二传送和比较指令—功能10~1910 CMP 比较11 ZCP 区间比较12 MOV 传送13 SMOV 移位传送14 CML 求补运算15 BMOV 数据块传送16 FMOV 多点传送17 XCH 数据交换18 BCD 求BCD码19 BIN 求二进制码三算术和逻辑运算指令—功能20~2920 ADD 加法21 SUB 减法22 MUL 乘法23 DIV 除法24 INC 加一25 DEC 减一26 WAND 字与27 WOR 字或28 WXOR 字异或29 NEG 求补四循环与移位—功能30~3930 ROR 循环右移31 ROL 循环左移32 RCR 带进位循环右移33 RCL 带进位循环左移34 SFTR 位右移35 SFTL 位左移36 WSFR 字右移37 WSFL 字左移38 SFWR FIFO写39 SFRD FIFO读五数据处理—功能40~4940 ZRST 区间复位41 DECO 解码42 ENCO 编码43 SUM ON位总数44 BON 检查位状态45 MEAN 求平均值46 ANS 标志置位47 ANR 标志复位48 SQR 平方根49 FLT 整数转换成浮点数六高速处理—功能50~5950 REF 刷新51 REFF 刷新与滤波处理52 MTR 矩阵输入53 HSCS 高速记数器置位54 HSCR 高速记数器复位55 HSZ 高速记数器区间比较速度检测56 SPD 脉冲输出Speed detect57 PLSY 脉宽调制Pulse Y58 PWM 脉冲调制Pulse width modulation59 PLSR 带加减速脉冲输出七方便指令—功能60~6960 IST 状态初始化61 SER 寻找62 ABSD 绝对值凸轮顺控63 INCD 增量凸轮顺控64 TTMR 示教定时器65 STMR 专用定时器—可定义66 ALT 交替输出67 RAMP 斜坡输出68 ROTC 旋转台控制69 SORT 排序八外部I/O设备—功能70~7970 TKY 十键输入71 HKY 十六键输入72 DSW 拨码开关输入73 SEGD 七段码译码74 SEGL 带锁存的七段码显示75 ARWS 方向开关76 ASC ASCII变换77 PR 打印78 FROM 读特殊功能模块79 TO 写特殊功能模块九外围设备SER—功能80~8980 RS RS通讯81 PRUN 8进制位传送82 ASCI 十六进制至ASCII转换83 HEX ASCII至十六进制转换84 CCD 校验码85 VRRD 电位器读入86 VRSC 电位器刻度8788 PID PID控制89十F2外部模块—功能90~9990 MNET F-16N, Mini网91 ANRD F2-6A, 模拟量输入92 ANWR F2-6A, 模拟量输出93 RMST F2-32RM, 启动RM94 RMWR F2-32RM, 写RM95 RMRD F2-32RM, 读RM96 RMMN F2-32RM, 监控RM97 BLK F2-30GM, 指定块98 MCDE F2-30GM, 机器码99十一浮点数—功能110~132110 ECMP 浮点数比较111 EZCP 浮点数区间比较118 EBCD 浮点数2进制->10进制119 EBIN 浮点数10进制->1进制120 EADD 浮点数加法121 ESUB 浮点数减法122 EMUL 浮点数乘法123 EDIV 浮点数除法127 ESOR 浮点数开方129 INT 浮点数->整数130 SIN 浮点数SIN运算131 COS 浮点数COS运算132 TAN 浮点数TAN运算147 SW AP 上下字节交换十二定位—功能155~159 155 ABS156 ZRN157 PLSY158 DRVI159 DRV A十三时钟运算—功能160~169 160 TCMP161 TZCP162 TADD163 TSUB166 TRD167 TWR169 HOUR十四外围设备—功能170~177 170 GRY171 GBIN176 RD3A177 WR3A十五接点比较—功能224~246 224 LD= (S1)=(S2)225 LD> (S1)>(S2)226 LD< (S1)<(S2)228 LD<> (S1)<>(S2)。

plc常用专业英文词汇

plc常用专业英文词汇PLC (Programmable Logic Controller) is a widely used industrial control device that allows users to program and control various industrial processes. As a result, PLC-related terminology is quite specialized and technical. Here is a list of common PLC-related terminologies and their explanations:1. PLC (Programmable Logic Controller): A digital computer used for automation of industrial electromechanical processes, such as control of machinery on factory assembly lines.2. CPU (Central Processing Unit): The main processing element of the PLC that executes the user program and controls the I/O operations.3. Memory: The storage area within the PLC where the user program, data, and system software are stored.4. Input (I) and Output (O) Modules: These are the interfaces between the PLC and the external world. Input modules receive signals from sensors and switches, while output modules control actuators and devices.5. Program: A sequence of instructions written in aPLC-specific programming language that controls the operation of the PLC.6. Programming Language: The language used to write the program for the PLC. Common PLC programming languagesinclude Ladder Logic, Structured Text, Function Block Diagram, and Sequential Function Charts.7. Scan Cycle: The continuous process of reading inputs, executing the user program, and updating outputs. Thiscycle is repeated continuously at a fixed rate.8. Digital Input (DI) and Digital Output (DO): These refer to signals that are either ON or OFF (1 or 0). DIsare read by the PLC from external devices, while DOs are controlled by the PLC to external devices.9. Analog Input (AI) and Analog Output (AO): Theserefer to signals that can have a continuous range of values, such as voltage or temperature. AIs are used to measure analog signals from sensors, while AOs are used to control analog devices.10. Timer: A function within the PLC that measures elapsed time. Timers can be used to control processes based on time intervals.11. Counter: A function within the PLC that counts the number of occurrences of a specific event. Counters are commonly used in processes that require counting or metering.12. Communication Interface: The hardware and software used to allow the PLC to communicate with other devices or systems. This can include Ethernet, RS-232, RS-485, or fieldbus interfaces.13. Modbus: A common communication protocol used forindustrial automation systems. PLCs often support Modbus to allow communication with other Modbus-compatible devices.14. Ethernet/IP: A networking protocol used in industrial automation that combines Ethernet networking with the Common Industrial Protocol (CIP) for device-level communication.15. HMI (Human Machine Interface): A device or software that allows operators to interact with the PLC system. HMIs typically display process information and allow operators to control the system.16. I/O Addressing: The method used to assign unique addresses to each input and output point within the PLC. This allows the user program to specifically reference and control these points.17. Data Types: The different types of data that can be used within the PLC program, such as bits, bytes, words, integers, floating-point numbers, and strings.18. Bit Manipulation: The ability to set, clear, ortest specific bits within a byte or word. This is commonly used in PLC programming to control individual bits within a larger data value.19. Fault Diagnosis: The process of identifying and diagnosing faults or errors within the PLC system. This can include checking for hardware failures, software errors, or communication issues.20. Redundancy: The use of duplicate components or systems to ensure continued operation in case of a failure. In PLC systems, this can include redundant CPUs, power supplies, or communication interfaces.These are just some of the common PLC-related terminologies used in industrial automation. The field of PLC programming and automation is constantly evolving, and new terms and concepts are constantly being introduced. Therefore, it is important for PLC professionals to stayup-to-date with the latest trends and developments in the field.。

PLC概述外文文献翻译、中英文翻译、外文翻译

外文原文:ONE、PLC overviewProgrammable controller is the first in the late 1960s in the United States, then called Plc programmable logic controller (Programmable Logic Controller) is used to replace relays. For the implementation of the logical judgment, timing, sequence number, and other control functions. The concept is presented Plc General Motors Corporation. Plc and the basic design is the computer functional improvements, flexible, generic and other advantages and relay control system simple and easy to operate, such as the advantages of cheap prices combined controller hardware is standard and overall. According to the practical application of target software in order to control the content of the user procedures memory controller, the controller and connecting the accused convenient target.In the mid-1970s, the Plc has been widely used as a central processing unit microprocessor, import export module and the external circuits are used, large-scale integrated circuits even when the Plc is no longer the only logical (IC) judgment functions also have data processing, PID conditioning and data communications functions. International Electro technical Commission (IEC) standards promulgated programmable controller for programmable controller draft made the following definition : programmable controller is a digital electronic computers operating system, specifically for applications in the industrial design environment. It used programmable memory, used to implement logic in their internal storage operations, sequence control, timing, counting and arithmetic operations, such as operating instructions, and through digital and analog input and output, the control of various types of machinery or production processes. Programmable controller and related peripherals, and industrial control systems easily linked to form a whole, to expand its functional design. Programmable controller for the user, is a non-contact equipment, the procedures can be changed to change production processes. The programmable controller has become a powerful tool for factory automation, widely popular replication. Programmable controller is user-oriented industries dedicated control computer, with many distinctive features.First, high reliability, anti-interference capability;Second,programming visual, simple;Third, adaptability good;Fourth functional improvements, strong functional interface.TWO、History of PLCProgrammable Logic Controllers (PLC), a computing device invented by Richard E. Morley in 1968, have been widely used in industry including manufacturing systems, transportation systems, chemical process facilities, and many others. At that time, the PLC replaced the hardwired logic with soft-wired logic or so-called relay ladder logic (RLL), a programming language visually resembling the hardwired logic, and reduced thereby the configuration time from 6 months down to 6 days [Moody and Morley, 1999].Although PC based control has started to come into place, PLC based control will remain the technique to which the majority of industrial applications will adhere due to its higher performance, lower price, and superior reliability in harsh environments. Moreover, according to a study on the PLC market of Frost and Sullivan [1995], an increase of the annual sales volume to 15 million PLCs per year with the hardware value of more than 8 billion US dollars has been predicted, though the prices of computing hardware is steadily dropping. The inventor of the PLC, Richard E Morley, fairly considers the PLC market as a 5-billion industry at the present time.Though PLCs are widely used in industrial practice, the programming of PLC based control systems is still very much relying on trial-and-error. Alike software engineering, PLC software design is facing the software dilemma or crisis in a similar way. Morley himself emphasized this aspect most forcefully by indicating`If houses were built like software projects, a single woodpecker could destroy civilization.”Particularly, practical problems in PLC programming are to eliminate software bugs and to reduce the maintenance costs of old ladder logic programs. Though the hardware costs of PLCs are dropping continuously, reducing the scan time of the ladder logic is still an issue in industry so that low-cost PLCs can be used.In general, the productivity in generating PLC is far behind compared to other domains, for instance, VLSI design, where efficient computer aided design tools are in practice. Existent software engineering methodologies are not necessarily applicable to the PLC based software design because PLC-programming requires a simultaneous consideration of hardware and software. The software design becomes, thereby, more and more the major cost driver. In many industrial design projects, more than of the manpower allocated for the control system design and installation is scheduled for testing and debugging PLC programs.In addition, current PLC based control systems are not properly designed to support the growing demand for flexibility and reconfigurability of manufacturing systems. A further problem, impelling the need for asystematic design methodology, is the increasing software complexity in large-scale projects.The objective of this thesis is to develop a systematic software design methodology for PLC operated automation systems. The design methodology involves high-level description based on state transition models that treat automation control systems as discrete event systems, a stepwise design process, and set of design rules providing guidance and measurements to achieve a successful design. The tangible outcome of this research is to find a way to reduce the uncertainty in managing the control software development process, that is, reducing programming and debugging time and their variation, increasing flexibility of the automation systems, and enabling software reusability through modularity. The goal is to overcome shortcomings of current programming strategies that are based on the experience of the individual software developer.Three、now of PLCFrom the structure is divided into fixed PLC and Module PLC, the two kinds of PLC including CPU board, I/O board, display panel, memory block, power, these elements into a do not remove overall. Module type PLC including CPU module, I/O modules, memory, the power modules, bottom or a frame, these modules can be according to certain rules combination configuration.In the user view, a detailed analysis of the CPU's internal unnecessary, but working mechanism of every part of the circuit. The CPU control works, by it reads CPU instruction, interprets the instruction and executes instructions. But the pace of work by shock signal control.Unit work under the controller command used in a digital or logic operations.In computing and storage register of computation result, it is also among the controller command and work. CPU speed and memory capacity is the important parameters fot PLC . its determines the PLC speed of work, IO PLC number and software capacity, so limits to control size. Central Processing Unit (CPU) is the brain of a PLC controller. CPU itself is usually one of the microcontrollers. Aforetime these were 8-bit microcontrollers such as 8051, and now these are 16-and 32-bit microcontrollers. Unspoken rule is that you’ll find mostly Hitachi and Fujicu microcontrollers in PLC controllers by Japanese makers, Siemens in European controllers, and Motorola microcontrollers in American ones. CPU also takes care of communication, interconnectedness among other parts of PLC controllers, program execution, memory operation, overseeing input and setting up of an output.System memory (today mostly implemented in FLASH technology) is used by a PLC for a process control system. Aside form. this operating systemit also contains a user program translated forma ladder diagram to a binary form. FLASH memory contents can be changed only in case where user program is being changed. PLC controllers were used earlier instead of PLASH memory and have had EPROM memory instead of FLASH memory which had to be erased with UV lamp and programmed on programmers. With the use of FLASH technology this process was greatly shortened. Reprogramming a program memory is done through a serial cable in a program for application development.User memory is divided into blocks having special functions. Some parts of a memory are used for storing input and output status. The real status of an input is stored either as “1”or as “0”in a specific memory bit/ each input or output has one corresponding bit in memory. Other parts of memory are used to store variable contents for variables used in used program. For example, time value, or counter value would be stored in this part of the memory.PLC controller can be reprogrammed through a computer (usual way), but also through manual programmers (consoles). This practically means that each PLC controller can programmed through a computer if you have the software needed for programming. Today’s transmission computers are ideal for reprogramming a PLC controller in factory itself. This is of great importance to industry. Once the system is corrected, it is also important to read the right program into a PLC again. It is also good to check from time to time whether program in a PLC has not changed. This helps to avoid hazardous situations in factory rooms (some automakers have established communication networks which regularly check programs in PLC controllers to ensure execution only of good programs).Almost every program for programming a PLC controller possesses various useful options such as: forced switching on and off of the system input/outputs (I/O lines), program follow up in real time as well as documenting a diagram. This documenting is necessary to understand and define failures and malfunctions. Programmer can add remarks, names of input or output devices, and comments that can be useful when finding errors, or with system maintenance. Adding comments and remarks enables any technician (and not just a person who developed the system) to understand a ladder diagram right away. Comments and remarks can even quote precisely part numbers if replacements would be needed. This would speed up a repair of any problems that come up due to bad parts. The old way was such that a person who developed a system had protection on the program, so nobody aside from this person could understand how it was done. Correctly documented ladder diagram allows any technician to understand thoroughly how system functions.Electrical supply is used in bringing electrical energy to central processing unit. Most PLC controllers work either at 24 VDC or 220 VAC. On some PLC controllers you’ll find electrical supply as a separatemodule. Those are usually bigger PLC controllers, while small and medium series already contain the supply module. User has to determine how much current to take from I/O module to ensure that electrical supply provides appropriate amount of current. Different types of modules use different amounts of electrical current.This electrical supply is usually not used to start external input or output. User has to provide separate supplies in starting PLC controller inputs because then you can ensure so called “pure” supply for the PLC controller. With pure supply we mean supply where industrial environment can not affect it damagingly. Some of the smaller PLC controllers supply their inputs with voltage from a small supply source already incorporated into a PLC.Four、PLC design criteriaA systematic approach to designing PLC software can overcome deficiencies in the traditional way of programming manufacturing control systems, and can have wide ramifications in several industrial applications. Automation control systems are modeled by formal languages or, equivalently, by state machines. Formal representations provide a high-level description of the behavior of the system to be controlled. State machines can be analytically evaluated as to whether or not they meet the desired goals. Secondly, a state machine description provides a structured representation to convey the logical requirements and constraints such as detailed safety rules. Thirdly, well-defined control systems design outcomes are conducive to automatic code generation- An ability to produce control software executable on commercial distinct logic controllers can reduce programming lead-time and labor cost. In particular, the thesis is relevant with respect to the following aspects.In modern manufacturing, systems are characterized by product and process innovation, become customer-driven and thus have to respond quickly to changing system requirements. A major challenge is therefore to provide enabling technologies that can economically reconfigure automation control systems in response to changing needs and new opportunities. Design and operational knowledge can be reused inreal-time, therefore, giving a significant competitive edge in industrial practice.Studies have shown that programming methodologies in automation systems have not been able to match rapid increase in use of computing resources. For instance, the programming of PLCs still relies on a conventional programming style with ladder logic diagrams. As a result, the delays and resources in programming are a major stumbling stone for the progress of manufacturing industry. Testing and debugging may consume over 50% of the manpower allocated for the PLC program design. Standards[IEC 60848, 1999; IEC-61131-3, 1993; IEC 61499, 1998; ISO 15745-1, 1999] have been formed to fix and disseminate state-of-the-art design methods, but they normally cannot participate in advancing the knowledge of efficient program and system design.A systematic approach will increase the level of design automation through reusing existing software components, and will provide methods to make large-scale system design manageable. Likewise, it will improve software quality and reliability and will be relevant to systems high security standards, especially those having hazardous impact on the environment such as airport control, and public railroads.The software industry is regarded as a performance destructor and complexity generator. Steadily shrinking hardware prices spoils the need for software performance in terms of code optimization and efficiency. The result is that massive and less efficient software code on one hand outpaces the gains in hardware performance on the other hand. Secondly, software proliferates into complexity of unmanageable dimensions; software redesign and maintenance-essential in modern automation systems-becomes nearly impossible. Particularly, PLC programs have evolved from a couple lines of code 25 years ago to thousands of lines of code with a similar number of 1/O points. Increased safety, for instance new policies on fire protection, and the flexibility of modern automation systems add complexity to the program design process. Consequently, the life-cycle cost of software is a permanently growing fraction of the total cost. 80-90% of these costs are going into software maintenance, debugging, adaptation and expansion to meet changing needs.Today, the primary focus of most design research is based on mechanical or electrical products. One of the by-products of this proposed research is to enhance our fundamental understanding of design theory and methodology by extending it to the field of engineering systems design.A system design theory for large-scale and complex system is not yet fully developed. Particularly, the question of how to simplify a complicated or complex design task has not been tackled in a scientific way. Furthermore, building a bridge between design theory and the latest epistemological outcomes of formal representations in computer sciences and operations research, such as discrete event system modeling, can advance future development in engineering design.From a logical perspective, PLC software design is similar to the hardware design of integrated circuits. Modern VLSI designs are extremely complex with several million parts and a product development time of 3 years [Whitney, 1996]. The design process is normally separated into a component design and a system design stage. At component design stage, single functions are designed and verified. At system design stage, components are aggregated and the whole system behavior and functionality is tested through simulation. In general, a complete verification isimpossible. Hence, a systematic approach as exemplified for the PLC program design may impact the logical hardware design.Five、AK 1703 ACPFollowing the principle of our product development, AK 1703 ACP has high functionality and flexibility, through the implementation of innovative and reliable technologies, on the stable basis of a reliable product platform.For this, the system concept ACP (Automation, Control and Protection) creates the technological preconditions. Balanced functionality permits the flexible combination of automation, telecontrol and communication tasks. Complemented with the scalable performance and various redundancy configurations, an optimal adaptation to the respective requirements of the process is achieved.AK 1703 ACP is thus perfectly suitable for automation with integrated telecontrol technology as:• Telecontrol substation or central device• Auto mation unit with autonomous functional groups• Data node, station control device, front-end or gateway• With local or remote peripherals• For rear panel installation or 19 inch assembly• Branch-neutral product, therefore versatile fields of application and high productstability• Versatile communication• Easy engineering• Plug & play for spare parts• Open system architecture• Scalable redundancy• The intelligent terminal - TM 1703The Base Unit AK 1703 ACP with Peripheral Elements has one basic system element CP-2010/CPC25 (Master control element) and CP-2012/PCCE25 (Processing and communication element) ,one bus line with max. 16 peripheral elements can be connected.CP-2010/CPC25 Features and FunctionsSystem Functions:• Central element,coordinating all system servicesCentral hub function for all connected basic system elements• Time managementCentral clock of the automation unitSetting anf keeping the own clock`s time with a resolution of 10ms Synchronization via serid communication via LAN or local• RedundancyVoting and change-over for redundant processing and communication elements of the own automation unitSupports voting and change-over by an external SCA-RS redundancy switchSupports applicational voting and change-over by an exterual system,e.g.a control system• SAT TOLLBOX|| connectionStoring firmware and parameters on a Flash CardCommunication:• Communication via installable protocol elements to any superior or subordinate automation unit• Automatic data flow routing• Priority based data transmission (priority control)•Own circular buffer and process image for each connected station(data keeping)• Redundant communication routesCommunication with redundant remote stations• Special application specific functions for dial-up trafficTest if stations are reachableProcess Peripherals:• Tansmission of spontaneous information objects from and to peripheral elements, via the serial Ax 1703 peripheral bus Functions for Automatoin:• Open-/closed-loop control function for the execution of freely definable user programs which are created with CAEX plus according to IEC 61131-3,ing function diagram technology512KB for user programApprox 50.000 variables and signals,2.000 of them retainedCycle of 10ms or a multiphe thereofOnline testLoadable without service interruption• Redundant open-/closed-loop control functionsSynchronization via redundancy linkTransmission of periodic process information between theopen-/closed-loop control function and the peripheral elements,via the serial Ax 1703 peripheral busSIX、SIEMENS PLCSIMATIC S7-300 series PLC applied to all walks of life and various occasions in the detection, monitoring and control of automation, its power to both the independent operation of, or connected to a network able to achieve complex control.The photoelectric products with isolation, high electromagnetic compatibility; have high industrial applicability, allowing the ambient temperature of 60 ℃; has strong anti-jamming and anti-vibration and impact resistance, so in a harsh working environment has been widely Applications.I also mean freedom of communication S7-300 type PLC' s a very unique feature, which allows S7-300-PLC can deal openly with any other communications equipment, communications controller, or PLC S7-300 type can be defined by the user's own Communications protocol (of the agreement ASCII), the baud rate to 1.5 Mbit / s (adjustable). So that can greatly increase the scope of communications so that the control system configuration more flexible and convenient. Of any kind with a serial interface peripherals, such as: printers or bar code readers, Drives, a modem (Modem), the top PC-connected, and so can be used. Users can program to develop communication protocols, the exchange of data (for example: ASCII character code), RS232 interfaces with the equipment can also be used PC / PPI cable linking the free communication communications.When the PC offline, under the control of the next crew, the whole system can operate normally.PC that is by control centre, mainly by the PC and laser printer components, using SIMATIC WINCC software platform, the all-Chinese interface, friendly man-machine dialogue. Managers and operators can be observed through a PC, shown in the various kinds of information to understand the present and past the ice-storage operation of the automatic control system and all the parameters, and through the mouse to print equipment management and implementation tasks.WINCC software in the field of automation can be used for all the operators’ control and monitoring tasks. Can be controlled in the process of the events clearly show, and shows the current status and order records, the recorded data can show all or select summary form, or may be required for editing, printing and output statements and trends .WINCC able to control the critical situation in the early stages of the report, and the signal can be displayed on the screen, can also use sound to be felt. It supported by online help and operational guidelines to eliminate failure. WINCC a workstation can be devoted to the process control to the process so that important information not is shielded. Software-assisted operation strategy ensures that the process was not illegal to visit and to provide for non-industrial environment in the wrong operation.WINCC is MICRSOFT WINDOWS98 or WINDOWS NT4.0 operating system, running on a PC object-oriented class 32-bit applications, OLE through the window and ODBC standard mechanism, as an ideal partner to enter the communications world WINDOWS, it can be easily WINCC To integrate a company-wide data processing system.Seven、CommunicationsCommunications are vital to an individual automation cell and to the automated factory as a whole. We've heard a lot about MAP in the last few years, and a lot of companies have jumped on the band wagon. Many, however were disappointed when a fully-defined and completed MAP specification didn’t appear immediately. Says Larry Kumara:”Right now , MAP is still a moving target for the manufacturers specification that is not final. Presently, for example, people are introducing products to meet the MAP 2.1standard.Yet 2.1-based products will be obsolete when the new standard for MAP,3.0is introduced.”Because of this, many PLC vendors are holding off on full MAP implementations. Omron, for example , has an ongoing MAP-compatibility program, but Frank Newborn, vice president of Omron’s Industrial Division, reports that because of the lack of a firm definition, Omron's PLCs don't yet talk to MAP.Since it’s unlikely that an individual PLC would talk to broadband MAP anyway, makers are concentrating n proprietary networks. According to Sal Provanzano, users fear that if they do get on board and vendors withdraw from MAP, they ‘ll pulse width modulation control system be the ones left holding a communications structure that’s not supported.译文:一、PLC概述可编程控制器是60年代末在美国首先出现的,当时叫可编程逻辑控制器PLC(Programmable Logic Controller),目的是用来取代继电器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中文翻译可编程控制器技术讨论与未来发展随着时代的发展,当今的技术也日趋完善、竞争愈演愈烈;单靠人工的操作已不能满足于目前的制造业前景,也无法保证更高质量的要求和高新技术企业的形象.人们在生产实践中看到,自动化给人们带来了极大的便利和产品质量上的保证,同时也减轻了人员的劳动强度,减少了人员上的编制.在许多复杂的生产过程中难以实现的目标控制、整体优化、最佳决策等,熟练的操作工、技术人员或专家、管理者却能够容易判断和操作,可以获得满意的效果.人工智能的研究目标正是利用计算机来实现、模拟这些智能行为,通过人脑与计算机协调工作,以人机结合的模式,为解决十分复杂的问题寻找最佳的途径我们在各种场合看到了继电器连接的控制,那已经是时代的过去,如今的继电器只能作为低端的基层控制模块或者简单的设备中使用到;而PLC的出现也成为了划时代的主题,通过极其稳定的硬件穿插灵活的软件控制,使得自动化走向了新的高潮。

PLC的最大特点在于:电气工程师已不再电气的硬件上花费太多的心计,只要将按钮开关或感应器的输入点连接到PLC的输入点上就能解决问题,通过输出点连接接触器或继电器来控制大功率的启动设备,而小功率的输出设备直接连接就可以。

PLC的内部包含了具有中央处理器的CPU,并带有外部I/O口扩展的I/O接口地址和存储器三大块组成,CPU的核心是由一个或者多个累加器组成,它们具有逻辑的数学运算能力,并能读取程序存储器的内容通过计算后去驱动相应的存储器和I/O接口;I/O口将内部累加器和外部的输入和输出系统连接起来,并将相关的数据存入程序存储器或者数据存储器中;存储器可以将I/O口输入的数据存入存储器中,并在工作时调转到累加器和I/O接口上,存储器分程序存储器ROM和数据存储器RAM,ROM可以将数据永久的存入存储器中,而RAM只能作为CPU 计算时临时计算使用的缓冲空间。

PLC的抗干扰是极其优秀的,我们根本不用去关心它的使用寿命和工作场合的恶劣,这些所有的问题已不再成为我们失败的主题,而留给我们的是关心如何来利用PLC的内部资源为我们加强设备的控制能力,使我们的设备更加的柔性。

PLC的语言并不是我们所想象的汇编语言或C语言来进行编程,而是采用原有的继电器控制的梯形图,使得电气工程师在编写程序时很容易就理解了PLC 的语言,而且很多的非电气专业人士也对PLC很快认识并深入。

以上仅仅是PLC的优点之一,这也是人们比较容易理解的一部分,在很多的设备中,人们已不再希望看到太多的控制按钮,它们不但容易损坏而且极易产生人为的失误,小的并不是主要的失误也许你还能够接受;但过大的甚至是致命的失误是我们无法容忍的。

新的技术总是为了给我们带来更安全和便捷的操作,使得我们面临的一大堆问题一扫而光,你有了解过HMI吗?这里说HMI你根本不清楚它是什么,也没有兴趣了解,换一个中文把它说明为触摸屏或者人机界面你就知道了,它和PLC的结合给了我们更大的空间。

HMI控制不仅仅是减少了控制按钮,增加控制的灵活性,更主要的它是可顺序性的,而且在能够改变数据输入和数据输出反馈,在温度控制曲线的模拟也能直观的显示出来。

并且能够通过编写功能帮助程序来提供各种力所能及的帮助,使得操作者减少不必要的失误。

HMI的厂商目前也越来越多,功能也越来越强,价格也越来越低,使用的面越来越广。

HMI的前景可以说十分的看好。

PLC的通信已经愈来愈体现它的价值,在PLC与PLC之间的通信,能够通过信息的沟通和数据的共享来保证设备之间的相互协调,已达到互补的效果。

PLC 之间的数据转换采用RS232接口来传送数据,而RS232接口只能保证10米的传输距离,如果在1000米的距离内我们可以通过RS485来进行通信,更长的距离只能通过MODEL来进行传输。

PLC的数据传送只是将内部的数据传送到对方的一块连续的地址中,我们把它称为一个表,对方的PLC通过读取表中的数据来进行操作。

如果表中的数据是一个一般设置的数据的话,那只是一般的数据传送,比如今天的油价上升了,我要把油价的价格传送到所有的输油机上,那就是数据的共享;而当表中的数据是一段控制PLC的指令程序,那就很有难度了,比如你要控制一台机器人来按你想象的动作工作,你会给它编制一段程序并以数据的形式发送过去。

信息输送的形式有单工位、半双工位和全双工位的分别。

单工位的意义也就是说两者之间,一个只能发送,而一个只能接收,比如一个特务他只能接收上司的指示,而无法给上司回复;半双工位也就是两个能都能发送和接受数据,但不能同时发送和接受,比如你打电话时是不能接电话,对方也一样;而全双工位是两者之间都能发送和接受数据,并可同时发送和接受。

像互联网就是典型的例子。

信息输送的过程也有同步和异步之分:同步的意义在于发送数据时数据线和时钟线是同步的,也就是数据信号和时钟信号同时由CPU进行发送,这需要彼此都要专门的时钟信号来进行传送和接送,并且是强制性的,这种方法的特点在于它的速度极快、但相应占用CPU的工作时间也相对的要长、同时技术难度也非常的大。

它的要求在于在一帧的数据传送中不能有一位的误差,不然的话整个数据将发生错误,这在硬件上是一个比较大的难度。

在一些专用的设备中应用的越来越广泛,像专用的医疗设备、数字信号设备等,在比较单一数据的传输中,它的效果非常的好。

而异步是应用范围最广泛的,这得益于它的技术难度相对要小、同时不需要配制专门的时钟信号、它的特点在于,它的数据是间隔性的,离散性的发送和接受,当CPU太忙的时候可以停顿性去工作,在硬件上也减少了难度,同时数据的丢失相对要少,我们可以通过数据的检测来观察我们发送的数据是否有错误,像奇偶法、累加法和八位效验法等,都可以用来帮助我们检测发送的数据是否有错误发生,通过反馈来进行辨别。

信息的传送口线有串口和并口之分:通常的PLC是8位机,当然也有16位机。

我们在发送数据的时候可以是一位一位的发送给对方,也可以8位8位的将数据发送到对方,一位和8位区别也就是我们所说的串口发送数据和并口发送数据。

串口速度比较慢,但只要两条或者三条口线就能解决问题,并能借用电话线来进行远程控制。

而并口的传送速度是极快的,它是串口的256倍,在短距离占有优势,由于是TTL电平,一般限于1米的范围,它并不适用于长距离的数据传送,这样成本太昂贵了。

很多的情况下我们总喜欢采用串并转换芯片来进行传输,这种情况下不需要我们进行过于复杂的寄存器设置了,而直接通过数据传送指令进行数据交流,但在通信中并不是一个十分可行的办法,因为在发送数据的时候对方的PLC必须一直等待你的数据输出,它不能去做其他的工作。

中断并不是只有一个,有时会同时存在几个中断,中断具有优先的级别,他们会根据人的要求去执行更高级别的中断。

这种中断中的中断也就形成了中断嵌套。

当然中断的级别根据各种PLC内部CPU的资源有关,同时也跟堆栈的容量大小也有关系。

中断的内容有很多种,比如外部中断、通信中的发送和接受中断、定时和计数的时钟中断、还有WDT复位中断等,它们丰富了CPU在处理各种事务时响应种类。

这样讲也许你并不能完全理解中断的内部结构和操作顺序,我们做一个小小的例子来说明.每一个设备总是不会忘记有一个按钮,它也是在我们遇到紧急情况时使用的,那就是急停按钮。

当我们遇到人身事故和意外情况时我们只要按下它,机器立即停止所有的操作,并等待处理完意外后再恢复操作。

急停按钮连接PLC内部CPU的内部I/O接口上,当按钮给CPU一个外部触发信号时,CPU对I/O进行再次检测,当确认有外部触发信号时,CPU保护现场并将程序计数器自动转到相应的外部I/O中断程序中去,当外部中断程序处理完毕,程序计数器返回到主程序继续工作。

有一点可以说明的是我们一般会把急停按钮的外部中断升至最高级别,从而保证安全。

当我们在工作完一个工件时,给PLC一个信号,将PLC的内部计数器加1来计算我们一天的工作量时,一个简单的计数器能解决问题,当然它们也能够在掉电的情况下保持数据,促使数据不丢失,这也是我们所渴望的。

PLC还具有高级计数器的功能,当我们在接受一些高速的数据时,这里所说的高速是在在微秒级的数据,比如条码扫描机在不断的扫描数据,数据处理器DSP计算的高速信号等,我们就要采用到高级计数器来帮助我们进行计数。

它在PLC执行程序时一旦发现高级计数器对应的中断,就会立即放下手上的工作。

经过再次编程的梯形图程序说明我们在执行程序时高级计数器会自动的执行对应的工作,从而将高级计数器的级别升至高一级别。

你也许听过太多的这个词:“死机”,大致的意思是CPU工作量过大,内部资源不足等情况造成程序无法运行。

PLC也有类似的情况,在PLC内部有一个看门狗WDT,我们可以设置WDT一个程序运行的时间,当程序运行过程中出现程序跳转错误时或者程序繁忙时,程序的运行时间超过WDT的设置时间,CPU转而WDT 复位状态。

程序重新开始运行,但对中断不会进行破坏。

PLC的发展已经从单一的模式进入了通信的网络时代,并同其它的工控网板和I/O卡板轻易的进行共享。

组态软件可以将所有的这些硬件连接起来,通过更直观的动画图片来进行控制,并可以通过互联网在异地进行控制,像神舟五号的发射就是采用这种办法来使飞船升空。

更高层次的发展需要我们不断的努力来取得。

PLC的出现已经足足影响了几代人,我们也从上一辈的经验中获取了更多的知识和教训,来不断的发展PLC 技术,将它推向更高浪潮。

外文资料PLC technique discussion and future development Along with the development of the ages, the technique that is nowadays is also gradually perfect, the competition plays more and more strong; the operation that list depends the artificial has already can't satisfied with the current manufacturing industry foreground, also can't guarantee the request of the higher quantity and high new the image of the technique business enterprise.The people see in produce practice, automate brought the tremendous convenience and the product quantities for people up of assurance, also eased the personnel's labor strength, reduce the establishment on the personnel. The target control of the hard realization in many complicated production lines, whole and excellent turn, the best decision etc., well-trained operation work, technical personnel or expert, governor but can judge and operate easily, can acquire the satisfied result. The research target of the artificial intelligence makes use of the calculator exactly to carry out, imitate these intelligences behavior, moderating the work through person's brain and calculators, with the mode that person's machine combine, for resolve the very complicated problem to look for the best pathWe come in sight of the control that links after the electric appliances in various situation, that is already the that time generation past, now of after use in the mold a perhaps simple equipments of grass-roots control that the electric appliances can do for the low level only; And the PLC emergence also became the epoch-making topic, adding the vivid software control through a very and stable hardware, making the automation head for the new high tide.The PLC biggest characteristics lie in: The electrical engineering teacher already no longer electric hardware up too many calculation of cost, as long as order the importation that the button switch or the importation of the sensors order to link the PLC up can solve problem, pass to output to order the conjunction contact machine or control the start equipments of the big power after the electric appliances, but the exportation equipments direct conjunction of the small power can.PLC internal containment have the CPU of the CPU, and take to have an I/ O forexpand of exterior to connect a people's address and saving machine three big pieces to constitute, CPU core is from an or many is tired to add the machine to constitute, mathematics that they have the logic operation ability, and can read the procedure save the contents of the machine to drive the homologous saving machine and I/ Os to connect after pass the calculation; The I/ O add inner part is tired the input and output system of the machine and exterior link, and deposit the related data into the procedure saving machine or data saving machine; The saving machine can deposit the data that the I/ O input in the saving machine, and in work adjusting to become tired to add the machine and I/ Os to connect, saving machine separately saving machine RAM of the procedure saving machine ROM and data, the ROM can do deposit of the data permanence in the saving machine, but RAM only for the CPU computes the temporary calculation usage of hour of buffer space.The PLC anti- interference is very and excellent, our root need not concern its service life and the work situation bad, these all problems have already no longer become the topic that we fail, but stay to our is a concern to come to internal resources of make use of the PLC to strengthen the control ability of the equipments for us, make our equipments more gentle.PLC language is not we imagine of edit collected materials the language or language of Cs to carry on weaving the distance, but the trapezoid diagram that the adoption is original after the electric appliances to control, make the electrical engineering teacher while weaving to write the procedure very easy comprehended the PLC language, and a lot of non- electricity professional also very quickly know and go deep into to the PLC.Is PLC one of the advantage above and only, this is also one part that the people comprehend more and easily, in a lot of equipment, the people have already no longer hoped to see too many control buttons, they damage not only and easily and produce the artificial error easiest, small is not a main error perhaps you can still accept; But lead even is a fatal error greatly is what we can't is tolerant of. New technique always for bringing more safe and convenient operation for us, make we a lot of problems for face on sweep but light, do you understand the HMI? Says the HMI here you basically not clear what it is, also have no interest understanding, change one inside textexplains it into the touch to hold or man-machine interface you knew, it combines with the PLC to our larger space.HMI the control not only is reduced the control press button, increase the vivid of the control, more main of it is can sequence of, and at can the change data input to output the feedback with data, control in the temperature curve of imitate but also can keep the manifestation of view to come out. And can write the function help procedure through a plait to provide the help of various what lies in one's power, the one who make operate reduces the otiose error. Currently the HMI factory is also more and more, the function is also more and more strong, the price is also more and more low, the noodles of the usage are wide more and more. The HMI foreground can say that think ° to be good very.The PLC correspondence has already come more body now its value, at the PLC and correspondence between PLCs, can pass the communication of the information and the share of the data to guarantee that of the equipments moderates mutually, the result that arrive already to repair with each other. Data conversion the adoption RS232 between PLC connect to come to the transmission data, but the RS232 pick up a people and can guarantee 10 meters only of deliver the distance, if in the distance of 1000 meters we can pass the RS485 to carry on the correspondence, the longer distance can pass the MODEL only to carry on deliver.The PLC data transmission is just to be called a form to it in a piece of and continuous address that the data of the inner part delivers the other party, we, the PLC of the other party passes to read data in the watch to carry on the operation. If the data that data in the watch is a to establish generally, that is just the general data transmission, for example today of oil price rise, I want to deliver the price of the oil price to lose the oil ally on board, that is the share of the data; But take data in the watch for an instruction procedure that controls the PLC, that had the difficulty very much, for example you have to control one pedestal robot to press the action work that you imagine, you will draw up for it the form that a procedure combine with the data sends out to pass by.The form that information transport contain single work, the half a work and the difference of a works .The meaning of the single work also is to say both, a can sendout only, but a can receive only, for example a spy he can receive the designation of the superior only, but can't give the superior reply; A work of half is also 2 and can send out similar to accept the data, but can't send out and accept at the same time, for example when you make a phone call is to can't answer the phone, the other party also; But whole pair works is both can send out and accept the data, and can send out and accept at the same time. Be like the Internet is a typical example.The process that information transport also has synchronous and different step cent: The data line and the clock lines are synchronous when synchronous meaning lie in sending out the data, is also the data signal and the clock signals to be carry on by the CPU to send out at the same time, this needs to all want the specialized clock signal each other to carry on the transmission and connect to send, and is constrained, the characteristics of this kind of method lies in its speed very quick, but correspond work time of take up the CPU and also want to be long oppositely, at the same time the technique difficulty also very big. Its request lies in can'ting have an error margins in a data deliver, otherwise the whole piece according to compare the occurrence mistake, this on the hardware is a bigger difficulty. Applied more and more extensive in some appropriative equipment, be like the appropriative medical treatment equipments, the numerical signal equipments...etc., in compare the one data deliver, its result is very good.And the different step is an application the most extensive, this receive benefit in it of technique difficulty is opposite and want to be small, at the same time not need to prepare the specialized clock signal, its characteristics to lie in, its data is partition, the long-lost send out and accept, be the CPU is too busy of time can grind to a stop sex to work, also reduced the difficulty on the hardware, the data throw to lose at the same time opposite want to be little, we can pass the examination of the data to observe whether the data that we send out has the mistake or not, be like strange accidentally the method, tired addition and eight efficacies method etc., can use to helps whether the data that we examine to send out have or not the mistake occurrence, pass the feedback to carry on the discriminator.A line of transmission of the information contain a string of and combine the cent of: The usual PLC is 8 machines, certainly also having 16 machines. We can bean at the time of sending out the data a send out to the other party, also can be 88 send out the data to the other party, an and 8 differentiationses are also the as that we say to send out the data and combine sends out the data. A speed is more and slowly, but as long as 2 or three lines can solve problem, and can use the telephone line to carry on the long range control. But combine the oscular transmission speed is very quick of, it is a string of oscular of 25600%, occupy the advantage in the short distance, the in view of the fact TTL electricity is even, being limited by the scope of one meter generally, it combine unwell used for the data transmission of the long pull, thus the cost is too expensive.Under a lot of circumstances we are total to like to adopt the string to combine the conversion chip to carry on deliver, under this kind of circumstance not need us to carry on to depositted the machine to establish too and complicatedly, but carry on the data exchanges through the data transmission instruction directly, but is not a very viable way in the correspondence, because the PLC of the other party must has been wait for your data exportation at the time of sending out the data, it can't do other works.The interruption is not only a, sometimes existing jointly with the hour several inside break, break off to have the preferred Class, they will carry out the interruption of the higher Class according to person's request. This kind of breaks off the medium interruption to also became to break off the set. The Class that certainly break off is relevant according to various resources of CPU with internal PLC, also following a heap of capacity size of also relevant fasten.The contents that break off has a lot of kinds, for example the exterior break off, correspondence in of send out and accept the interruption and settle and the clock that count break off, still have the WDT to reset the interruption etc., they enriched the CPU to respond to the category while handle various business. Speak thus perhaps you can't comprehend the internal structure and operation orders of the interruption completely also, we do a very small example to explain.Each equipments always will not forget a button, it also is at we meet the urgent circumstance use of, that is nasty to stop the button. When we meet the Human body trouble and surprised circumstances we as long as press it, the machine stops alloperations immediately, and wait for processing the over surprised empress recover the operation again.Nasty stop the internal I/ O of the internal CPU of the button conjunction PLC to connect up, be to press button an exterior to trigger signal for CPU, the CPU carries on to the I/ O to examine again, being to confirm to have the exterior to trigger the signal, CPU protection the spot breaks off procedure counts the machine turn the homologous exterior I/ O automatically in the procedure to go to also, be exterior interruption procedure processing complete, the procedure counts the machine to return the main procedure to continue to work.Have 1:00 can what to explain is we generally would nasty stop the button of exterior break off to rise to the tallest Class, thus guarantee the safety.When we are work a work piece, giving the PLC a signal, counting PLC inner part the machine add 1 to compute us for a day of workload, a count the machine and can solve problem in brief, certainly they also can keep the data under the condition of dropping the electricity, urging the data not to throw to lose, this is also what we hope earnestly.The PLC still has the function that the high class counts the machine, being us while accept some datas of high speed, the high speed that here say is the data of the in all aspects tiny second class, for example the bar code scanner is scanning the data continuously, calculating high-speed signal of the data processor DSP etc., we will adopt the high class to count the machine to help we carry on count. It at the PLC carries out the procedure once discover that the high class counts the machine to should of interruption, will let go of the work on the hand immediately. The trapezoid diagram procedure that passes by to weave the distance again explains the high class for us to carry out procedure to count machine would automatic performance to should of work, thus rise the Class that the high class counts the machine to high one Class.You heard too many this phrases perhaps:" crash", the meaning that is mostly is a workload of CPU to lead greatly, the internal resources shortage etc. the circumstance can't result in procedure circulate. The PLC also has the similar circumstance, there is a watchdog WDT in the inner part of PLC, we can establish time that a procedure of WDT circulate, being to appear the procedure to jump to turnthe mistake in the procedure movement process or the procedure is busy, movementtime of the procedure exceeds WDT constitution time, the CPU turn but the WDT reset the appearance. The procedure restarts the movement, but will not carry on the breakage to the interruption.The PLC development has already entered for network ages of correspondence from the mode of the one, and together other works control the net plank and I/ O card planks to carry on the share easily. A state software can pass all se hardwares link, more animation picture of keep the view to carries on the control, and cans pass the Internet to carry on the control in the foreign land, the blast-off that is like the absolute being boat No.5 is to adopt this kind of way to make airship go up the sky.The development of the higher layer needs our continuous effort to obtain.The PLC emergence has already affected a few persons fully, we also obtained more knowledge and precepts from the top one experience of the generation, coming tothe continuous development PLC technique, push it toward higher wave tide.摘自《三洋PLC-XW1000C说明简介》。

相关文档
最新文档