电力线载波应用
电力载波方案

电力载波方案1. 背景介绍电力载波通信是一种利用电力线作为传输媒介的通信方式,它可以实现在电力线上进行数据传输和通信。
电力载波通信在电力系统中具有重要的应用价值,可以提供各种功能,如电能计量、状态监测、远程控制等。
本文将介绍电力载波通信的原理、应用领域和相关技术方案。
2. 原理解析在电力系统中,电力线缆既用于传输电能,又可以作为传输信号的媒介。
电力载波通信利用电力线缆的双重功能,通过将发送的信号叠加在电力信号上进行传输。
通信信号被调制到电力信号中后,通过接收端的解调设备将信号从电力信号中分离出来,实现数据传输和通信。
3. 应用领域3.1 电能计量电力载波通信可以用于电能计量系统,通过在电力线上传输电能信息,可以实现对电能消耗情况的实时监测、计量和统计。
这对于电力系统的运维和管理非常重要,可以帮助实现电能资源的合理分配和使用。
3.2 系统状态监测电力载波通信还可以用于电力系统的状态监测。
通过在电力线上传输输入、输出功率、电流、电压等参数信息,可以实时监测电力系统的运行状态。
这对于故障检测、预警和维修非常重要,可以提高电力系统的可靠性和安全性。
3.3 远程控制电力载波通信还可以用于实现对电力设备的远程控制。
通过在电力线上传输控制命令和信号,可以实现对电力设备的远程开关、调节和控制。
这对于电力系统的运行和维护非常方便,可以提高工作效率和降低管理成本。
4. 技术方案4.1 ASK调制方案ASK调制(Amplitude Shift Keying)是一种将数字信号调制到电力信号中的常用方案。
它通过改变电力信号的幅度来表示数字信号的0和1。
ASK调制方案简单、成本低廉,但抗干扰能力相对较弱。
4.2 FSK调制方案FSK调制(Frequency Shift Keying)是一种将数字信号调制到电力信号中的常用方案。
它通过改变电力信号的频率来表示数字信号的0和1。
FSK调制方案的抗干扰能力较强,但传输速率相对较低。
电力系统中的电力线载波通信技术

电力系统中的电力线载波通信技术引言电力通信被普遍应用在电力系统中,其主要目的是实现电力信息传输、监测和控制。
而电力线载波通信技术作为其中一种重要的通信手段,具有广泛的应用前景。
本文将探讨电力线载波通信技术在电力系统中的原理、应用和发展趋势,为读者提供更深入的了解。
一、电力线载波通信技术的原理电力线载波通信技术利用电力线作为传输介质,通过将高频信号耦合到输电线路上,实现信息传输的目的。
其原理基于电力线的双重工作特性,即输电和通信,并通过频分复用技术使其同时进行。
首先,信号的耦合。
在电力线输电过程中,由于电力系统的特性,存在着一定的电压和电流波动。
电力线载波通信技术利用这种波动作为信号传输的载体,通过改变电流和电压的幅度和频率来传递信息。
这种耦合不仅能提高信息传输的可靠性,还能减少系统对外部环境的干扰。
其次,频分复用技术。
电力线系统中,除了电力信号外,还有其他频率的干扰信号存在。
为了有效地区分不同信号,电力线载波通信技术引入了频分复用技术。
通过将不同频段的信号分配给不同的用户或功能,实现数据的同时传输和分离。
二、电力线载波通信技术的应用1. 电力数据传输电力线载波通信技术在电力系统中最常见的应用就是实现电力数据的传输。
通过将监测仪器、数据采集设备等连接到电力线上,可以将实时电力数据传输到中央控制中心,实现对电力系统的远程监测和管理。
这种应用不仅提高了电力系统的运行效率,还能预防和处理电力故障。
2. 智能电网随着电力系统的现代化发展,智能电网的建设成为当今的热点。
电力线载波通信技术在智能电网中起到了重要的作用。
通过将智能设备与电力线相连,可以实现对电力负荷、电能质量和安全等参数的实时监测和管理。
并且通过数据的传输和处理,可以实现电力系统的智能化运营和优化调度。
3. 家庭电力信息管理电力线载波通信技术还可以应用于家庭电力信息管理。
通过在家庭电力表中集成通信模块,可以实现对电力用量、功率因数等信息的实时监测和统计。
电力线载波技术在智能家居中的应用研究

电力线载波技术在智能家居中的应用研究智能家居技术的发展日趋成熟,为人们的生活带来了便利和舒适。
在智能家居系统中,电力线载波技术扮演了重要的角色。
本文将探讨电力线载波技术在智能家居中的应用研究。
一、电力线载波技术的基本概念电力线载波技术是一种通过利用电力线传输信号的技术。
它将信号传输与电力线传输相结合,通过改变电力线上的电压波形来传输信号。
这种技术能够利用现有的电力线设施进行数据传输,无需铺设新的网络线路,成本低廉,易于实施。
二、电力线载波技术在智能家居中的应用1. 家庭网络覆盖电力线载波技术可以将电力线转变为高速广域网络,覆盖整个家庭的各个角落。
这意味着用户无需铺设新的网络线路,只需通过插入家庭电力插座的方式,就能在家中实现无线网络覆盖,满足智能家居系统对网络带宽和覆盖范围的需求。
2. 照明控制电力线载波技术能够实现对照明设备的远程控制。
通过在灯泡或开关上安装电力线载波通信模块,用户可以通过智能手机或智能家居系统控制灯光的开关、亮度和色彩等。
这样的应用不仅提升了家居照明的便利性,还带来了节能和环保的效益。
3. 家电控制利用电力线载波技术,用户可以通过智能家居系统对家电设备进行控制。
例如,通过手机或遥控器控制电视、空调、洗衣机等设备的开关和模式选择,实现智能化的家电管理。
这种控制方式不仅提供了便利,还能实现家电设备的定时控制和智能联动。
4. 安防系统电力线载波技术还可以应用于智能家居的安防系统。
通过将安防设备与电力线上的通信模块连接,实现远程监控和报警功能。
用户可以通过智能手机实时查看家中的监控画面,并在有异常情况时接收警报信息。
这种应用为家庭安全提供了更加可靠和便捷的保障。
5. 能源管理电力线载波技术可以应用于智能家居的能源管理系统。
通过对电力线上各个电器设备的能耗进行监测和控制,用户可以实时了解各个设备的能耗情况,并进行相应的调整和优化。
这样不仅能够降低能源消耗,还能实现智能化的能源管理。
三、电力线载波技术的优势和挑战1. 优势电力线载波技术具有以下几个明显的优势:- 利用现有的电力线设施进行传输,无需铺设新的网络线路,成本低廉。
电力线载波的原理和应用

电力线载波的原理和应用1. 电力线载波概述电力线载波(Power Line Carrier,简称PLC)是一种基于电力线传输的通信技术,通过将高频信号叠加在电力线上,实现数据传输和通信的目的。
电力线载波技术广泛应用于电力系统的监测、控制和通信网络中,具有传输速度快、成本低、扩展性好等优势。
2. 电力线载波原理电力线载波技术的实质是利用电力线路本身具有传输高频信号的特性进行通信。
具体原理如下:•电力线是一种具有较好导电性能的传输介质,可以传输高频信号。
电力线上的两根导线构成了传输信号的载体。
•电力线上的载波信号通过耦合器、滤波器等设备与电力线相连接。
通过调制器对原始数据进行调制,将调制后的信号通过功率放大器放大后,叠加到电力线上。
•在电力线上传输的信号受到电力线传输特性的影响,会出现噪声、衰减等问题。
因此,需要使用解调器和滤波器对接收到的信号进行解调和滤波,还原出原始数据。
3. 电力线载波应用领域3.1 电力系统监测与控制•电力线载波技术可以实现对电网的监测和控制。
通过将监测设备与电力线相连,将监测到的数据通过电力线传输给控制中心。
控制中心可根据数据分析电力系统的运行情况,实现对电力系统的远程监测和控制。
•电力线载波技术可以实现对电力设备的状态监测和故障诊断。
通过在电力设备上布置传感器,获取设备的工作状态信息。
将传感器采集到的数据通过电力线传输,供监测和诊断系统进行分析,及时发现设备故障并采取相应措施。
3.2 室内电力线通信•电力线载波技术可以提供家庭或办公室内的宽带通信服务。
通过将电力线与电力线载波通信模块相连,家庭用户可以通过插座就能够使用宽带网络,无需布线和接入设备。
•室内电力线通信还可以支持电力线智能家居系统的搭建。
通过将智能家居设备与电力线相连,实现智能家居设备之间的通信和互联,实现智能家居系统的远程控制和管理。
3.3 智能电网传输•电力线载波技术在智能电网中有广泛应用。
通过在配电线路、变电站和智能电表中布置载波模块,实现对电力系统的监测、控制和数据传输。
电力线载波技术在电动车充电桩通信中的应用研究

电力线载波技术在电动车充电桩通信中的应用研究随着电动车的普及,充电桩的需求也日益增长。
为了实现充电桩与电动车之间的高效通信,电力线载波技术成为一种重要的解决方案。
本文将对电力线载波技术在电动车充电桩通信中的应用进行研究。
首先,我们来了解一下电力线载波技术。
电力线载波技术是指利用电力线进行通信传输的技术。
在电动车充电桩中,电力线就成为了充电桩与电动车之间进行通信的媒介。
这种技术可以避免传统有线通信的布线问题,减少成本。
在电动车充电桩通信中,电力线载波技术的应用主要有以下几个方面。
首先是充电桩状态监测与控制。
电力线载波技术可以实现对充电桩进行远程监测与控制。
通过在电动车充电桩中植入电力线载波模块,可以将充电桩的状态数据通过电力线传输到监测中心,实现对充电桩的实时监控。
监测中心可以远程控制充电桩的启停,调整充电功率等,提高电动车充电桩的管理效率和实用性。
其次是充电桩与电动车之间的通信。
在电动车充电过程中,电动车需要与充电桩进行通信,以实现对电动车的充电过程进行控制和管理。
电力线载波技术可以在电动车充电桩中实现数据传输,使得充电桩可以向电动车发送充电指令,监测充电状态,并实时显示电动车的充电信息。
这样,电动车用户可以通过充电桩的显示屏了解当前充电情况,提高充电体验。
此外,电力线载波技术还可以实现充电桩之间的通信。
在电动车充电桩的布局中,常常需要同时支持多个充电桩的充电需求。
通过在各个充电桩中使用电力线载波技术,可以实现充电桩之间的数据传输和通信,协同工作,提高充电桩的利用效率。
例如,当一个充电桩已经被占用时,其他空闲的充电桩可以通过电力线载波技术进行通信,选择其他充电桩进行充电,避免排队等待的情况。
此外,电力线载波技术还可以用于电动车充电桩的安全防护。
通过在充电桩中使用电力线载波技术,可以实现对充电桩的防盗、漏电保护等功能。
当充电桩发生异常现象时,例如,充电桩被非法入侵或发生漏电等情况,电力线载波技术可以通过传输报警信号,及时通知管理部门并采取相应措施,保障充电过程的安全。
电力载波的应用领域

目前的应用领域主要集中在家庭智能化,公用设施智能化(比如远程抄表系统,路灯远程监控系统等)以及工业智能化(比如各类设备的数据采集)。
在技术上,电力载波通讯不再是点对点通讯的范畴,而是突出开放式网络结构的概念,使得每个控制节点(受控设备)组成一个网络进行集中控制,目前在电力载波应用上具有网络协议及网络概念的企业不多,国外的有Echelon公司的Lonworks网络,国内的有KaiStar(凯星电子)电力载波远程智能控制系统,Risecomm(瑞斯康)公司的瑞斯康智能控制网络。
他们的网络协议都是根据国际标准协议EIA709.1,EIA709.2编写的。
列举三个应用领域的例子:应用案例一:智能家居智能家居控制网可用电力线载波技术来实现,其原理是将电力载波技术集成后嵌入到各电器中去,并利用家庭现有的电力线作为载波通信媒介,实现智能设备之间的通信与控制。
智能家居控制网中智能电器的互联互动,将为您带来高品质的生活体验和生活享受:随时查询所有电器状态任一开关集中控制家中所有智能电器设备组开组关指定电器,如场景灯等随时掌握家庭安防情况,如防盗、火警、探测燃气泄漏等通过互联网或电话对家中电器进行远程控制应用案例二:远程抄表系统(AMR)远程自动抄表(AMR)系统是智能控制网的重要应用之一。
它可以使电力供应商在提高服务质量的同时降低管理成本;并让用户有机会充分利用各种用电计划(如分时电价)来节省开支和享受多种便利。
系统功能特点远程自动抄表远程控制电表拉合闸实时查询用户用电量电表用量组抄或个别选择抄读可与收费系统联为一体根据电网负载的峰谷时段分段电价分时段抄表及计费控制非法窃电行为减少人力成本及管理成本自动保存抄读的历史数据统计电表数据,分析用电规律估计线损和由电表计量误差引起的自损配电系统评估、供电服务质量检测和负荷管理应用案例三:远程路灯监控系统远程路灯监控系统利用电力载波技术通过已有电力线将路灯照明系统连成智能照明系统。
电力线路载波通讯
电力线路载波通讯随着社会的进步和科技的发展,电力供应已经成为人们生活中不可或缺的部分。
为了提高电力系统的安全性和可靠性,电力线路的通讯系统也逐渐发展起来。
其中,电力线路载波通讯技术因其高效、可靠的特点而备受关注。
本文将从电力线路载波通讯的基本原理、应用领域以及未来发展趋势等方面进行探讨。
一、基本原理电力线路载波通讯是一种将电力线路作为传输介质的通信方式,利用电力线路本身的特性进行数据传输。
其基本原理是利用频率高于电力系统运行频率的载波信号,通过调制、解调等技术手段,在电力线路中传输通信信号。
通过在电力线路上布设载波通信设备,可以实现在电力线路上双向传输数据。
在电力线路载波通讯中,主要采用的载波信号频段有低频载波和高频载波两种。
低频载波一般选择在2kHz到150kHz的频段,适用于远程距离传输;高频载波则选择在5MHz到150MHz的频段,适用于局域网和近距离传输。
通过合理的选择载波信号频段,可以满足不同距离、不同应用场景下的通讯需求。
二、应用领域电力线路载波通讯广泛应用于电力系统中的各个环节,为电力系统的运行提供了重要的支持。
1.远程监控和控制电力线路载波通讯可实现对电力设备的远程监控和控制。
通过在电力线路上部署载波通信终端设备,可以对电力系统中的关键设备进行实时监测,并实现对其进行远程控制。
这种方式不仅提高了电力系统的运行效率,还减少了维护人员的工作量。
2.电力信息采集电力线路载波通讯广泛应用于电力信息采集系统中。
通过在电力线路上安装载波通信设备,可以实现对电量、功率因数等关键数据的采集。
这些数据可以帮助电力公司实时监测电力负荷,满足用户不同需求,并进行合理的电网调度。
3.智能电网随着智能电网的发展,电力线路载波通讯也越来越重要。
通过在电力线路上布设载波通信设备,可以实现对电力系统中各个环节的智能化管理。
智能电表、智能变电站等智能设备的使用,大大提高了电力系统的安全性和稳定性。
三、未来发展趋势电力线路载波通讯技术在未来还有很大的发展空间。
电力线载波通信技术在电力通信网中的应用分析
电力线载波通信技术在电力通信网中的应用分析随着社会的发展和经济的快速增长,对无线通信技术的需求也越来越大。
而电力通信网作为一种基础设施,起到了连接城市与农村的枢纽作用,为我们的生活提供了可靠的电力供应。
而在电力通信网中,电力线载波通信技术的应用也越来越广泛。
电力线载波通信技术是一种通过电力线传输数据和信息的技术。
它利用了电力线路的物理特性,将数据信号通过调制和解调的方式传输到各种终端设备上。
这样一来,就能够实现电力通信网与其他通信网络的互联互通,提高能源管理和控制的效率。
电力线载波通信技术在电力通信网中的应用主要体现在以下几个方面:1. 远程抄表:传统的抄表方法需要人工去现场抄表,费时费力且效率低下。
而电力线载波通信技术可以实现远程抄表,只需通过电力线路传输数据,就能够准确地获取用户的用电信息。
这不仅提高了抄表的效率,还节省了人力成本。
2. 能耗监测:对于能源管理来说,能耗监测是非常重要的一环。
通过电力线载波通信技术,可以将各个用电设备的能耗数据传输到能源管理系统,实现对能耗的实时监测和分析。
这样,可以帮助能源管理部门及时发现能耗异常,采取相应的措施进行调整与优化。
3. 远程控制:电力线载波通信技术还可以实现对远程设备的控制。
比如,在城市中,路灯的开关控制、室内空调的温度调节等操作都可以通过电力线路进行远程控制。
这种方式不仅节省了人力,还提高了设备的管理效率。
4. 安全监控:电力线载波通信技术还可以应用于电力通信网的安全监控中。
通过在电力线路上安装传感器,可以实时监测电力设备的运行状态,一旦发现异常情况,例如温度过高或电流过大,就能够及时发出警报,并采取相应的措施进行处理,保障电力通信网的安全稳定运行。
5. 智能家居:电力线载波通信技术还可以应用于智能家居系统中。
通过将各种智能设备连接到电力线路上,可以实现设备之间的互联互通。
例如,可以通过手机APP控制家中的灯光、音响等设备,甚至实现远程监控和安防功能。
电力线载波通信技术的研究与应用
电力线载波通信技术的研究与应用电力线载波通信技术是指在电力线路上通过载波信号进行数据通信的一种技术。
该技术具有成本低、建设方便、传输距离远、覆盖面广等优点,在现代化电网建设中得到了广泛的应用。
本文将从电力线载波通信技术的基本原理、应用现状和研究进展等方面进行探讨。
一、基本原理电力线载波通信技术的基本原理是在电力线路上通过载波信号传输数据。
电力线路本身就是一根导线,其所搭载的电能具有高能量、低频率、低速度等特点,因此可以通过将调制后的高频载波信号“嫁接”到电力线路上,利用电力线路本身的传输特性实现数据的传输。
载波信号通常是在电网某个区域内发射,通过电缆线路、变电所、配电网等设备进行传输,最终达到目的地。
电力线路上的载波信号传输主要有两种方式:频率分割多路复用和时分多路复用。
前者是将不同频段的信号进行分割,分别对应不同的数据通道,实现数据的同时传输;后者是将不同信号在时间上进行分时,也能较好地实现数据的传输。
不同的传输方式选择应结合具体的情况,常用的方式是时分多路复用。
二、应用现状电力线载波通信技术已广泛应用于电力自动化、智能电网、远程监测等领域。
其应用成本低廉、覆盖面广泛、传输速度较快,且适应于各种复杂环境的需要,因此在现代化电网建设中处于非常重要的地位。
目前,我国的电力线载波通信技术已经比较成熟,主要应用于以下几个方面:(一)远程监测系统利用电力线载波通信技术可以实现对电力系统的远程监测,包括对输配电设备的监控、远程抄表等。
通过远程监测,可以及时掌握电网运行情况,为电力安全运行提供保障,也为能源管理提供更好的支持。
(二)智能电网系统电力线载波通信技术在智能电网建设中具有重要的作用,可以实现智能家居、智能用电、分布式发电等诸多功能,提高能源利用效率和运行效率。
(三)电力自动化系统电力自动化系统利用电力线载波通信技术,可以实现自动化调控、设备控制、保护等各种功能。
通过传输控制信号,可以实现对电网设备的远程控制,提高电力运行的自动化水平和系统的稳定性。
电力线载波通信技术研究与应用
电力线载波通信技术研究与应用近年来,随着信息技术的迅猛发展,电力线载波通信技术作为一种新型通信手段,日益受到广泛关注和应用。
它以电力线作为传输介质,利用电力线自身的特性进行信号传输,无需额外铺设通信线路,不仅具有成本低、可靠性高的优势,还能够实现多种功能需求,如数据传输、智能化控制等。
本文将从原理、技术研究和实际应用等方面,对电力线载波通信技术进行深入探讨。
一、电力线载波通信技术的原理电力线载波通信技术是利用电力线作为传输介质,通过在电力线上叠加其他频率的载波信号来进行通信。
通信信号通过调制技术转换成载波信号,经过电力线传输到目标设备,再经过解调技术转换成通信信号。
在传输过程中,信号的传输质量会受到电力线衰减、噪声干扰等因素的影响。
因此,对于电力线载波通信技术来说,如何提高传输质量是一个重要的研究方向。
在研究电力线载波通信技术的过程中,人们通过对电力线特性的深入研究,发现电力线本身具有一定的传输特性。
电力线的导线之间存在一定的电容和电感,导致电力线对高频信号具有一定的传输能力。
此外,电力线作为一种普遍存在的传输介质,不需要额外的通信线路,大大降低了通信成本,使得电力线载波通信技术具有了广阔的应用前景。
二、电力线载波通信技术的技术研究在电力线载波通信技术的研究过程中,有许多关键技术需要解决。
首先是信号的调制技术和解调技术。
为了提高传输质量,需要研究适合电力线载波通信的调制解调技术,以提高信号的可靠性和抗干扰能力。
其次是电力线通信的数据传输速率问题。
由于电力线本身的特性限制,电力线载波通信的数据传输速率相对较低,研究如何提高传输速率是一项重要任务。
此外,电力线通信还需要解决噪声干扰和电力线衰减等问题。
在技术研究方面,目前已经取得了一些进展。
一方面,人们通过改进调制解调技术,提高了电力线载波通信的信号质量和传输速率。
另一方面,通过研究电力线的特性,设计了一系列滤波器,用于抑制噪声干扰和调整信号波形,进一步提高了通信质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、我国电力线载波通信的现状(续)
(1) 电力线载波无论是在所具有的规模范围、装 机数量还是在从事人员数量上,都是空前的。 (2) 电力线载波通信综合业务能力有了很大的发 展。 (3) 载波技术装备水平有了很大提高。
(4) 理论研究成果卓著。
第二节 电力线载波通信系统
一、电力线载波通信系统构成
电力线载波通信系统主要由电力线载波机、电力线路和耦合设 备构成,如图3-1 。其中耦合装置包括线路阻波器GZ、耦合电容 器C、结合滤波器JL(又称结合设备)和高频电缆HFC,与电力线 路一起组成电力线高频通道。
电力线载波通信是电力系统特有的通信方式。
一、电力线载波通信的特点
1. 独特的耦合设备 电力线路上有工频大电流通过,载波通 信设备必须通过高效、安全的耦合设备才能 与电力线路相连。这些耦合设备既要使载波 信号有效传送,又要不影响工频电流的传输, 还要能方便地分离载波信号与工频电流。此 外,耦合设备还必须防止工频电压、大电流 对载波通信设备的损坏,确保安全。
远动信号与保护信号
远动信号是脉冲序列。为使它能和话音信号同时传输, 需经过调制解调器将脉冲信号调制在远动信号频段内 的音频上,然后才能送入载波机的远动入口。所以, 对电力线载波机而言,远动信号是指已调的音频信号, 通常采用频移键控(FSK)方式传输, 2.220kHz±30Hz, 或3.660kHz±30Hz等呼叫信号也是 采用FSK方式传输。 远方保护信号也是音频信号。远方保护装置在发生电 力事故时,需要可靠地将信号传送到远方。一般这种 信号的传输时间极短,因此经常在传输远方保护信号 时,先停送话音、远动、呼叫信号,等远方保护信号 传完后,再继续传送其它信号。这是一种时间交替传 输的复用方法,由于时间极短,并不影响其它信号的 传输,同时可以全功率传输远方保护信号,确保保护 信号的可靠性。
图3-2
1.音频汇接电路
电力线载波机为实现电话通信,不仅要传输话音信号, 同时还应传输呼叫信号,尤其是为电力系统专用通信 网服务的电力线载波机,除电话通信外,还同时要传 输远动信号和远方保护信号。这些信号均在(0-4) kHz的音频段中传输,通常话音信号采用0.3-2.0kHz或 0.3-2.4kHz的窄带传输,其2.4kHz或2.6kHz以上的音 频段用于传输远动信号。呼叫信号插在其中,如 2.220kHz±30Hz,或插在二者之上3.660kHz±30Hz。 远方保护信号一般采用与话音、远动信号在时间上交 替传输的办法。所有这些信号均在音频部分汇集后再 送入发信支路,相应地在收信支路要将其分离后分别 输出。电力线载波机的音频汇接电路就是实现汇集/分 离的接口电路。
一、电力线载波通信的特点(续)
2. 线路频谱安排的特殊性 电力线载波通信能使用的频谱由三个因素决定: (1)电力线路本身的高频特性。 (2)避免50Hz工频的干扰。 (3)考虑载波信号的辐射对无线电广播及无线 通信的影响。 我国统一规定电力线载波通信使用的频率范围为 40—500KHz。
一、电力线载波通信的特点(续)
各构成部分的作用(续)
线路阻波器GZ串接在电力线路和母线之间,是对电力 系统一次设备的“加工”,故又称“加工设备”,加 工设备的作用是通过电力电流、阻止高频载波信号漏 到变压器和电力线分支线路等电力设备,以减小变电 站和分支线路对高频信号的介入损耗及同一母线不同 电力线路上高频通道。
结合设备连接载波机与输电线,它包括高频电缆,作 用是提供高频信号通路。 输电线既传输电能又传输高频信号。
2.耦合方式
目前电力线载波的耦合方式有三种: 相—地耦合、相—相耦合和相—地、 相—相混合耦合方式。 (1)相—地耦合方式。相—地耦合方式 如图3-4所示,这种方式将载波设备 连接在一根相导线和大地之间,其特 点是只需一个耦合电容器和一个阻波 器,在设备的使用上比较经济,因而 得到了广泛应用。但这种方式引起的 衰减比相—相耦合方式大,而且在相 导线发生接地故障时高频衰减增加很 多。
2.发信支路
发信支路将要传输的音频信号用载波进行调制, 实现变频后放大,送到高频通道。一般采用二 次调制,第一次调制将音频信号搬移到中频, 故第一次变频称为中频调制,中频载波的一般 取12kHz,调制后取上边带。第二次调制进一 步将中频信号频谱搬移到线路频带(40-500) kHz,称之为高频调制,高频调制后取下边带。
二、电力线载波机
(一)电力线载波机的特点
(1)电力线上噪声电平很高,为保证接收端信噪比符合 要求,载波机发送功率较大(约为1—100w)。 (2)为集中利用发送功率,一台载波机的路数较少,一 般为单路机。 (3)电力线上载波信号的传输衰减受电力系统运行方式 及自然状况的影响,接收机应具有较好的自动电平调 节系统,在接收信号电平变化较大的情况下,仍使音 频输出电平变动很小。 (4)主要用来传送电力调度及安全运行所需的电话、远 动、远方保护信号。可以复合传送这些信号的,称为 复用机,而专门传送其中一种信号的,称为专用机。
3. 以单路载波为主 电力系统从调度通信的需要出发,往往要 依靠发电厂、变电所同母线上不同走向的电 力线开设载波来组织各方向的通信。由于能 使用频谱的限制、通信方向的分散以及组网 灵活性的考虑,电力线通信大量采用单路载 波设备。
一、电力线载波通信的特点(续)
4. 线路存在强大的电磁干扰 由于电力线路上存在强大的电晕等干扰噪声, 要求电力线载波设备具有较高的发信功率, 以获得必需的输出信噪比。 另外,由于50Hz谐波的强烈干扰,使得0.33.4KHz的话音信号不能直接在电力线上传输, 只能将信号频谱搬移到40KHz以上,进行载 波通信。
5.呼叫系统、自动交换系统
电力线载波机在传输语音信号之前,首先应呼出对方 用户。因此在发信支路中要发送一个称为呼叫信号的 音频。在对方收信支路中接入呼叫接收电路(即收铃 器)这样才能沟通双方用户。电力线载波机采用自动 呼叫方式,通常机内附设有自动交换系统(国产载波 机一般设四门用户交换系统,实现通过自动拨号选叫 所需用户,但几个用户分时占用同一条载波通路。进 口载波机一般不设交换系统,而是连接小交换机), 以提高通路的利用率和实现组网功能。如在图3-2中, 主叫用户Ⅰ摘机、拨号,呼叫对方用户Ⅱ,则本侧自 动交换系统控制呼叫系统,发出相应的音频脉冲。对 方收信支路的收铃器选出呼叫信号,取出音频脉冲, 去控制其自动交换系统工作,选中用户Ⅱ并对其振铃, 沟通双方用户,实现通话。
二、我国电力线载波通信的现状
在以数字微波通信、卫星通信为主干线的覆盖 全国的电力通信网络已初步形成、多种通信手 段竟相发展的今天,电力线载波通信仍然是地 区网、省网乃至网局网的通信手段之一,仍是 电力系统应用区域最广泛的通信方式,仍是电 力通信网重要的基本通信手段;从理论研究, 到运行实践,都取得了可喜的成效。
耦合装置 电力线路 耦合装置
G
发电机 变压器 GZ C JL HFC 载 波 机 A JL HFC GZ 变压器
G
发电机
C
载 波 机 B
图3-1
各构成部分的作用
电力载波机:是电力线载波通信系统的主要组成部分, 主要实现调制和解调,即在发端将音频搬移到高频段 电力线载波通信频率,完成频率搬移,载波机性能好 坏直接影响电力线载波通信系统的质量。 耦合电容C和结合滤波器JL组成一个带通滤波器,其作 用是通过高频载波信号,并阻止电力线上的工频高压 和工频电流进入载波设备,确保人身、设备安全。
(1)接收频带减为一半,噪声及干扰影响减小。 (2)提高了电力线载波频谱的利用率。 (3)发送功率集中在一个边带中,利用率高。
(三)典型电力线载波机的组成
单边带电力线载波机的原理简化框图见图3-2,它 由音频汇接电路、发信支路、收信支路、自动电平 调节系统、呼叫系统等部分组成。
典型电力线载波机的组成框图
三、电力线高频通道
电力线高频通道由结合滤波器JL(又称 结合设备)、耦合电容器C、阻波器GZ (又称加工设备)和电力线路组成。
(一)耦合装置与耦合方式
1.耦合装置 耦合装置包括结合设备、加工设备及耦合电容器。结 合设备JL连接在耦合电容器C的低压端和载波机的高频 电缆HFC之间;耦合电容C 连接在结合设备JL和高压电 力线路之间,其作用是传输高频信号,阻隔工频电流, 并在电气上与结合设备中的调谐元件配合,形成高通 滤波器或带通滤波器,耦合电容器的容量一般为300010000pF;线路阻波器GZ与电力线路串联,接于耦合 电容器在电力线路上的连接点和变电所之间。线路阻 波器GZ主要由强流线圈、保护元件及电感、电容与电 阻等调谐元件组成,线路阻波器的电感量一般为0.12mH;在结合设备JL的输出端子和载波机之间一般用 高频电缆HFC连接
(四)设备类型
为满足电力系统载波通信方式的不同需要,电力线载 波机可以分成不同机架,一般有载波架、音频架、高 频架、人工呼叫台和增音机。其中音频架、三种机架 不分电压等级,对各种机型都一样。 载波架是按单架设计的电力线载波机,它适合于调 度所与变电所较近的场合。载波架安装在变电所的载 波室,然后用音频电缆连接调度所的电话用户和远动 通路。如果调度所与变电所距离较远,为了保证通信 质量,一般在调度所侧安装音频架,而在变电所侧安 装高频架,两架之间用音频电缆连接。 人工呼叫台主要安装在变电所载波室,用于集中控制 所有载波机的维护电话。当变电所载波室的高频架要 进行维护通话时,就可以用人工呼叫台来实现。 增音机完成长距离通信的增音放大作用。
为了满足不同电压等级的线路上开设电力线载 波通信的需求,目前国产电力线载波机已形成 系列机,通过对系列机的选择和组合,可以实 现调度所、发电厂和变电站之间的各种通信。
(二)调制方式
电力线载波机采用的调制方式主要有双边带幅度调 制、单边带幅度调制和频率调制三种,其中单边带幅 度调制方式应用最为普遍,本节主要介绍这种调制方 式。 单边带幅度调制(SSB)也称单边带调幅,一般采用两次 调制及滤波的方法,将双边带调幅产生的两个边带除 去一个,载频也被抑制。它有以下优点: