2017初中数学中考规律探究问题(全国通用)
2017年各地市中考规律探索归纳探究题汇总有参考答案

精心整理2017年各地市中考规律探索归纳探究题汇总1.在一列数:a1,a2,a3,…,a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是()A.1B.3C.7D.9【来源】2017年中考真题精品解析数学(江苏扬州卷)精编word版(解析版)【答案】B【解析】依题意得:a1=3,a2=7,a3=1,a4=7,a5=7,a6=9,a7=3,a8=7,……周期为6,2017÷6=336…1,所以a2017=a1=3,故选B.【点睛】本题考查了数字变化类的规律型问题,然后根据所求得的数字发现规律.2A.180B.182C.184D.186【来源】四川省自贡市初2017【答案】C【解析】二、三、四格.等于等于第二、四格数据的积;所以1113m+=⨯故应选C..探寻规律要认真观察、仔细思3.3.4颗星星,第21颗星星,.....按此规律排列下去,第⑨个图A.116B.144【来源】【答案】B第4个图形为:4×5+2+3+4+5,∴第⑨个图形中的颗数为:9×10+2+3+4+5+6+7+8+9+10=144.故选B.考点:规律型:图形的变化类.4.(2017重庆,第10题,4分)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73B.81C.91D.109【来源】2017年初中毕业升学考试(重庆A卷)数学(带解析)【答案】C【解析】试题解析:第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n 个图形中菱形的个数为:n 2+n+1; 第⑨个图形中菱形的个数92+9+1=91. 故选C .考点:图形的变化规律.5.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧12PP ,23P P ,34P P ,…得到斐波那契螺旋线,然后顺次连结12P P ,23P P ,34P P ,…得到螺旋折线(如图),已知点1P (0,1),2P (1-,0),3P (0,1-),则该折线上的点9P 的坐标为()A .(6-,24)B .(6-,25)C .(5-,24)D .(5-,25) (第10 所以P 9故选B .61),从点A 经过一次跳马变换可以到达点2), A .13B 过了320+1)÷7×考点:17A .180B .182C .184D .186【来源】2017年初中毕业升学考试(四川自贡卷)数学(带解析) 【答案】C. 【解析】试题解析:由前面数字关系:1,3,5;3,5,7;5,7,9, 可得最后一个三个数分别为:11,13,15, ∵3×5﹣1=14,; 5×7﹣3=32; 7×9﹣5=58;∴m=13×15﹣11=184. 故选C .考点:数字规律.8.如图,将矩形ABCD 绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A 在整个旋转过程中所经过的路径总长为() A.2017πB.2034πC.3024πD.3026π【来源】2017年初中毕业升学考试(四川达州卷)数学(带解析) 【答案】D【解析】解:∵AB =4,BC =3,∴AC =BD =5.转动一次A 的路线长是:904180π⨯=2π,转动第二次的路线长是:905180π⨯=52π,转动第三次的路线长是:903180π⨯=32π,转动第四次的路线长是:0,以此类推,每四次循环.故顶点A 转动四次经过的路线长为:52π+32π+2π=6π.∵2017÷4=504…1,∴顶点A 9.用棋子摆出下列一组图形:按照这种规律摆下去,第n 个图形用的棋子个数为()A .n 3B .n 6 C.63+n D .33+n【来源】2017【答案】D . 【解析】试题解析:∵第一个图需棋子3+3=6; 第二个图需棋子3×2+3=9; 第三个图需棋子3×3+3=12; …∴第n故选:D .10.a 的值为( ) A.23B.75 C.77D.139【来源】 【答案】B1,3,5,7,9,11,左边的数为21,22,23a=11+64=75,故选B .11.(2017中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为( ) A.121B.362C.364D.729【来源】2017年初中毕业升学考试(山东德州卷)数学(带解析) 【答案】C【解析】试题分析:①图1,0×3+1=1; ②图2,1×3+1=4; ③图3,4×3+1=13; ④图4,13×3+1=40; ⑤图5,40×3+1=121; ⑥图6,121×3+1=364; 故选C考点:探索规律12.按照一定规律排列的n个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则n为()A.9B.10C.11D.12【来源】2017年初中毕业升学考试(湖北武汉卷)数学(带解析)【答案】A.【解析】试题解析:设后3个的数和为:(-1)n+1×2n-1+(-1)n+2×2n+(-1)n+3×2n+1=768,当n为偶数:整理得出:-5×(-2)n-1=768,则求不出整数,当n为奇数:整理得出:3×2n-1=768,解得:n=9.故选A.考点:数字变化规律.13.(2017贵州省黔东南州,第10题,4如南宋数学家杨辉(约13世纪)所着的(a+b)n 的展开式的各项系数,此三角形称为“杨辉三角”根据“杨辉三角”请计算(a+b)20A.2017B.2016C.191D.190【来源】2017【答案】D【解析】试题解析:找规律发现(a+b)3(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n∴(a+b)20故选D.14.“d”的个数,若第n个图形中“d”的个数是78A.11B.【来源】【答案】B【解析】第四个图形有1+2+3+4=10个○,……第n个图形有1+2+3+……+n=(1)2n n+个○,故(1)2n n+=78,解得n=12或n=-13(舍去).故选:B考点:规律探索15.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB 边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4B.1.1C.0.8D.0.5【来源】2017年初中毕业升学考试(河北卷)数学(带解析)【答案】C.【解析】试题分析:在第一次旋转中BM=1,在第二次旋转中BM=1,在第三次旋转中BM的长从11,在第四次旋转中BM的长从1,在第五次旋转中BM1-变化到1,在第六次旋转中BM=1,故答案选C.16上的点A处,1点出发,沿着射线A O2…按【来源】【答案】A【解析】故选:A17,表示a1=aA.32B.【来源】2017年初中毕业升学考试(湖北十堰卷)数学(带解析)【答案】D.【解析】试题分析:由a1=a7+3(a8+a9)+a10知要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,根据a5=a8+a9=6,则a7、a10中不能有6,据此对于a7、a8,分别取8、10、12检验可得.∵a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3(a8+a9)+a10,∴要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,∵a5=a8+a9=6,则a7、a10中不能有6,若a7=8、a10=10,则a4=10=a10,不符合题意,舍去;若a7=10、a10=8,则a4=12、a6=4+8=12,不符合题意,舍去;若a7=10、a10=12,则a4=10+2=12、a6=4+12=16、a2=12+6=18、a3=6+16=22、a1=18+22=40,符合题意;综上,a1的最小值为40,故选:D.考点:数字的变化类18.刘莎同学用火柴棒依图的规律摆六边形图案,用10086根火柴棒摆出的图案应该是第______个.【来源】2017年中考真题精品解析数学(湖南娄底卷) 【答案】2017.【解析】解:由图可知:第1个图形的火柴棒根数为6; 第2个图形的火柴棒根数为11; 第3个图形的火柴棒根数为16; …由该搭建方式可得出规律:图形标号每增加1,火柴棒的个数增加5,所以可以得出规律:搭第n 个图形需要火柴根数为:6+5(n ﹣1)=5n +1,令5n +1=10086,解得:n =2017. 故答案为:2017.点睛:本题考查了图形的变化类问题,遍规律求解即可.19.19.如图,第一个图形中有1按此规律,第n 个图形中有______个点.【来源】2017【答案】()1312n -.【解析】如图,第一个图形中有1按此规律,第n 个图形中有12(3n -1)个点,【点睛】20.201、3、6、10、15、21、…叫做6是第三个三角形数,…,依此类推,第100【来源】 2=3=1+2,a 3=6=1+2+3,a 4=10=1+2+3+4,… ∴a n a 100=()10010012+=5050,故答案为:5050.点睛:本题考查了规律型中的数字的变化类,解题的关键是找出变化规律“a n =1+2+…+n =()12n n +”.21.如图,Rt△OA 0A 1在平面直角坐标系内,∠OA 0A 1=90°,∠A 0OA 1=30°,以OA 1为直角边向外作Rt△OA 1A 2,使∠OA 1A 2=90°,∠A 1OA 2=30°,以OA 2为直角边向外作Rt△OA 2A 3,使∠OA 2A 3=90°,∠A 2OA 3=30°,按此方法进行下去,得到Rt△OA 3A 4,Rt△OA 4A 5,…,Rt△OA 2016A 2017,若点A 0(1,0),则点A 2017的横坐标为______.【来源】山东省济南市槐荫区2018届九年级上学期期中考试数学试题【答案】2016⎝⎭.【解析】由已知可得OA 1OA 2=23⎛ ⎝⎭,OA 3=33⎛ ⎝⎭,……,由此可得OA 2017=20173⎛ ⎝⎭,360°÷30°=12,2017÷12=168…3,由些可知OA 2017所在的射线与OA 1所在射线重合,所以点A 2017的横坐标为:OA 2017×cos30°=2017⎝⎭2016⎝⎭,故答案为:20163⎛⎫⎪ ⎪⎝⎭.【点睛】本题主要考查规律性问题,解题的关键是能根据已知条件先求出一些相关的量,从中发现规律.22.如图,等边△A 1C 1C 2的周长为1,作C 1D 1⊥A 1C 2C 3=D 1C 1,连接D 1C 3,以C 2C 3为边作等边△A 2C 2C 3;作C 2D 2⊥A 2D 2C 4=D 2C 2,连接D 2C 4,以C 3C 4为边作等边△A 3C 3C 4;…且点A 1△A 1C 1C 2,△A 2C 2C 3,△A 3C 3C 4,…,△A n C n C n +1【来源】2017【答案】1212n n --.【解析】解:∵等边△A 1C 1C 2的周长为1,作C 1D 1⊥12△A 1C 1C 2的周长=12,∴△A 1C 1C 2,△A 2C 2C 3,△A 3C 3C 4112n -,∴△A 1C 1C 2,22212n -12n -故答案为:1212n n --.灵活运用所学知识,属于中考常考题型.23三角:【来源】 【答案】1a 5+10a 3b 2+10a 2b 3+5ab 4+1b 5. 故答案为:点睛:本题考查了完全平方公式以及规律型中数字的变化,观察图形,找出二项式系数与杨辉三角之间的关系是解题的关键.24.如图,把n 个长为1的正方形拼接成一排,求得71tan ,31tan ,1tan 321=∠=∠=∠C BA C BA C BA ,计算=∠C BA 4tan ,……,按此规律,写出=∠C BA n tan (用含n 的代数式表示). 【来源】2017年初中毕业升学考试(浙江舟山卷)数学(带解析)【答案】113,211n n -+.【解析】试题分析:如图,过点C 作CE ⊥A 4B 于E ,易得∠A 4BC=∠BA 4A 1,故tan ∠A 4BC=tan ∠BA 4A 1=14,在Rt △BCE 中,由tan ∠A 4BC=14,得BE=4CE ,而BC=1,则,,而A 4=所以A 4E=A 4,在Rt △A 4EC 中,tan ∠BA 4C=4113CE A E =;根据前面的规律,不能得出tan ∠BA 1C=1101⨯+,tan ∠BA 2C 1211⨯+,tan ∠BA 3C=1321⨯+,tan ∠BA 4C=1431⨯+,则可得规律tan ∠BA n C=211(1)11n n n n =⨯-+-+.故答案为;考点:解直角三角形.25.如图,正△ABO 的边长为2,O 为坐标原点,作无滑动的翻滚,经第一次翻滚后得△A 1B 1O ,;翻滚2017次后AB 中点M 经过的路径长为【来源】2017【答案】(5;13463(+896)3π.【解析】试题解析:如图,作B 3E ⊥x 轴于E ,考点:点的坐标.26.如图,把n 个边长为1的正方形拼接成一排,求得1tan 1BAC ∠=,21tan 3BA C ∠=,31tan 7BA C ∠=,计算4tan BA C ∠=,……按此规律,写出tan n BA C ∠=(用含n 的代数式表示). 【来源】2017年初中毕业升学考试(浙江嘉兴卷)数学(带解析) 【答案】113,211n n -+. 【解析】试题解析:作CH⊥BA 4于H ,由勾股定理得,BA 4A 4,△BA4C的面积=4-2-32=12,∴1212,解得,则A417,∴tan∠BA4C=4CHA H=113,1=12-1+1,3=22-2+1,7=32-3+1,∴tan∠BAnC=211n n-+.考点:1.解直角三角形;2.勾股定理;3.27.正方形A1B1C1O,A2B2C2C1,A3B3C3C2…C1、C2、C3…在x【来源】【答案】(2【解析】试题分析:(0,1),即OA1=1,∵四边形C1OA1B1是正方形,∴OC1=OA1=11,2),同理A3的坐标为(3,4),…An,12n-).28.设△如图1AE1,BD1交于点F1,得到四边形CD1F1E1,其面积S1=13如图2,分别将AC,BC边3等分,D1,D2,E1,E2是其分点,连接AE2,BD2交于点F2,得到四边形CD2F2E2,其面积S2=16;如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=110;…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CD n E n F n,其面积S=.【来源】2017年初中毕业升学考试(山东淄博卷)数学(带解析)【答案】2(1)(2)n n++.【解析】试题分析:如图所示,连接D 1E 1,D 2E 2,D 3E 3,∵图1中,D 1,E 1是△ABC 两边的中点,∴D 1E 1∥AB ,D 1E 1=AB ,∴△CD 1E 1∽△CBA ,且11111DE DE B F A B==12,∴S △CD1E1=14S △ABC =14,∵E 1是BC 的中点,∴S △BD1E1=S △CD1E1=14,∴S △D1E1F1=13S △BD1E1=13×14=112,∴S 1=S △CD1E1+S △D1E1F1=14+112=13,同理可得: 图2中,S 2=S △CD2E2+S △D2E2F2=11918+=16,图3中,S 3=S △CD3E3+S △D3E3F3=131680+=110,以此类推,将AC ,BC边(n+1)等分,得到四边形CD n E n F n ,其面积S n =22111(1)(1)11n n n n +⨯⨯++++=2(1)(2)n n ++,故答11121233,412A B C A B B S S ==30.在平面直角坐标系中,点(,)P x y 经过某种变换后得到点(1,2)P y x '-++,我们把点(1,2)P y x '-++叫做点(,)P x y 的终结点.已知点1P 的终结点为1P ,点2P 的终结点为2P ,点3P 的终结点为4P ,这样依次得到1234n P P P P P L L 、、、、、,若点1P 的坐标为(2,0),则点P 2017的坐标为. 【来源】2017年初中毕业升学考试(内蒙古赤峰卷)数学(带解析)【答案】(2,0). 【解析】试题分析:求得点P 2、P 3、P 4、P 5的值,即可发现其中规律,即可解题. ∵P 1(2,0),则P 2(1,4),P 3(﹣3,3),P 4(﹣2,﹣1),P 5(2,0), ∴P n 的坐标为(2,0),(1,4),(﹣3,3),(﹣2,﹣1)循环,∵2017=2016+1=4×504+1,∴P 2017坐标与P 1点重合, 故答案为(2,0).考点:规律型:点的坐标.31.如图,点(1A 上,过点1A 作111A B l ⊥交直线于点1B ,11A B 为边在11OA B ∆外侧作等边三角形111A B C ,再过点1C 作221A B l ⊥,分别交直线1l 和2l 于22,A B 两点,以22A B 为边在22OA B ∆外侧作等边三角形222,A B C 按此规律进行下去,则第n 个等边三角形n n nA B C 的面积为__________.(用含n 的代数式表示)【来源】2017年初中毕业升学考试(辽宁营口卷)数学(带解析)A 1B 1的A 2B 2的A n B nC n 的∵点A 在Rt ∴A 1B 1∵△A 1∴OA 2∴第n考点:一次函数图象上点的坐标特征;等边三角形的性质;探索规律.32.已知12345357911,,,,,25101726a a a a a =-==-==-,则8a =.【来源】2017年初中毕业升学考试(湖南郴州卷)数学(带解析)【答案】1765.【解析】试题分析:由题意给出的5个数可知:a n =221(1)1nn n +-+,所以当n=8时,a 8=1765.考点:数字规律问题.33.如图,有一条折线A 1B 1A 2B 2A 3B 3A 4B 4…,它是由过A 1(0,0),B 1(2,2),A 2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y =kx +2与此折线恰有2n (n ≥1,且为整数)个交点,则k 的值为______.【来源】2017年初中毕业升学考试(湖南常德卷)数学(带解析)【答案】12n-.【解析】试题分析:∵A 1(0,0),A 2(4,0),A 3(8,0),A 4(12,0),…,∴A n (4n ﹣4,0). ∵直线y=kx+2与此折线恰有2n (n≥1,且为整数)个交点,∴点A n+1(4n ,0)在直线y=kx+2上,∴0=4nk+2,解得:k=.故答案为:.34.如图,边长为4的正六边形ABCDEF ABCDEF 绕原点O 顺时针旋转n 次,每次旋转 60,当=n 【来源】2017【答案】(2,【解析】试题分析:2017×60°÷360°=336…11次时点A 作FH ⊥x轴,,∴F (2,.35…….(写出最简计算结果即可)n=2时,结果为:22213=+;n=3时,结果为:33314=+;所以第n 个式子的结果为:1n n +.故答案为:1nn +.考点:规律型:数字的变化类. 36.如图6,在66´的网格内填入1至6的数字后,使每行、每列、每个小粗线宫中的数字不重复,则a c ?.【来源】2017年初中毕业升学考试(湖北恩施卷)数学(带解析) 【答案】2.【解析】试题分析:对各个小宫格编号如下:先看己:已经有了数字3、5、6,缺少1、2、4;观察发现:4不能在第四列,2不能在第五列,而2不能在第六列;所以2只能在第六行第四列,即a=2;则b 和c 有一个是1,有一个是4,不确定,如下:观察上图发现:第四列已经有数字2、3、4、6,缺少1和5,由于5不能在第二行,所以5在第四行,那么1在第二行;如下:再看乙部分:已经有了数字1、2、3,缺少数字4、5、6,观察上图发现:5不能在第六列,所以5在第五列的第一行;4和6在第六列的第一行和第二行,不确定, 分两种情况:①当4在第一行时,6在第二行;那么第二行第二列就是4,如下:再看甲部分:已经有了数字1、3、4、5,缺少数字2、6,观察上图发现:2不能在第三列,所以2在第二列,则6在第三列的第一行,如下:观察上图可知:第三列少1和4,4观察上图可知:第五行缺少1和2,1不能在第1c=1,所以b=4,如下:观察上图可知:第六列缺少1和2,1 再看戊部分:已经有了数字2、3、4、51在第二列,则6在第一列,如下:观察上图可知:第一列缺少3和4,4 观察上图可知:第二列缺少5和6,5 观察上图可知:第三行第五列少6所以,a=2,c=1,ac=2;②当6在第一行,42在第2列,c=4,b=1所以6在第四行,则3在第三行,如下: 所以2在第三行,则1在第四行,如下: 综上所述:37.(20172的等腰直角三角形各边中点得到第1个小三角形,2个小三角形,如此操作下去,则第n 个小三【来源】【答案】2112n .【解析】试题分析:记原来三角形的面积为s ,第一个小三角形的面积为s 1,第二个小三角形的面积为s 2,…, ∵s 1=?s=?s ,s 2=?s=?s ,s 3=?s ,…… ∴s n =?s=??2?2=.考点:1.三角形中位线定理;2.等腰直角三角形.38.如图,在平面直角坐标系中,等腰直角三角形12OA A 的直角边1OA 在y 轴的正半轴上,且1121OA A A ==,以2OA 为直角边作第二个等腰直角三角形23OA A ,以3OA 为直角边作第三个等腰直角三角形20172018OA A ,则点2017A 的坐标为.【来源】2017年初中毕业升学考试(黑龙江齐齐哈尔卷)数学(带解析)【答案】【解析】2为直角∴OA 1=1,∵A 1、A 22017÷∴点A 2017∵OA 2017=∴点A 2017399【来源】【答案】【解析】第2第3…第n 个图形中三角形的个数是1+4(n ﹣1)=4n ﹣3, 当n=2017时,4n ﹣3=8065 考点:图形的变化类40.如图,在平面直角坐标系中,直线l :y=x+2交x 轴于点A ,交y 轴于点A 1,点A 2,A 3,…在直线l 上,点B 1,B 2,B 3,…在x 轴的正半轴上,若△A 1OB 1,△A 2B 1B 2,△A 3B 2B 3,…,依次均为等腰直角三角形,直角顶点都在x 轴上,则第n 个等腰直角三角形A n B n ﹣1B n 顶点B n 的横坐标为. 【来源】2017年初中毕业升学考试(贵州安顺卷)数学(带解析) 【答案】2n+1﹣2. 【解析】试题解析:由题意得OA=OA 1=2, ∴OB 1=OA 1=2,B 1B 2=B 1A 2=4,B 2A 3=B 2B 3=8,∴B 1(2,0),B 2(6,0),B 3(14,0)…, 2=22﹣2,6=23﹣2,14=24﹣2,… ∴B n 的横坐标为2n+1﹣2. 考点:点的坐标. 41.41.如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点P (1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P 的坐标为____________________.【来源】2017年初中毕业升学考试(广西四市卷)数学(带解析) 【答案】(6053,2).【解析】试题分析:第一次P 1(5,2),第二次P 2(5,1),第三次P 3(7,1),第四次P 4(10,2),第五次P 5(14,2),…发现点P42(1(2(3(1)(2x x +-帮助, 【来源】【答案】(【解析】试题分析:432【来源】【答案】【解析】试题解析:∵第1个图形的周长为2+3=5, 第2个图形的周长为2+3×2=8, 第3个图形的周长为2+3×3=11, …∴第2017个图形的周长为2+3×2017=6053 考点:图形的变化规律.44.44.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n 个图中正方形和等边三角形的个数之和为______个. 【来源】2017年初中毕业升学考试(山东潍坊卷)数学(带解析) 【答案】9n +3.【解析】试题分析:∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,∴正方形和等边三角形的和=6+6=12=9+3;∵第2个图由11个正方形和10个等边三角形组成,∴正方形和等边三角形的和=11+10=21=9×2+3;∵第3个图由16个正方形和14个等边三角形组成,∴正方形和等边三角形的和=16+14=30=9×3+3,…,∴第n个图中正方形和等边三角形的个数之和=9n+3.故答案为:9n+3.考点:规律型:图形的变化类45.某广场用同一种如图所示的地砖拼图案.第一次拼成形如图1所示的图案,第二次拼成形如图2所示的图案,第三次拼成形如图3的图案,第四次拼成形如图4的图案……按照只有的规律进行下去,第n次拼成的图案用地砖块.…第n46角形A11B2,过点A2作A2B3的横坐标是与1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到An 的横坐标为,据此可得点A2017的横坐标,故答案为:.考点:1、一次函数图象上点的坐标特征,2、等边三角形的性质47.观察下列运算过程:计算:1+2+22+ (210)解:设S=1+2+22+…+210,① ①×2得2S=2+22+23+…+211,②? ②﹣①得 S=211﹣1.所以,1+2+22+…+210=211﹣1运用上面的计算方法计算:1+3+32+…+32017=.【来源】2017年初中毕业升学考试(贵州毕节卷)数学(带解析)【答案】2018312-.【解析】试题分析:令s=1+3+32+33+…+32017等式两边同时乘以3得:3s=3+32+33+…+32018故答案为:2018312-.考点:规律型:数字的变化类. 48.观察下列图形:它们是按一定规律排列的,依照此规律,第9【来源】【答案】【解析】个点, …第n 3(1)2n n +个点; 当n=9故答案为:135.考点:规律型:图形的变化类49.[探究函数4y x x =+的图象与性质](1)函数4y x x=+的自变量x 的取值范围是;(2)下列四个函数图象中函数4y x x=+的图象大致是;(3)对于函数4y x x=+,求当0x >时,y 的取值范围.请将下列的求解过程补充完整. 解:∵0x >∴()2224y xx=+=+=+∵2≥∴y ≥. [拓展运用](4)若函数259x x y x-+=,则y 的取值范围.【来源】四川省自贡市初2017【答案】(1)0x ≠;(2)C ;(3)4,4;(4)y ≥【解析】试题分析:本题的⑴量的取值范围.本题的⑵问结合第⑴问中的0x ≠的大致取值范围,即可得到函数的大致图象.本题的第⑶”应填写“常数”部分,再根据配方情况可以得到当当x >95y x x=+-的形式,再按⑶故填:x (2)x ≠0x <时,y 所以函数4y x x=+的图象只在直角坐标系的(3)∵∴y x =+故分别填:44,;(4)∵0x >(这里隐含有y 首先是正数)∴2222599551x x y xx x -+==-+=+-=+∵2≥∴1y ≥.50.(2017浙江省台州市)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程2520x x -+=,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A (0,1),B (5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A ,另一条直角边恒过点B ; 第三步:在移动过程中,当三角板的直角顶点落在x 轴上点C 处时,点C 的横坐标m 即为该方程的一个实数根(如图1);第四步:调整三角板直角顶点的位置,当它落在x 轴上另一点D 处时,点D 的横坐标n 即为该方程的另一个实数根.(1)在图2中,按照“第四步”的操作方法作出点D (请保留作出点D 时直角三角板两条直角边的痕迹);(2)结合图1,请证明“第三步”操作得到的m (30c +=(a ≠0,24b ac -(4)实际上,(3系时,点P (m 1,n 1),Q (m 2,n 2【来源】2017【答案】(1)作图见解析;(2)证明见解析;(3,B (﹣b a ,c D 即可;(2)过点B ,进而得出,即是方程的实数根;(3)方程(a≠0)可化为,模仿研究小组作法可得一对固定点的坐标;(4)先设方程的根为x ,根据三角形相似可得,进而得到,再根据,可得,最后比较系数可得m 1,n 1,m 2,n 2与a ,b ,c 之间的关系. 试题解析:(1)如图所示,点D 即为所求;(2)如图所示,过点B 作BD⊥x 轴于点D ,根据∠AOC=∠CDB=90°,∠ACO=∠CBD,可得△AOC∽△CDB,∴,∴,∴m(5﹣m )=2,∴,∴m 是方程的实数根;(3)方程(a≠0)可化为,模仿研究小组作法可得:A (0,1),B(﹣,)或A (0,),B (﹣,c )等;,根据三角形相似可得,上式,即,∴比较系数可得= ()2132435(2)n n ⨯⨯⨯+=111111111(1 (23243512)n n n -+-+-+-+-++=111113(1)(2)2(2)2(1)(1221222(1)(2)n n n n n n n n ++-+-++--=⨯++++=2354(1)(2)n n n n +++.52.阅读理解题:定义:如果一个数的平方等于-1,记为21i =-,这个数i 叫做虚数单位,把形如a bi +(,a b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫做这个复数的虚部,它的加、减,乘法运算与整式的加、减、乘法运算类似.例如计算:()()()()253251372i i i i -++=++-+=+()()()21212221213i i i i i i i +⨯-=⨯-+⨯-=+-++=+;根据以上信息,完成下列问题:(1)填空:3i =_________,4i =___________;(2)计算:()()134i i +⨯-;(3)计算:232017i i i i ++++.【来源】2017年初中毕业升学考试(湖南张家界卷)数学(带解析)【答案】(1)﹣i ,1;(2)7﹣i ;(3)i .【解析】试题分析:(1)把i 2=﹣1代入求出即可;(2(3试题解析:(1)i 3=i 2i=﹣i ,i 4=(i 2)2=(﹣1)2故答案为:﹣i ,1;(2)(1+i )×(3﹣4i )=3﹣4i+3i ﹣4i 2=3﹣i+4=7﹣i ;(3)i+i 2+i 32017=i ﹣1﹣=i . 53.我们知道,(n n ++=223n +++结果等于多少呢? 在图1所示三角形数阵中,第1,即21;第2行两个圆圈中数的和为22+,即22n ,即2n .这样,该三角形数阵中共有(1)2n n +个【规律探究】将桑拿教学数阵经两次旋转可得如图所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第1n -行的第一个圆圈中的数分别为1n -,2,n ),发现每个位置上三个圆圈中数的和均为.由此可得,这三个三角形数阵所有圆圈中数的总和为:22223(123)n ++++=.因此,2222123n ++++=. 【解决问题】 根据以上发现,计算222212320171232017++++++++的结果为.【来源】2017年初中毕业升学考试(安徽卷)数学(带解析)【答案】21n +()()1212n n n ++?()()11216n n n ++1345 【解析】试题分析:先利用转化的而思想来探究2222123n ++++=()()11216n n n ++;再利用公式解决问题. 试题解析:21n +2222123n ++++=()()11216n n n ++1345 222212320171232017++++++++=12017(20171)(220171)116(220171)40351345(12017)3320172⨯⨯+⨯⨯+=⨯⨯+=⨯=+⨯ 考点:探究问题、解决问题的能力.。
遵义专版2017届中考数学总复习第三编综合专题闯关篇专题一规律探索猜想类试题

第三编 综合专题闯关篇专题一 规律探索猜想类类型与策略规律探索与猜想是中考中常见题型之一,它主要用于考查学生观察、分析、归纳、猜想等方面的能力,既可以命基础题,也可命中高档题,题型不限,方法灵活,主要有数式规律、图形规律、坐标规律等,解这类问题要善于发现其过程中的特点,抓住其周期是解决此类问题的关键.规律与预测纵观遵义近5年中考,每年都会涉及一题规律探索问题,一般难度不大,预计2017年遵义中考也有可能命一道中基础(选择或填空)规律探索题.,中考重难点突破)数字规律【例1】(2017中考预测)正整数按如图所示的规律排列,请写出第20行第21列的数字.【解析】首先应发现第1列中的数与所在行数的关系,再关注第n 行的第1个数与第(n +1)列的第1个数的关系,那么第n 行第n +1列这个数应该不难确定.【学生解答】解:由观察可知,第20行第一个数应为202,故第20行第21列的数字应为202+20=420.(一) 模拟题区1.(2016遵义二中二模)计算下列各式的值:92+19;992+199;9992+1 999;9 9992+19 999.观察所得结果,总结存在的规律,应用得到的规律可得99 (92)2 015个9+199…9,2 015个9) )=__102__015__.2.(2016遵义六中三模)将自然数按以下规律排列:第一列 第二列 第三列 第四列 第五列 第一行 1 4 5 16 17 … 第二行 2 3 6 15 … 第三行 9 8 7 14 … 第四行 10 11 12 13 … 第五行 … …表中数2在第二行,第一列,与序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应;根据这一规律,数2 014对应的有序数对为__(45,12)__.3.(2016遵义十一中三模)已知:2-122-12=13;4-3+2-142-32+22-12=15;计算:6-5+4-3+2-162-52+42-32+22-12=__17;猜想:[(2n +2)-(2n +1)]+…+(6-5)+(4-3)+(2-1)[(2n +2)2-(2n +1)2]+…+(62-52)+(42-32)+(22-12)=__12n+3__.中考真题区4.(2015安徽中考)按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜测x、y、z满足的关系式是__x·y=z__.5.(2015广东中考)观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是__1021__.6.(2016安徽中考)(1)观察下列图形与等式的关系,并填空:1+3=22;1+3+5=32;1+3+5+7=__42__;1+3+5+7+…+(2n-1)=__n2__.(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填:1+3+5+…+(2n-1)+(__2n+1__)+(2n-1)+…+5+3+1=__2n2+2n+1__.7.(2015武威中考)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,……依此类推,那么第9个三角形数是__45__,2 016是第__63__个三角形数.8.(2015临沂中考)观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,….按照上述规律,第2 015个单项式是( C)A.2 015x2 015B.4 029x2 014C.4 029x2 015D.4 031x2 015图形规律【例2】(2015娄底中考)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,……,则第n(n为正整数)个图案由________个▲组成.【解析】观察发现:第1个图案有3×2-3+1=4个三角形; 第2个图案有3×3-3+1=7个三角形; 第3个图案有3×4-3+1=10个三角形; …第n 个图案有3(n +1)-3+1=(3n +1)个三角形. 【学生解答】(3n +1)【方法指导】图形规律探索有以下几种类型:1.求个数,方法为:(1)标序数:按图号标序;(2)找关系:找后一个图与前一个图中所求量之间的关系(一般是通过作差或作商的形式观察是否含有定量)或找出图中的所求量与序数之间的关系;(3)算结果:计算每个给出图中所求量的个数;(4)找规律:对求出的结果进行一定的变形,使其呈现一定的规律;(5)归纳:归纳结果与序数之间的关系,即可得到第n 个图中所求量的个数;(6)验证:代入序号验证所归纳的式子是否正确.2.求面积,方法为:(1)根据题意可得出第一次变换前图形的面积为S ;(2)通过计算得到第一次变换后图形的面积,第二次变换后图形的面积,第三次变换后图形的面积,第四次变换后图形的面积,……归纳出后一个图形的面积与前一个图形的面积之间存在的倍数关系n ;(3)第M 次变换后,求得图形的面积为n MS.(二)模拟题区1.(2016遵义二中三模)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,……依此规律,第n 个图案有__(3n +1)__个三角形.(用含n 的代数式表示)2.(2016遵义航中三模)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,……按此规律,第5个图中共有点的个数是( B )A .31B .46C .51D .663.(2016毕节三模)如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,……按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是( C )A .(12)n ·75°B .(12)n -1·65°C .(12)n -1·75°D .(12)n ·85°4.(2016汇川升学一模)观察图中菱形四个顶点所标的数字规律,可知数2 016应标在( D )A .第503个菱形的上方B .第503个菱形的右边C .第504个菱形的上方D .第504个菱形的右边中考真题区5.(2016益阳中考)小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,……,那么第9个图案的棋子数是__13__枚.6.(2016衡阳中考)如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n 条直线最多可将平面分成56个部分,则n 的值为__10__.7.(2016河北中考)如图,已知∠AOB=7°,一条光线从点A 发出后射向OB 边,若光线与OB 边垂直,则光线沿原路返回到点A ,此时∠A=90°-7°=83°.当∠A<83°时,光线射到OB 边上的点A 1后,经OB 反射到线段AO 上的点A 2,易知∠1=∠2.若A 1A 2⊥AO ,光线又会沿A 2→A 1→A 原路返回到点A ,此时∠A=__76__°.……若光线从点A 发出后,经若干次反射能沿原路返回到点A ,则锐角∠A 的最小值=__6__°.点的坐标规律【例3】(2015威海中考)如图,在平面直角坐标系xOy 中,Rt △OA 1C 1,Rt △OA 2C 2,Rt △OA 3C 3,Rt △OA 4C 4……的斜边都在坐标轴上,∠A 1OC 1=∠A 2OC 2=∠A 3OC 3=∠A 4OC 4=30°,若点A 1的坐标为(3,0),OA 1=OC 2,OA 2=OC 3,OA 3=OC 4…,则依此规律,点A 2 015的横坐标为( )A .0B .-3×(233)2 014C .(23)2 015D .3×(233)2 014【学生解答】B【方法指导】求点坐标,根据图形点坐标的变换特点可知这类题有两种考查形式:一类是点坐标变换是在同一象限递推变化;另一类是点坐标变换在坐标轴上或象限内循环递推变化;解决这类题的方法如下:(1)若第一个点的坐标未给出,可先由所给信息求出坐标(a ,b);(2)根据题目中给出的线段的数量关系及角度,通过勾股定理或直角三角形的边角关系得到第二个,第三个,第四个……的坐标,观察它们之间存在的比例关系,比值记为n ;(3)当点坐标在同一象限变换时,通过第M 次变换后,图形的点坐标为(n M a ,n Mb);(4)当点坐标在整个平面直角坐标系里变换,先观察点的变换规律为顺时针循环还是逆时针循环,通过第M 次变换后,用M÷4=w +q(0≤q<4),当q =0时,点坐标所在象限与起点相同,依此类推,当确定出点坐标落在x 轴正半轴时,点坐标为(n Mc ,0),点坐标落在y 轴正半轴时,点坐标为(0,n M c),点坐标落在x 轴负半轴时,点坐标为(-n Mc ,0),点坐标落在y 轴负半轴时,点坐标为(0,-n Mc).(三)模拟题区1.(2016遵义十一中一模)如图,以O(0,0),A(2,0)为顶点作正△OAP 1,以点P 1和线段P 1A 的中点B 为顶点作正△P 1BP 2,再以点P 2和线段P 2B 的中点C 为顶点作正△P 2CP 3,……如此继续下去.则第六个正三角形中,不在第五个正三角形边上的顶点P 6的坐标是3232.2.(2016遵义红花岗三模)如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n是自然数)的坐标为__(2n,1)__.中考真题区3.(2016岳阳中考)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,……,均在格点上,其顺序按图中“→”方向排列.如:P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),……,根据这个规律,点P2 016的坐标为__(504,-504)__.4.(2016吉林中考)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点.将此三角形纸片按下列方式折叠.若EF的长度为a,则△DEF的周长为__3a__.(用含a的式子表示)。
广东省2017中考数学第二部分题型研究题型三规律探索题试题

题型三 规律探索题类型一 数式规律针对演练1. (2016新疆)如图,下面每个图形中的四个数都是按相同规律填写的,根据此规律确定x 的值为________.第1题图2. (2016绥化)古希腊数学家把数1,3,6,10,15,21…叫三角数,它有一定的规律.若把第一个三角数记为a 1,第二个三角数记为a 2,…,第n 个三角数记为a n ,计算a 1+a 2,a 2+a 3,a 3+a 4,…,由此推算a 399+a 400=________.3. (2016济宁)按一定规律排列的一列数:12,1,1, ,911,1113,1317,…,请你仔细观察,按照此规律方框内的数字应为________.4. (2016郴州)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,….试猜想,32016的个位数字是________.5. (2016百色)观察下列各式的规律:(a -b )(a +b )=a 2-b 2;(a -b )(a 2+ab +b 2)=a 3-b 3;(a -b )(a 3+a 2b +ab 2+b 3)=a 4-b 4;…;可得到(a -b )(a 2016+a 2015b +…+ab 2015+b 2016)=________.6. 请观察下列等式的规律:11×3=12(1-13),13×5=12(13-15),15×7=12(15-17),17×9=12(17-19),…,则11×3+13×5+15×7+…+199×101=________. 7. (2016滨州)观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802; …可猜想第2016个式子为______________. 8. (2016黄石)观察下列等式:第1个等式: a 1=11+2=2-1,第2个等式a 2=12+3=3-2,第3个等式:a 3=13+2=2-3,第4个等式:a 4=12+5=5-2,按上述规律,回答以下问题:(1)请写出第n 个等式:a n =__________________; (2)a 1+a 2+a 3+…+a n =__________.9. (2011省卷20,9分)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是________,它是自然数________的平方,第8行共有________个数;(2)用含n的代数式表示:第n行的第一个数是________,最后一个数是________,第n行共有________个数;(3)求第n行各数之和.【答案】1.370 【解析】观察可得,第n 个图形的数字为:当2n =20时,n =10,∴x 1)-10=370.2.160000 【解析】由a 1+a 2=4=22,a 3+a 4=6+10=16=42,a 5+a 6=15+21=36=62,…,依此类推可得a n +a n +1=(n +1)2,∴a 399+a 400=4002=160000.3.1 【解析】将原来的一列数变形为12,33,55,□,911,1113,1317,观察可以得出分子依次为从小到大排列的连续奇数,分母是依次从小到大排列的质数,故方框内填77,故答案为1.4.1 【解析】从前几个3的幂来看,它的个位数依次是3,9,7,1,第5个数跟第一个数的个位数相同,于是3的整数次幂的个位数是每四个数一个循环,2016÷4=504,于是32016的个位数与34的个位数相同,即为1.5.a 2017-b 2017 【解析】由题可知,(a -b )(a +b )=a 2-b 2,(a -b )(a 2+ab +b 2)=a 3-b 3,(a -b )(a 3+a 2b +ab 2+b 3)=a 4-b 4,…,∴(a -b )(a n +a n -1b +a n -2b 2+…+a 2b n -2+ab n -1+b n )=a n +1-b n +1, ∴当n =2016时,(a -b )(a 2016+a 2015b +…+ab 2015+b 2016)=a 2017-b 2017.6.50101 【解析】原式=12(1-13)+12(13-15)+12(15-17)+…+12(199-1101)=12(1-13+13-15+15-17+…+199-1101)=12(1-1101)=50101. 7.(32016-2)×32016+1=(32016-1)2【解析】第①个式子转化为:(31-2)×31+1=(31-1)2,第②个式子转化为: (32-2)×32+1=(32-1)2,第③个式子转化为: (33-2)×33+1=(33-1)2,第④个式子转化为: (34-2)×34+1=(34-1)2,…,由以上规律可得,第n 个式子为: (3n -2)×3n +1=(3n -1)2,当n =2016时,第2016个式子为:(32016-2)×32016+1=(32016-1)2.8.(1)1n +n +1=n +1-n ;(2)n +1-1 【解析】(1)a 1=11+2=2-1,a 2=12+3=3-2,a 3=13+4=4-3,…,a n =1n +n +1=n +1-n ;(2)a 1+a 2+a 3+…+a n =(2-1)+(3-2)+(4-3)+(5-4)+…+(n +1-n )=n +1-1.9.解:(1)64,8,15;【解法提示】仔细观察第一行最后一个数是1=12,且共有1个数;第二行最后一个数是4=22,且共有3个数,第三行最后一个数是9=32,且共有5个数,以此类推,可知第n行最后一个数可以表示为n 2,且共有(2n -1)个数,所以第8行最后一个数是82=64,共有2×8-1=15个数;(2)n 2-2n +2,n 2,2n -1;【解法提示】由(1)中的分析得知第n 行的第一个数是(n -1)2+1=n 2-2n +2,最后一个数是n 2,第n 行共有(2n -1)个数;(3)第n 行各数之和为:n 2-2n +2+n 22×(2n -1)=(n 2-n +1)(2n -1).类型二图形规律针对演练一、图形累加规律探索1. (2016荆州)如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n个图案中有2017个白色纸片,则n的值为( )第1题图A. 671B. 672C. 673D. 6742. 下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为 ( )第2题图A. 21B. 24C. 27D. 303. (2016重庆B卷)观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A. 43B. 45C. 51D. 534. (2015曲靖)用火柴棒按如图所示的方式摆大小不同的“H”,依此规律,摆出第9个“H”需用火柴棒________根.5. (2015深圳)观察下列图形,它们是按照一定规律排列的,依照此规律,第五个图有________个太阳.6. (2016安顺)观察下列砌钢管的横截面图:则第n个图的钢管数是__________(用含n的式子表示).【答案】1.B 【解析】对于每个图中的白色纸片的个数,依次是4,7=4+3,10=4+3×2,…,那么,第n 个图中的白色纸片的个数为4+3×(n -1)=3n +1,令3n +1=2017,解得n =672.2.B 【解析】第①个图形有6个小圆圈,第②个图形有6+3=9个小圆圈,第③个图形有6+3×2=12个小圆圈,…,按照这个规律,第个图形有6+3(n -1)=3n +3个小圆圈,故第⑦个图形一共有3×7+3=24个小圆圈.3.C 【解析】图形①中星星的颗数为:2=1+(2×1-1),图形②中星星的颗数为:6=(1+2)+(2×2-1),图形③中星星的颗数为:11=(1+2+3)+(2×3-1),图形④中星星的颗数为:17=(1+2+3+4)+(2×4-1),…,图形中星星的颗数为:(1+2+…+n )+(2n -1)=n (n +1)2+2n -1,所以图形⑧中星星的颗数为:8×(8+1)2+2×8-1=51.4.29 【解析】5.21 【解析】∵所有图形中,第一行太阳的个数分别为1,2,3,4,…,n ,∴第五个图形第一行太阳的个数为5,∵所有图形中,第二行太阳的个数分别为1,2,4,8,…,2n -1,∴第五个图形第二行太阳的个数为24=16个太阳,∴第五个图形共有5+16=21个太阳.6.32n 2+32n 【解析】由表可知,第n 个图的钢管数是3n (n +1)2=32n 2+32n .二、图形成倍递变规律探索 1. (2016六盘水)如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…,若∠A =70°,则∠A n 的度数为( )A.70°2n B. 70°2n +1 C. 70°2n -1 D. 70°2n -2第1题图第2题图2. (2016内江)一组正方形按如图所示的方式放置,其中顶点B 1在y 轴上,顶点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2016B 2016C 2016D 2016的边长是( )A. (12)2015B. (12)2016C. (33)2016D. (33)20153. (2016南平)如图,已知直线l :y =2x ,分别过x 轴上的点A 1(1,0)、A 2(2,0)、…、A n (n ,0),作垂直于x 轴的直线交l 于点B 1、B 2、…、B n ,将△OA 1B 1、四边形A 1A 2B 2B 1、…、四边形A n -1A n B n B n -1的面积依次记为S 1、S 2、…、S n ,则S n =( )A. n 2B. 2n +1C. 2nD. 2n -1第3题图第4题图4. (2016威海)如图,点A 1的坐标为(1,0),A 2在y 轴的正半轴上,且∠A 1A 2O =30°,过点A 2作A 2A 3⊥A 1A 2,垂足为A 2,交x 轴于点A 3;过点A 3作A 3A 4⊥A 2A 3,垂足为A 3,交y 轴于点A 4;过点A 4作A 4A 5⊥A 3A 4,垂足为A 4,交x 轴于点A 5;过点A 5作A 5A 6⊥A 4A 5,垂足为A 5,交y 轴于点A 6;…按此规律进行下去,则点A 2016的纵坐标为________.5. (2016钦州)如图,∠MON =60°,作边长为1的正六边形A 1B 1C 1D 1E 1F 1,边A 1B 1、F 1E 1分别在射线OM 、ON 上,边C 1D 1所在的直线分别交OM 、ON 于点A 2、F 2,以A 2F 2为边作正六边形A 2B 2C 2D 2E 2F 2,边C 2D 2所在的直线分别交OM 、ON 于点A 3,F 3,再以A 3F 3为边作正六边形A 3B 3C 3D 3E 3F 3,…,依此规律,经第n 次作图后,点B n 到ON 的距离是________.第5题图【答案】1.C 【解析】在∵△ABA 1中,AB =A 1B ,∴∠A =∠BA 1A ,∵A 1A 2=A 1B 1,∴∠B 1A 2A 1=12∠BA 1A ,同理,∠B 2A 3A 2=12∠B 1A 2A 1=14∠BA 1A ,∴∠A n =12n -1∠BA 1A =70°2n -1.2.D 【解析】易得△B 2C 2E 2∽△C 1D 1E 1,∴B 2C 2C 1D 1=B 2E 2C 1E 1=C 2E 2D 1E 1=C 2E 2B 2E 2=tan30°,∴B 2C 2=C 1D 1·tan30°=33,∴C 2D 2=33,同理,B 3C 3=C 2D 2·tan30°=(33)2,由此猜想B n C n =(33)n -1,∴当n =2016时,B 2016C 2016=(33)2015,故选D. 3.D 【解析】由题意可知,△OA 1B 1∽△OA 2B 2∽△OA 3B 3∽…∽△OA n B n 且相似比为1∶2∶3∶…∶n ,∴其面积比为1∶4∶9∶…∶n 2,∴S 1∶S 2∶S 3∶…∶S n =1∶3∶5∶…∶(2n -1),∵A 1(1,0),过点A 1作垂直于x 轴的直线交l :y =2x 于点B 1,∴OA 1=1,A 1B 1=2,∴S △OA 1B 1=1,∴S n =2n -1.4.-310073 【解析】∵A 1(1,0),∠A 1A 2O =30°,∴A 2(0,3),∵A 2A 3⊥A 1A 2 ,∴∠A 3A 2O =60°,∴∠A 2A 3O =30°, ∴A 3(-3,0),同理,A 4(0,-33),A 5(9,0),A 6(0,93),A 7(-27,0),A 8(0,-273),…,即,A 2(0,3),A 4(0,-33),A 6(0,93),A 8(0,-273),列表如下:∴A n =3×12(3)n --,∵2016÷2-1=1007,∴A 2016的纵坐标是-310073.5.3n -13 【解析】由题意可知,∠MON =60°,设点B n 到ON 的距离为h n ,∵正六边形A 1B 1C 1D 1E 1F 1的边长为1,∴A 1B 1=1,易知△A 1OF 1为等边三角形,∴A 1B 1=OA 1=1,∴OB 1=2,则h 1=2×32=3,又∵OA 2=A 2F 2=A 2B 2=3,∴OB 2=6,则h 2=6×32=33,同理可求,OB 3=18,则h 3=18×32=93,…,依此可得,OB n =2×3n -1,则h n =2×3n -1×32=3n -13,∴点B n 到ON 的距离为3n -13.三、图形循环规律探索1. (2016河南)如图,已知菱形OABC 的顶点O (0,0),B (2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D 的坐标为( )A . (1,-1)B . (-1,-1)C . (2,0)D . (0,-2)第1题图第2题图2. 下列一串梅花图案是按一定规律排列的,请你仔细观察,在前2016个梅花图案中,共有________个“”图案.3. 如图,正五边形五个顶点标有数字1、2、3、4、5,一只青蛙在五个顶点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若它停在偶数点上,则下一次沿逆时针方向跳一个点;若青蛙从标有数字5的顶点开始跳,第一次跳后落在标有数字2的顶点上,第二次跳后落在标有数字1的顶点上,…,则第2017次跳后所停的顶点对应的数字为__________.第3题图4. (2016三明)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P6(2,0),…,则点P60的坐标是________.第4题图第5题图5. (2016聊城)如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…,则正方形OB2015B2016C2016的顶点B2016的坐标是________.【答案】1.B 【解析】∵菱形OABC的顶点坐标为O(0,0),点B的坐标是(2,2),∴BO与x 轴的夹角为45°,∵菱形的对角线互相垂直平分,∴点D是线段OB的中点,∴点D的坐标是(1,1),∵菱形绕点O逆时针旋转,每秒旋转45°,360°÷45°=8,∴每旋转8秒,菱形的对角线交点D就回到原来的位置(1,1),∵60÷8=7……4,∴第60秒时是把菱形绕点O逆时针旋转了7周回到原来位置后,又旋转了4秒,即又旋转了4×45°=180°,∴点D的对应点落在第三象限,且对应点与点D关于原点O成中心对称,∴第60秒时,菱形的对角线交点D的坐标为(-1,-1).2.504 【解析】观察图形可知,“”图案方向依次向下、向左、向上、向右,每四个为一个循环周期.∵2016÷4=504,∴前2016个梅花图案中,有504个“”图案.3.2 【解析】由5起跳,5是奇数,沿顺时针下一次能跳2个点,落在2上.由2起跳,2是偶数,沿逆时针下一次只能跳一个点,落在1上,1是奇数,沿顺时针跳两个点,落在3上.由3起跳,是奇数,沿顺时针跳两个点,落在5上.2-1-3-5-2,周期为4,∵又由2017=4×504+1,∴经过2017次跳后它停在的点所对应的数为2.4.(20,0) 【解析】将点P的横纵坐标分开来看,P n的横坐标始终在变化且逐渐增大,而P n的纵坐标变化呈周期变化,即1,1,0,-1,-1,0,所以每6个点P的纵坐标为一个循环,显然60÷6=10,恰好能够整除,所以点P60的纵坐标为0,即在x轴上,显然P6,P12,P18,…,这些点的横坐标为:2,4,6,…,所以点P6k的纵坐标为2k,∴点P60的横坐标为20,∴点P60的坐标为(20,0).5.(21008,0) 【解析】∵点B的位置依次落在第一象限、y轴正半轴、第二象限、x 轴负半轴、第三象限、y轴负半轴、第四象限、x轴正半轴,…,每8次一循环,2016÷8=252,∴点B2016落在x轴正半轴,故B2016的纵坐标是0;OB n是正方形的对角线,OB1=2,OB2=2=(2)2,OB3=22=(2)3,…,∴OB2016=(2)2016=21008,∴点B2016的坐标为(21008,0).11。
数学中考题型一 规律探索问题

题型剖析
专项训练
1.(2017四川自贡)填在下面各正方形中四个数之间都有相同的规律, 根据这种规律m的值为( C )
A.180 B.182 C.184D.186 2.(2017广西百色)观察以下一列数的特点:0,1,-4,9,-16,25,…,则第11 个数是( B ) A.-121 B.-100 C.100D.121
题型一
规律探索问题
-1-
题型剖析
专项训练
类型一
类型二
类型一图形变化规律 例1(2017中考)观察下列图形,它是把一个三角形分别连接这个三 角形的中点,构成4个小三角形,挖去中间的小三角形(如图1);对剩 下的三角形再分别重复以上做法,……,将这种做法继续下去(如图2, 图3……),则图6中挖去三角形的个数为 ( )
题型剖析
专项训练
类型一
类型二
解析:找规律发现(a+b)3的第三项系数为3=1+2; (a+b)4的第三项系数为6=1+2+3; (a+b)5的第三项系数为10=1+2+3+4; 不难发现(a+b)n的第三项系数为1+2+3+…+(n-2)+(n-1), ∴(a+b)20第三项系数为1+2+3+…+19=190. 故选D. 答案:D
3.(2017 山东临沂)将一些相同的“ ”按如图所示摆放,观察每个图形 中的“ ”的个数,若第 n 个图形中“ ”的个数是 78,则 n 的值是( B )
A.11
B.12
C.13 D.14
题型剖析
专项训练
4.(2017山东日照)观察下面“品”字形中各数之间的规律,根据观察 到的规律得出a的值为( B )
各地市中考规律探索归纳探究题汇总有答案

2017年各地市中考规律探索归纳探究题汇总1.在一列数:a1,a2,a3,…,a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是()A. 1B. 3C. 7D. 9【来源】2017年中考真题精品解析数学(江苏扬州卷)精编word版(解析版)【答案】B【解析】依题意得:a1=3,a2=7,a3=1,a4=7,a5=7,a6=9,a7=3,a8=7,……周期为6,2017÷6=336…1,所以a2017=a1=3,故选B.【点睛】本题考查了数字变化类的规律型问题,解题的关键是根据题意先求出一些位置的数字,然后根据所求得的数字发现规律.2.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为()A. 180 B. 182 C. 184 D. 186【来源】四川省自贡市初2017届毕业生学业考试数学试题【答案】C【解析】我们把正方形中的小方格的第一竖列和第二数列的小方格分别一次分别规定第一、二、三、四格.根据前面正方形方格数据排列可以看出第一,二,三格是连续奇数,且第一、三格数据的和等于等于第二、四格数据的积;所以111315+=⨯,解得:184m=.m故应选C.点睛:此题考查了数字的变化规律.首先应找出各个正方形中的哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决问题.3.3.下列图像都是由相同大小的星星按一定规律组成的,其中第①个图形中一共有4颗星星,第②个图形中一共有11颗星星,第③个图形中一共有21颗星星,.....按此规律排列下去,第⑨个图形中星星的颗数为()A. 116B. 144C. 145D. 150【来源】2017年初中毕业升学考试(重庆B卷)数学(带解析)【答案】B【解析】试题分析:∵4=1×2+2,11=2×3+2+321=3×4+2+3+4第4个图形为:4×5+2+3+4+5,∴第⑨个图形中的颗数为:9×10+2+3+4+5+6+7+8+9+10=144.故选B.考点:规律型:图形的变化类.4.(2017重庆,第10题,4分)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A. 73B. 81C. 91D. 109【来源】2017年初中毕业升学考试(重庆A卷)数学(带解析)【答案】C【解析】试题解析:第①个图形中一共有3个菱形,3=12+2; 第②个图形中共有7个菱形,7=22+3; 第③个图形中共有13个菱形,13=32+4; …,第n 个图形中菱形的个数为:n 2+n+1; 第⑨个图形中菱形的个数92+9+1=91. 故选C .考点:图形的变化规律.5.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧12PP ,23P P ,34P P ,…得到斐波那契螺旋线,然后顺次连结12P P ,23P P ,34P P ,…得到螺旋折线(如图),已知点1P (0,1),2P (1-,0),3P (0,1-),则该折线上的点9P 的坐标为( )A .(6-,24)B .(6-,25)C .(5-,24)D .(5-,25) (第10题图)【来源】2017年初中毕业升学考试(浙江温州卷)数学(带解析) 【答案】B . 【解析】试题解析:由题意,P 5在P 2的正上方,推出P 9在P 6的正上方,且到P 6的距离=21+5=26, 所以P 9的坐标为(﹣6,25), 故选B .考点:点的坐标.6.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移的另一个格点的运动称为一次跳马变换.例如,在44⨯的正方形网格图形中(如图1),从点A 经过一次跳马变换可以到达点B ,C ,D ,E 等处.现有2020⨯的正方形网格图形(如图2),则从该正方形的顶点M 经过跳马变换到达与其相对的顶点N ,最少需要跳马变换的次数是( )A .13B .14 C.15 D .16【来源】2017年初中毕业升学考试(浙江湖州卷)数学(带解析) 【答案】B 【解析】试题分析:根据图一可知,延AC 或AD 可进行下去,然后到CF ,从而求出知跳过了3格,然后依次进行下去,而20×20格共21条线,所以可知要进行下去,正好是(20+1)÷7×2=14. 故答案为:14.考点:1、勾股定理,2、规律探索7.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m 的值为( ) A .180 B .182 C .184 D .186【来源】2017年初中毕业升学考试(四川自贡卷)数学(带解析) 【答案】C. 【解析】试题解析:由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15, ∵3×5﹣1=14,; 5×7﹣3=32; 7×9﹣5=58;∴m=13×15﹣11=184. 故选C .考点:数字规律.8.如图,将矩形ABCD 绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A 在整个旋转过程中所经过的路径总长为( ) A. 2017π B. 2034π C. 3024π D. 3026π【来源】2017年初中毕业升学考试(四川达州卷)数学(带解析) 【答案】D【解析】解:∵AB =4,BC =3,∴AC =BD =5.转动一次A 的路线长是: 904180π⨯ =2π,转动第二次的路线长是: 905180π⨯ =52π,转动第三次的路线长是: 903180π⨯ =32π,转动第四次的路线长是:0,以此类推,每四次循环.故顶点A 转动四次经过的路线长为: 52π+32π+2π=6π.∵2017÷4=504…1,∴顶点A 转动四次经过的路线长为:6π×504+2π=3026π,故选D . 9.用棋子摆出下列一组图形:按照这种规律摆下去,第n 个图形用的棋子个数为( ) A .n 3 B .n 6 C.63+n D .33+n【来源】2017年初中毕业升学考试(山东烟台卷)数学(带解析) 【答案】D . 【解析】试题解析:∵第一个图需棋子3+3=6; 第二个图需棋子3×2+3=9; 第三个图需棋子3×3+3=12; …∴第n 个图需棋子3n+3枚. 故选:D .考点:规律型:图形的变化类.10.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a 的值为( ) A. 23 B. 75 C. 77 D. 139【来源】2017年初中毕业升学考试(山东日照卷)数学(带解析) 【答案】B【解析】试题分析:观察可得,上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,所以b=26=64,又因上边的数与左边的数的和正好等于右边的数,所以a=11+64=75,故选B .考点:规律型:数字的变化类.11.(2017德州,第12题,3分)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为( )A. 121B. 362C. 364D. 729【来源】2017年初中毕业升学考试(山东德州卷)数学(带解析)【答案】C【解析】试题分析:①图1,0×3+1=1;②图2,1×3+1=4;③图3,4×3+1=13;④图4,13×3+1=40;⑤图5,40×3+1=121;⑥图6,121×3+1=364;故选C考点:探索规律12.按照一定规律排列的n个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12【来源】2017年初中毕业升学考试(湖北武汉卷)数学(带解析)【答案】A.【解析】试题解析:设后3个的数和为:(-1)n+1×2n-1+(-1)n+2×2n+(-1)n+3×2n+1=768,当n为偶数:整理得出:-5×(-2)n-1=768,则求不出整数,当n为奇数:整理得出:3×2n-1=768,解得:n=9.故选A.考点:数字变化规律.13.(2017贵州省黔东南州,第10题,4分)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所着的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A. 2017B. 2016C. 191D. 190【来源】2017年初中毕业升学考试(贵州黔东南州卷)数学(带解析)【答案】D【解析】试题解析:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)20第三项系数为1+2+3+…+20=190,故选D.考点:完全平方公式.14.将一些相同的“d”按如图所示摆放,观察每个图形中的“d”的个数,若第n个图形中“d”的个数是78,则n的值是()A.11 B.12 C.13 D.14【来源】2017年初中毕业升学考试(山东临沂卷)数学(带解析)【答案】B【解析】试题分析:第一个图形有1个○,第二个图形有1+2=3个○,第三个图形有1+2+3=6个○, 第四个图形有1+2+3+4=10个○, ……第n 个图形有1+2+3+……+n=(1)2n n +个○,故(1)2n n +=78,解得n=12或n=-13(舍去).故选:B考点:规律探索15.已知正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形中,使OK 边与AB 边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B ,M 间的距离可能是( ) A .1.4 B .1.1 C .0.8 D .0.5【来源】2017年初中毕业升学考试(河北卷)数学(带解析) 【答案】C. 【解析】试题分析:在第一次旋转中BM=1,在第二次旋转中BM=1,在第三次旋转中BM 的长从1变化1,在第四次旋转中BM 的长从1-,在第五次旋转中BM 1变化到1,在第六次旋转中BM=1,故答案选C. 考点:正多边形的有关计算.16.如图所示,一动点从半径为2的O ⊙上的0A 点出发,沿着射线0A O 方向运动到O ⊙上的点1A 处,再向左沿着与射线1A O 夹角为60°的方向运动到O ⊙上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O ⊙上的点3A 处,再向左沿着与射线3A O 夹角为60°的方向运动到O ⊙上的点4A 处;…按此规律运动到点2017A 处,则点2017A 与点0A 间的距离是( ) C.2 D.0【来源】2017年初中毕业升学考试(江苏连云港卷)数学(带解析) 【答案】A 【解析】试题分析:根据题意可知每六次循环一次,可知2017÷6=331……1,所以第2017次为A 1位置,由此可知其到A 0的距离正好等于直径的长4. 故选:A考点:规律探索17.如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a 1=a 2+a 3,则a 1的最小值为( ) A .32 B .36 C .38 D .40【来源】2017年初中毕业升学考试(湖北十堰卷)数学(带解析) 【答案】D. 【解析】试题分析:由a 1=a 7+3(a 8+a 9)+a 10知要使a 1取得最小值,则a 8+a 9应尽可能的小,取a 8=2、a 9=4,根据a 5=a 8+a 9=6,则a 7、a 10中不能有6,据此对于a 7、a 8,分别取8、10、12检验可得. ∵a 1=a 2+a 3=a 4+a 5+a 5+a 6=a 7+a 8+a 8+a 9+a 8+a 9+a 9+a 10=a 7+3(a 8+a 9)+a 10,∴要使a 1取得最小值,则a 8+a 9应尽可能的小,取a 8=2、a 9=4,∵a 5=a 8+a 9=6,则a 7、a 10中不能有6,若a 7=8、a 10=10,则a 4=10=a 10,不符合题意,舍去;若a 7=10、a 10=8,则a 4=12、a 6=4+8=12,不符合题意,舍去;若a 7=10、a 10=12,则a 4=10+2=12、a 6=4+12=16、a 2=12+6=18、a 3=6+16=22、a 1=18+22=40,符合题意; 综上,a 1的最小值为40, 故选:D .考点:数字的变化类18.刘莎同学用火柴棒依图的规律摆六边形图案,用10086根火柴棒摆出的图案应该是第______个.【来源】2017年中考真题精品解析 数学(湖南娄底卷) 【答案】2017.【解析】解:由图可知:第1个图形的火柴棒根数为6; 第2个图形的火柴棒根数为11; 第3个图形的火柴棒根数为16; …由该搭建方式可得出规律:图形标号每增加1,火柴棒的个数增加5,所以可以得出规律:搭第n 个图形需要火柴根数为:6+5(n ﹣1)=5n +1,令5n +1=10086,解得:n =2017. 故答案为:2017.点睛:本题考查了图形的变化类问题,关键在于通过题中图形的变化情况,通过归纳与总结找出普遍规律求解即可. 19.19.如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n 个图形中有______个点.【来源】2017年中考真题精品解析 数学(广西桂林卷)【答案】()1312n -.【解析】如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n 个图形中有12(3n -1)个点,故答案为: 12(3n -1).【点睛】本题考查了图形类规律题,先确定前几个图形中的点数,然后观察每个图形中的点数与图形次序的关系是解题的关键.20.20.(2017四川省凉山州,第26题,5分)古希腊数学家把1、3、6、10、15、21、…叫做三角形数,其中1是第一个三角形数,3是第二个三角形数,6是第三个三角形数,…,依此类推,第100个三角形数是______.【来源】2017年中考真题精品解析 数学(四川凉山州卷) 【答案】5050.【解析】解:设第n 个三角形数为a n ,∵a 1=1,a 2=3=1+2,a 3=6=1+2+3,a 4=10=1+2+3+4,…∴a n =1+2+…+n =()12n n +,将n =100代入a n ,得:a 100=()10010012+=5050,故答案为:5050.点睛:本题考查了规律型中的数字的变化类,解题的关键是找出变化规律“a n =1+2+…+n =()12n n +”.21.如图,Rt △OA 0A 1在平面直角坐标系内,∠OA 0A 1=90°,∠A 0OA 1=30°,以OA 1为直角边向外作Rt △OA 1A 2,使∠OA 1A 2=90°,∠A 1OA 2=30°,以OA 2为直角边向外作Rt △OA 2A 3,使∠OA 2A 3=90°,∠A 2OA 3=30°,按此方法进行下去,得到Rt △OA 3A 4,Rt △OA 4A 5,…,Rt △OA 2016A 2017,若点A 0(1,0),则点A 2017的横坐标为______. 【来源】山东省济南市槐荫区2018届九年级上学期期中考试数学试题【答案】2016⎝⎭.【解析】由已知可得OA 1=3,OA 2=23⎛ ⎝⎭ ,OA 3=33⎛⎫ ⎪ ⎪⎝⎭ ,……,由此可得OA 2017=20173⎛⎫ ⎪ ⎪⎝⎭,360°÷30°=12,2017÷12=168…3,由些可知OA 2017所在的射线与OA 1所在射线重合,所以点A 2017的横坐标为:OA 2017×cos30°=2017⎝⎭×=2016⎝⎭,故答案为: 20163⎛⎫⎪ ⎪⎝⎭.【点睛】本题主要考查规律性问题,解题的关键是能根据已知条件先求出一些相关的量,从中发现规律.22.如图,等边△A 1C 1C 2的周长为1,作C 1D 1⊥A 1C 2于D 1,在C 1C 2的延长线上取点C 3,使D 1C 3=D 1C 1,连接D 1C 3,以C 2C 3为边作等边△A 2C 2C 3;作C 2D 2⊥A 2C 3于D 2,在C 2C 3的延长线上取点C 4,使D 2C 4=D 2C 2,连接D 2C 4,以C 3C 4为边作等边△A 3C 3C 4;…且点A 1,A 2,A 3,…都在直线C 1C 2同侧,如此下去,则△A 1C 1C 2,△A 2C 2C 3,△A 3C 3C 4,…,△A n C n C n +1的周长和为______.(n ≥2,且n 为整数)【来源】2017年中考真题精品解析 数学(辽宁抚顺卷)【答案】1212n n --.【解析】解:∵等边△A 1C 1C 2的周长为1,作C 1D 1⊥A 1C 2于D 1,∴A 1D 1=D 1C 2,∴△A 2C 2C 3的周长=12△A 1C 1C 2的周长=12,∴△A 1C 1C 2,△A 2C 2C 3,△A 3C 3C 4,…,△A n C n C n +1的周长分别为1,12, 212,…, 112n -,∴△A 1C 1C 2,△A 2C 2C 3,△A 3C 3C 4,…,△A n C n C n +1的周长和为1+12+212+…+112n -=1212n n --.故答案为: 1212n n --.点睛:本题考查等边三角形的性质、解题的关键是理解题意,灵活运用所学知识,属于中考常考题型.23.杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a +b )5=______.【来源】2017年中考真题精品解析 数学(贵州黔南州卷) 【答案】1a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+1b 5. 【解析】解:观察图形,可知:(a +b )5=1a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+1b 5. 故答案为:1a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+1b 5.点睛:本题考查了完全平方公式以及规律型中数字的变化,观察图形,找出二项式系数与杨辉三角之间的关系是解题的关键.24.如图,把n 个长为1的正方形拼接成一排,求得71tan ,31tan ,1tan 321=∠=∠=∠C BA C BA C BA ,计算=∠C BA 4tan ,……,按此规律,写出=∠C BA n tan (用含n 的代数式表示).【来源】2017年初中毕业升学考试(浙江舟山卷)数学(带解析)【答案】113 , 211n n -+.【解析】试题分析:如图,过点C 作CE ⊥A 4B 于E ,易得∠A 4BC=∠BA 4A 1,故tan ∠A 4BC=tan ∠BA 4A 1=14,在Rt △BCE 中,由tan ∠A 4BC=14,得BE=4CE ,而BC=1,则,, 而A 4B=所以A 4E=A 4, 在Rt △A 4EC 中,tan ∠BA 4C=4113CE A E =;根据前面的规律,不能得出tan ∠ BA 1C=1101⨯+,tan ∠ BA 2C 1211⨯+, tan ∠ BA 3C=1321⨯+,tan ∠ BA 4C=1431⨯+,则可得规律tan ∠ BA n C=211(1)11n n n n =⨯-+-+.故答案为;考点:解直角三角形.25.如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B 在第二象限。
江苏省2017年数学中考专题讲练《规律探究问题》

2017年数学中考专题《规律探究问题》【题型概述】【题型特征】规律探究性问题的特点是问题的结论不是直接给出,而是通过对问题的观察、分析、归纳、概括、演算、判断等一系列的探究活动,才能得到问题的结论.这类问题,因其独特的规律性和探究性,对分析问题、解决问题的能力具有很高的要求.在近几年全国各地的中考试题中,不仅频频出现规律探究题,而且“花样百出”.常见的类型有:(1)数式规律型;(2)图形变化规律型;(3)坐标变化规律型;(4)数形结合规律型等.【解题策略】解决规律探究性问题常常利用特殊值(特殊点、特殊数量、特殊线段、特殊位里等)进行归纳、概括,从特殊到一般,从而得出规律(符合一定的经验与事实的数学结论).然后验证或应用这一规律解题即可.解答时对分析问题、解决问题能力具有很高的要求.(1)数式规律型:数式规律涉及数的变化规律和式的变化规律,式变化规律往往包含数的变化规律.数的变化规律问题是按一定的规律排列的数之间的相互关系或大小变化规律的问题,主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式为主要内容;式的变化规律通常给定一些代数式,等式或者不等式,猜想其中蕴含的规律,一般解法是先写出代数式的基本结构,然后通过横比(比较同一等式中的不同数量关系)或纵比(比较不同等式间相同位里的数量关系),找出各部分的特征,写出符合条件的格式.(2)图形变化规律型:图形变化型问题涉及图形排列规律和变化蕴含的规律.主要是观察图形变化过程中的特点,分析其联系和区别,用相应的算式由特殊到一般描述其中的规律.这需要有敏锐的观察能力和计算能力.(3)坐标变化规律型:此类题型主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本类问题的关键.(4)数形结合规律型:这类问题主要考查学生综合运用代数知识和几何知识的能力,解决这类问题要求学生不仅要有很好的“数感”,还要有很强的“图形”意识.【真题精讲】类型一 数式规律型典例 1 (2016 ·山东枣庄)一列数123,,,a a a …满足条件:1111,(2,21n n a a n a -==≥- 且n 为整数),则2016a = .【解析】:123411111,2,1,12121(1)212a a a a =====-==----… 可以发现:数列以1,2,12-循环出现,2 016÷3=672, 所以20161a =-.【全解】-11.(2016·湖北黄石)观察下列等式:第1个等式:11,a == 第2个等式:2a == 第3个等式: 32a ==-第4个等式:42a ==, 按上述规律,回答以下问题:(1)请写出第n 个等式: n a = ;(2)123n a a a a +++⋯+= .【考情小结】此类问题考查的知识点是单项式的知识.找代数式的变化规律,一般是由特殊到一般,得出一般规律.比如典例观察单项式的规律,把一个单项式分解成数字因数和字母因式的积,分别找出单项式的系数和次数的规律也是解决此类问题的关键. 类型二 图形变化规律型典例2 (2016·湖北咸宁)用m 根火柴恰好可拼成如图(1)所示的a 个等边三角形或如图(2)所示的b 个正六边形,则b a = .【解析】分别根据图(1),求出拼成a 个等边三角形用的火柴数量,即m 与a 之间的关系,再根据图(2)找到b 与m 之间的等量关系,最后利用m 相同得出合的值. 观察图形得:由图(1)可知:一个等边三角形有3条边,两个等边三角形有3+2条边,12m a ∴=+,由图2可知:一个正六边形有6条边,两个正六边形有6+5条边,15m b ∴=+,1215a b ∴+=+,25b a ∴=. 故答案为:25 【全解】252. (2015·贵州安顺)如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中的基础图形个数为 (用含n 的式子表示).3. (2015·山东威海)如图,正六边形111111A B C D E F 的边长为2,正六边形222222A B C D E F 的外接圆与正六边形111111A B C D E F 的各边相切,正六边形333333A B C D E F 的外接圆与正六边形222222A B C D E F 的各边相切,…按这样的规律进行下去,101010101010A B C D E F 的边长为( ).A. 92432 C. 9812 4.( 2016·湖北荆州)如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n 个图案中有2 017个白色纸片,则n 的值为( ).A. 671B. 672C. 673D. 674【考情小结】(1)图形循环类问题,只要找到所求值在第几个循环,便可找出答案,一般难度不大;(2)图形的变化规律计算问题,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.类型三 坐标变化规律型典例 3 (2016·山东威海)如图,点1A 的坐标为(1,0),2A 在y 轴的正半轴上,且1230A A O ∠=︒,过点2A 作2312A A A A ⊥,垂足为2A ,交x 轴于点3A ;过点3A 作3423A A A A ⊥,垂足为3A ,交y 轴于点4A ;过点4A 作4534A A A A ⊥,垂足为4A ,交x 轴于点5A ;过点5A 作5645A A A A ⊥,垂足为5A ,交y 轴于点6A ;…按此规律进行下去,则点2016A 的纵坐标为 .【解析】123412345(1,0),,,0,0,,,0A A A A A ⎡⎤⎡⎤⎡⎤⎡⎤--⎣⎦⎣⎦⎣⎦⎣⎦Q …, ∴序号除以4整除的话在y 轴的负半轴上,余数是1在x 轴的正半轴上,余数是2在y 轴的正半轴上,余数是3在x 轴的负半轴上,20164504÷=Q ,2016A ∴在y 轴的负半轴上,纵坐标为2015(3)-.故答案为2015(3)-.【全解】2015(3)-5. (2015·河南)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆123,,O O O ,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2 015秒时,点P 的坐标是( ).A. (2 014,0)B. (2 015,-1)C. (2 015,1)D. (2 016,0)6. ( 2015·山东潍坊)如图,已知正方形ABCD ,顶点(1,3),(1,1),(3,1)A B C .规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为( ).A.( -2 012,2)B.( -2 012,-2)C.( -2 013,-2 )D.( -2 013,2)【考情小结】此类题型主要考查点的坐标变化规律,解决此类问题的关键是从点的变化中发现横坐标、纵坐标的变化规律.类型四 数形结合规律型典例 4 (2016·广东茂名)如图,在平面直角坐标系中,将ABO ∆绕点B 顺时针旋转到11A BO ∆的位置,使点A 的对应点1A 落在直线3y x =上,再将11A BO ∆绕点1A 顺时针旋转到112AB O ∆的位置,使点1O 的对应点2O 落在直线3y x =上,依次进行下去…,若点A 的坐标是(0,1),点B 的坐标是3,则点8A 的横坐标是 .【解析】由题意点2A 的横坐标331)2, 点4A 的横坐标3(31),点6A 的横坐标931)2, 点8A 的横坐标6(31). 故答案为636.【全解】67. (2015·江苏徐州)如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去…,第n 个正方形的边长为 .8. (2015·广西南宁)如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动:第一次点A 向左移动3个单位长度到达点1A ,第二次从点1A 向右移动6个单位长度到达点2A ,第三次从点2A 向左移动9个单位长度到达点3A ,…,按照这种移动规律移动下去,第n 次移动到达点n A ,如果点n A 与原点的距离不小于20,那么n 的最小值是 .9.(2015·重庆)下列图形都是由几个黑色和白色的正方形按一定规律组成,图(1)中有2个黑色正方形,图(2)中有5个黑色正方形,图(3)中有8个黑色正方形,图(4)中有11个黑色正方形,…,按此规律,图(10)中黑色正方形的个数是( ).A. 32B. 29C. 28D. 2610. (2015·河南)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆123,,O O O ,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是( )A. (2 014,0)B.(2 015,-1)C. (2 015,1)D. (2 016,0)11. (2014·四川内江)如图,已知1231,,,,n n A A A A A +⋯是x 轴上的点,且112OAA A == 23A A =…11n n A A +==,分别过点1231,,,,n n A A A A A +⋯作x 轴的垂线交直线2y x =于点1231,,,,n n B B B B B +⋯,连接1212231,,,,,n n n n A B B A B A A B B A ++⋯,依次相交于点123,,,,n P P P P ⋯,111222,,n n n A B P A B P A B P ∆∆∆的面积依次记为123,,,,n S S S S ⋯,则n S 为( ).A.121n n ++B. 31n n -C. 221n n - D. 221n n + 【考情小结】此类题主要考查坐标的变化规律.解决此类问题的关健是利用数形结合的思想发现运动的规律.综合其用勾股定理等知识点解出相应的问题.参考答案=12. 31n +3. D4. B5. B6. A7. 1n -8. 139. B 10. B 11. D【跟踪练习】1. (2016·四川广安)我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了()(1,2,3,4n a b n +=…)的展开式的系数规律(按a 的次数由大到小的顺序):请依据上述规律,写出20162()x x -展开式中含2014x 项的系数是 .2. (2015·广东)观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 .3.(2015·湖北荆州)把所有正奇数从小到大排列,并按如下规律分组: (1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),……,现有等式(,)m A i j =表示正奇数m 是第i 组第j 个数(从左往右数),如7(2,3)A =,则2015A ( ).A.(31,50)B.(32,47)C. (33,46)D.(34,42)4. (2015·山东泰安)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( ).A. 135B. 170C. 209D. 2525. (2016·四川达州)如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是( ).A. 25B. 33C. 34D. 506.( 2016·浙江宁波)下列图案是用长度相同的火柴棒按一规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需 根火柴棒.7. (2016·山东聊城)如图,在平面直角坐标系中,边长为1的正方形111OA B C 的两边在坐标轴上,以它的对角线1OB 为边作正方形122OB B C ,再以正方形122OB B C 的对角线2OB 为边作正方形233OB B C ,以此类推…、则正方形201520162016OB B C 的顶点2016B 的坐标是 .8. (2016·广东梅州)如图,在平面直角坐标系中,将ABO V 绕点A 顺时针旋转到11ABC V 的位置,点B ,O 分别落在点1B ,1C 处,点1B 在x 轴上,再将11ABC V 绕点1B 顺时针旋转到12AB C V 的位置,点2C 在x 轴上,将12AB C V 绕点2C 顺时针旋转到222A B C V 的位置,点2A 在x 轴上,依次进行下去…,若点3(,0)2A ,(0,2)B ,则点2016B 的坐标为 .9.(2016·黑龙江)如图,等边三角形的顶点(1,1)A ,(3,1)B ,规定把等边ABC V 先沿x 轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2 016次变换后,等边ABC V 的顶点C 的坐标为 .10. (2015·湖南衡阳)如图,112A B A V ,223A B A V ,334A B A V ,…,1n n n A B A +V ,都是等腰直角三角形.其中点1A ,2A ,…,n A 在x 轴上,点1B ,2B ,…,n B 在在直线y x =上.已知11OA =,则2015OA 的长为 .11. (2016·安徽)(1)观察下列图形与等式的关系,并填空:((2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:135(21)n ++++-+…( )(21)531n +-++++=… .12.(2016·重庆)观察下列一组图形,其中图形(1)中共有2颗星,图形(2)中共有6颗星,图形(3)中共有11颗星,图形(4)中共有17颗星,…,按此规律,图形(8)中星星的颗数是( ).A.43B. 45C. 51D. 5313. (2016·重庆)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”,例如自然数12 321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到高位数依次排出的一串数字仍是: 1,2,3,2,1,因此12 321是一个“和谐数”,再如22,545,3 883,345 543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字为x (x ≤≤14,x 为自然数),十位上的数字为y ,求y 与x 的函数解析式.参考答案 1. 4032 2.10213. B4. C5. B6. 507. 1008(2,0)8. (6048,2)9.(1)- 10.2014211.(1) 24 2n (2)21n + 2221n n ++12. C13. (1)四位“和谐数”:1 221,1 331,1 111,6 666等任意一个四位“和谐数”都能被11整数,理由如下:设四位“和谐数”是abcd ,则满足:个位到最高位排列:,,,d c b a最高位到个位排列:,,,a b c d由题意,两组数据相同,则a d =,b c = 则1000100101111abcd a b c d +++= 10001001011a b b a +++= 1001110911011a b a b +==+为正整数. 所以四位“和谐数”abcd 能被11整数.又由于,,,a b c d 的任意性, 故任意四位“和谐数”都可以被11整除.11 (2)设能被11整除的三位“和谐数”为zyx ,则满足: 个位到最高位排列,,x y z最高位到个位排列,,z y x由题意,两组数据相同,则x z = 故10110zyx xyx x y ==+10110991122911111111zyx x y x y x y x y x y +++--===++为正整数. 故2y x =(x (x ≤≤14,x 为自然数).。
2017初中数学中考规律探究问题(全国通用)[优质ppt]
S4
S3 S2 S1 0 1 3 5 7 9 11 13
图6
S10=__7_6_______
7、一个巴尔末的中学教师成功地从光谱数据,95,1126,
25, 21
36, 32
---中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按照这
种规律,写出第n(n≥1)个数据是___________________.
规律探索试题是中考中的一棵常青树,一直
受到命题者的青睐,主要原因是这类试题没有固
定的形式和方法,要求学生通过观察、分析、比
(一)规律型问题
较、概括、推理、判断等探索活动来解决问题.
30.04.2020
1
1.数式规律
归纳与猜想
例1:(2009 湖北十堰)观察下面两行数: 2, 4, 8, 16, 32, 64, … ① 5, 7, 11, 19, 35, 67, … ② 根据你发现的规律,取每行数的第10个数,求得
1×3=12+2×1;
2×4=22+2×2;
3×5=32+2×3;……
请你将猜方想法到总的结:规律用正整数n n 1
表示出来横:向_熟__悉_代__数_式__、_算_.式的结构;
纵向观察、对比,研究各式之间的
关系,寻求变化规律;
30.04.2020
按要求写出算式或结果。
4
2.图形规律
归纳与猜想
,
b11 …(ab≠0), a4
其中第7个式子是
,
第n个式子是
(n为正整数).
30.04.2020
本题难点是,变化的部分太多,有三处发生变
化:分子、分母、分式的符号。学生很容易发现各
部分的变化规律,但是如何用一个统一的式子表示
中考备战策略 2017中考数学(人教)复习:第二部分 专题突破 专题二 规律探索型问题
【解析】第 1 个圆和第 2 个圆之间的阴影部分的 面积为 (2 - 1 )π= 3π;第 3 个圆和第 4 个圆之间的阴 影部分的面积为 (4 - 3 )π= 7π;第 5 个圆和第 6 个圆 之间的阴影部分的面积为 (6 - 5 )π= 11π; …;第 19 个圆和第 20 个圆之间的阴影部分的面积为(20 - 19 )π = 39π.∴ 阴影部分的面积为 3π+ 7π+ 11π+ 15π+ 19π + 23π+ 27π+ 31π+ 35π+ 39π= 210π.故选 B. 【答案】 B
3 3 即正六边形 A3B3C3D3E3F3 的边长为 = 3- 2 , …, 2 2 正六边形 AnBnCnDnEnFn 3) ( 的边长为 2
n- 1
( )
3- 1
n- 2
,∴当 n=
10- 1
10 时,正六边形 A10B10C10D10E10F10 3) × ( =
8
3) ( 的边长为 2
10- 2
2 2 2 2 2 2 2 2
二、填空题 (每小题 5 分,共 20 分 ) 9.(2016· 南宁 )观察下列等式: 【导学号 90280410】 第 1层 第 2层 第 3层 第 4层 1+ 2= 3 4+ 5+ 6= 7+ 8
9+ 10+ 11+ 12= 13+ 14+ 15
16+ 17+ 18+ 19+ 20= 21+ 22+ 23+ 24
2.如图,正方形 ABCD 的边长 为 2, 其面积标记为 S1, 以 CD 为斜 边作等腰直角三角形,以该等腰直 角三角形的一条直角边为边向外作 正方形,其面积标记为 S2, ……按 照此规律继续下去,则 S2 017 的值为( 2 A. 2 2 014 2 B. 2 2 015 )
中考数学专题12探索性问题(第03期)-2017年中考数学试题分项版解析汇编(原卷版)
一、选择题目1.(2017四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则1a1+1a2+1a3+⋯+1a19的值为()A.2021B.6184C.589840D.4217602.(2017四川省达州市)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为()A.2017πB.2034πC.3024πD.3026π3.(2017江苏省连云港市)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4B.C.2D.04.(2017重庆市B 卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )A .116B .144C .145D .150 二、填空题目 5.(2017山东省济宁市)请写出一个过点(1,1),且与x 轴无交点的函数解析式: .6.(2017山东省济宁市)如图,正六边形A 1B 1C 1D 1E 1F 1的边长为1,它的六条对角线又围成一个正六边形A 2B 2C 2D 2E 2F 2,如此继续下去,则正六边形A 4B 4C 4D 4E 4F 4的面积是 .三、解答题7.(2017四川省南充市)如图,在正方形ABCD 中,点E 、G 分别是边AD 、BC 的中点,AF =14AB .(1)求证:EF ⊥AG ;(2)若点F 、G 分别在射线AB 、BC 上同时向右、向上运动,点G 运动速度是点F 运动速度的2倍,EF ⊥AG 是否成立(只写结果,不需说明理由)?(3)正方形ABCD 的边长为4,P 是正方形ABCD 内一点,当PAB OABS S ∆∆=,求△P AB 周长的最小值.8.(2017四川省达州市)如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.9.(2017四川省达州市)探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:()()22 122121 PP x x y y =-+-他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:122x xx+=,122y yy+=.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:;拓展:(3)如图3,点P(2,n)在函数43y x=(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.10.(2017山东省枣庄市)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=BF=2,求阴影部分的面积(结果保留π).11.(2017山东省枣庄市)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F 在线段CB的延长线上,连接EA,EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC 的度数.12.(2017山西省)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C 的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.13.(2017江苏省盐城市)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.14.(2017江苏省盐城市)如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.15.(2017江苏省盐城市)(探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE ,AB =32,BC =40,AE =20,CD =16,小明从中剪出了一个面积最大的矩形(∠B 为所剪出矩形的内角),求该矩形的面积. 【实际应用】如图④,现有一块四边形的木板余料ABCD ,经测量AB =50cm ,BC =108cm ,CD =60cm ,且tan B =tan C =43,木匠徐师傅从这块余料中裁出了顶点M 、N 在边BC 上且面积最大的矩形PQMN ,求该矩形的面积.16.(2017江苏省连云港市)如图,已知等腰三角形ABC 中,AB =AC ,点D 、E 分别在边AB .AC 上,且AD =AE ,连接BE 、CD ,交于点F .(1)判断∠ABE 与∠ACD 的数量关系,并说明理由; (2)求证:过点A 、F 的直线垂直平分线段BC .17.(2017江苏省连云港市)问题呈现:如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE =DG ,求证:2ABCDEFGHS S 矩形四边形.(S 表示面积)实验探究:某数学实验小组发现:若图1中AH ≠BF ,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点A 1、B 1、C 1、D 1,得到矩形A 1B 1C 1D 1.如图2,当AH >BF 时,若将点G 向点C 靠近(DG >AE ),经过探索,发现:2S四边形EFGH =S矩形ABCD +S.如图3,当AH >BF 时,若将点G 向点D 靠近(DG <AE ),请探索S四边形EFGH 、S矩形ABCD与S之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH >BF ,AE >DG ,S四边形EFGH=11,HF,求EG 的长.(2)如图5,在矩形ABCD中,AB=3,AD=5,点E、H分别在边AB、AD上,BE=1,DH=2,点F、G分别是边BC、CD上的动点,且FG=10,连接EF、HG,请直接写出四边形EFGH面积的最大值.18.(2017湖北省襄阳市)如图,在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中:①探究三条线段AB,CE,CF之间的数量关系,并说明理由;②若CE=4,CF=2,求DN的长.祝你考试成功!祝你考试成功!。
2017年中考数学专题复习规律探究问题
规律探究问题【专题点拨】规律探究问题是指给出一定条件(可以是有规律的算式、图形或图表),让学生认真分析,仔细观察,综合归纳,大胆猜想,得出结论,进而加以验证的数学探究题. 类型有“数字规律”“数式规律”“图形规律”等题型.【解题策略】针对此类专题我们在解题过程中要从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论。
当然面对具体问题还需要具体分析,找到切入点进行解答。
【典例解析】类型一:数字规律探究例题1:(2016·辽宁丹东·3分)观察下列数据:﹣2,,﹣,,﹣,…,它们是按一定规律排列的,依照此规律,第11个数据是.【解析】规律型:数字的变化类.根据题意可得:所有数据分母为连续正整数,第奇数个是负数,且分子是连续正整数的平方加1,进而得出答案.【解答】解:∵﹣2=﹣,,﹣,,﹣,…,∴第11个数据是:﹣=﹣.故答案为:﹣.变式训练1:(2016广西南宁3分)观察下列等式:在上述数字宝塔中,从上往下数,2016在第层.类型二:代数式排列探究例题2:(2016·山东省滨州市·4分)观察下列式子:1×3+1=22;7×9+1=82; 25×27+1=262; 79×81+1=802; …可猜想第2016个式子为 .【解析】观察等式两边的数的特点,用n 表示其规律,代入n=2016即可求解. 【解答】解:观察发现,第n 个等式可以表示为:(3n﹣2)×3n+1=(3n﹣1)2, 当n=2016时, (32016﹣2)×32016+1=(32016﹣1)2, 故答案为:(32016﹣2)×32016+1=(32016﹣1)2.【点评】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.变式训练2:(2016·山东省东营市·4分)在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S =1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S =3+32+33+34+35+36+37+38+39②,②一①得:3S ―S =39-1,即2S =39-1, ∴S =39―12.得出答案后,爱动脑筋的张红想:如果把“3”换成字母m (m ≠0且m ≠1),能否求出1+m +m 2+m 3+m 4+…+m 2016的值?如能求出,其正确答案是___________.类型三:图形规律探究例题3:(2016·湖北荆州·3分)如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n 个图案中有2017个白色纸片,则n 的值为( )A.671 B.672 C.673 D.674【解析】将已知三个图案中白色纸片数拆分,得出规律:每增加一个黑色纸片时,相应增加3个白色纸片;据此可得第n个图案中白色纸片数,从而可得关于n的方程,解方程可得.【解答】解:∵第1个图案中白色纸片有4=1+1×3张;第2个图案中白色纸片有7=1+2×3张;第3个图案中白色纸片有10=1+3×3张;…∴第n个图案中白色纸片有1+n×3=3n+1(张),根据题意得:3n+1=2017,解得:n=672,故选:B.【点评】本题考查了图形的变化问题,观察出后一个图形比前一个图形的白色纸片的块数多3块,从而总结出第n个图形的白色纸片的块数是解题的关键.变式训练3:(2016·重庆市A卷·4分)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.64 B.77 C.80 D.85类型四:坐标规律探究例题4:(2016·四川内江)一组正方形按如图3所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3……在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O =60°,B1C1∥B2C2∥B3C3……则正方形A2016B2016C2016D2016的边长是( )A .(12)2015B .(12)2016C .)2016 D .)2015[答案] D[考点]三角形的相似,推理、猜想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b8 a3
,
b11 …(ab≠0), a4
其中第7个式子是
,
第n个式子是
(n为正整数).
2020/3/3
本题难点是,变化的部分太多,有三处发生变
化:分子、分母、分式的符号。学生很容易发现各
部分的变化规律,但是如何用一个统一的式子表示
出分式的符号的变化规律是难点.
3
1.数式规律
归纳与猜想
例3:(09年陕西)观察下列各式:
a
a
10、填在下面三个田字格内的数有相同的规律,根据此规律,
C = 1_08__.
13 5 20
35 7 56
5A BC
11、古希腊数学家把1,3,6,10,15,21,……,叫做三角 形数,根据它的规律,则第100个三角形数与第98个三角形数的 差为 199 .
2020/3/3
17
12、观察下列各式:
7
2.图形规律
归纳与猜想
例5(2009海南省)用同样大小的黑色棋子按图所示
的方式摆图形,按照这样的规律摆下去,则第n个图 形需棋子 3n+1 枚(用含n的代数式表示).
…
第1个图
第2个图
第3个图
方法二:每个图形,可看成是序列数与3的倍数
又多1枚棋子
2020/3/3
8
2.图形规律
归纳与猜想
例5(2009海南省)用同样大小的黑色棋子按图所示
的方式摆图形,按照这样的规律摆下去,则第n个图
形需棋子
枚(用含n的代数式表示).
…
第1个图
方法三:
2020/3/3
第2个图
第3个图
方法总结:
2n+(n+1)=3n+认提1 真取数观式察信息研究仿图照案数(式形规)
律得到结论
9
复练1:
[05]
观察右面的图形(每个正方形的边长均为 1)和相应的等式,探究其中的规律:
(x 1)( x3 x2 x 1) x4 1
……
则 (x 1)( x10 x9 x 1) ____x_1_1___1______
2020/3/3
14
5、观察下列各式 152 1(11)100 52 225 252 2 (2 1)100 52 625 352 3(3 1)100 52 1225 依此规律,第n个等式(n为正整数)为
解(:n 2)2 或 (n 2)2 n(n 4) (n 2)2 4
2020/3/3
16
9、已知:2 2 22 2 ,3 3 32 3 ,4 4 42 4 ,5 5 52 5 ,
3
38
8 15
15 24
24
若10 b 102 b ,符合前面式子的规律,则a b _1_0_9_______。
(10n 5)2 n(n 1)100 52
2020/3/3
15
6、如图6,∠AOB=450,过OA到点O的距离分别为 1,3,5,7,9,11,----的点作OA的垂线与OB相 交,得到并标出一组黑色梯形,它们的面积分别为 S1、S2、S3、S4---
观察图中的规律,求出第10个黑色梯形的面积
① 1 1 1 1
22
② 2 2 2 2 33
③ 3 3 3 3
44
④ 4 4 4 4
55
……
……
(1)写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示;
(2)猜想并写出与第 n 个图形相对应的等式.
2020/3/3
10
复练2:
[06] 观察下面的点阵图形和与之相对应的等式,探究其中的规律: (1)请你在④和⑤后面的横线上分别写出相对应的等式:
5.加强对学生自信心的培养.
2020/3/3
21
2020/3/3
22
它们的和是(写出最后的结果) 2051 .
分析:第一行的第10个数是 210 1024 ,第二行
的每个数总比第一行同一位置上的数大3,所以第
二行的第10个数是1024+3=1027.
2020/3/3
2
1.数式规律
归纳与猜想
例2:(2009北京)一组按规律排列的式子:
b2 , a
b5 a2
,
2020/3/3
13
3、将正数按如图所示的规律排律下去。 若用有序实数对(n , m)表示第n排,从 左到右第m个数,如(4,3)表示实数9, 则(7,2)表示的实数_____2_3____
4、试观察下列各式的规律,然后填空:
(x 1)( x 1) x2 1 (x 1)( x2 x 1) x3 1
1×3=12+2×1;
2×4=22+2×2;
3×5=32+2×3;……
请你将猜方想法到总的结:规律用正整数n n 1
表示出来横:向_熟__悉_代__数_式__、_算_.式的结构;
纵向观察、对比,研究各式之间的
关系,寻求变化规律;
2020/3/3
按要求写出算式或结果。
4
2.图形规律
归纳与猜想
例4:(2008黑龙江哈尔滨)观察下列图形:
①
4×0+1=4×1-3;
②
4×1+1=4×2-3;
③
4×2+1=4×3-3;
④
___________________;
2020/3/3
⑤
___________________;
……
……
(2)通过猜想,写出与第 n 个图形相对应的等式.
返表一
11
探究规律题的一般步骤为: (1)观察(发现特点) (2)猜想(可能的规律) (3)实验(用具体数值代入猜想)
S4
S3 S2 S1 0 1 3 5 7 9 11 13
图6
S10=__7_6_______
9 7、一个巴尔末的中学教师成功地从光谱数据,5
,
16 12
,
25 21
,
36 32
,
---中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按照这
种规律,写出第n(n≥1)个数据是___________________.
2020/3/3
19
16、柜台上放着一堆罐头,它们摆放在的形状见 右图:
第一层有2×3听罐头;
第二层有3×4听罐头;
第三层有4×5听罐头。
根据这堆罐头排列规律,第n(n为正整数)层有 __n2+_3_n+_2 ____听罐头(用含n的式子表示)
2020/3/3
20
1.认真学习新课标,用课改理念来统领我们的教学. 2.转变学习方式,注重过程教学 . 3.以数学知识为载体,加强数学思想方法的教学. 4.加强对学生直觉思维能力和发散思维能力的培养.
规律探索试题是中考中的一棵常青树,一直 受到命题者的青睐,主要原因是这类试题没有固 定的形式和方法,要求学生通过观察、分析、比 较、概括、推理、判断等探索活动来解决问题.
2020/3/3
1
1.数式规律
归纳与猜想
例1:(2009 湖北十堰)观察下面两行数: 2, 4, 8, 16, 32, 64, … ① 5, 7, 11, 19, 35, 67, … ② 根据你发现的规律,取每行数的第10个数,求得
2020/3/3
12
二、填空题
1、有一组数:1,2,5,10,17,26,……,请观察这组数的构
成规律,用你发现的规律确定第8个数为 50
.
2、把正整数1,2,3,4,5,……,按如下规律排列: 1
2,3, 4,5,6,7, 8,9,10,11,12,13,14,15,
………… 按此规律,可知第n行有 2n-1 个正整数.
1 1 2 1 , 2 1 3 1 , 3 1 4 1 ,....
33
44
55
请你将发现的规律用含自然数n(n≥1)的等式表示出
来
. n 1 (n 1) 1
n2
n2
2020/3/3
18
15、按如下规律摆放三角形:
则第(4)堆三角形的个数为___1__4________; 第(n)堆三角形的个数为__3__n_+_2_______
2020/3/3
6
2.图形规律
归纳与猜想
例5(2009海南省)用同样大小的黑色棋子按图所示
的方式摆图形,按照这样的规律摆下去,则第n个图
形需棋子
枚(用含n的代数式表示).
…
第1个图
第2个图
第3个图
方法一:除第一个图形有4枚棋子外,每多一个图形,
多3枚棋子. 4+3(n-1)=3 n+1
2020/3/3
它们是按一定规律排列的,依照此规律,第20
个图形共有 3n 个★.
三角形每条边上的
方法一: 3(n+1)-3=3n
星数相同,再减去
2020/3/3
三个顶点的数
5
2.图形规律
归纳与猜想
例4:(2008黑龙江哈尔滨)观察下列图形:
3
6
9
12它们是Leabharlann 一定规律排列的,依照此规律,第20
个图形共有 3n 个★.