分式方程复习课件(公开课)
合集下载
分式方程复习课课件

符合题意.故
答:该品牌饮料一箱有10瓶?
(2013·山西)解分式方程x-2 1+1x-+x2=3 时,去分母后变 形为( D )
A.2+(x+2)=3(x-1) B.2-x+2=3(x-1) C.2-(x+2)=3(1-x) D.2-(x+2)=3(x-1) (2013·苏州)方程x-1 1=2x5+1的解:x=2
瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有 多少瓶?
16、解:设该品牌饮料一箱有x瓶,依题意,得
26 26 0.6 x x3
解得 x1 13 (不合,舍去), x2 10
经检验: x1 13 , x2 10都是原方程的解,但
是 x1 13
X=10
不 符合题意,
x2 10
第4讲 分式方程
考点梳理
一:考试要求
1.能够根据具体问题中的数量关系列出分式方程 2.会解分式方程 3.能根据具体问题
三:知识梳理P33
1.分式方程的概念 2.解可化为一元一次方程的分式方程的一般方法和 步骤
3.若分式方程有增根,则分式的最简公分母的值为零 4.列分式方程的一般步骤
x
1. (广东2010年)分式方程
2x 1 x 1
的解X= 1
.
2.
(广东2009年)解方程
2 x2 1
1 x 1
解:方程两边同乘(x+1) (x-1) ,得 2=- (x+1).
解得x=-3. 检验:当x=-3时, (x+1) (x-1) ≠0. ∴x=-3是原分式方程的解.
3. (广东2011年)某品牌瓶装饮料每箱价格26元.某商店对该瓶 装饮料进行“买一送三”促销活动,若整箱购买,则买一箱送三
分式方程及其解法公开课PPT课件

1、当分式方程含有若干个分式时,通常 可用各个分式的最简公分母同乘方程两边 进行去分母。 2、解方程时一定要验根。
2021/7/24
12
【分式方程的解】
上面两个分式方程中,为什么
120 20+x
=
80 20-x
x1-去5 分= 母x1后20-2得5 到去的分整母式后方得程到的的解整就式是方它程的的解解,却而不
18
【例题】
解分式方程
x x-1
-1 =
3 (x-1)(x+2)
解 :方程两边同乘以最简公分母(x-1) (x+2),得
X(x+2)-(x-1)(x+2)=3
解整式方程,得 x = 1
检验:当x = 1 时,(x-1) (x+2)=0,x=1不
是原分式方程的解,原分式方程无解.
解分式方程
(1)
2 x-1
如何去掉分母,化 为整式方程还保持
等式成立?
16
解方程 100 30 x x7
解 方程两边同乘以x(x-7),约去分母,得 100(x-7)=30x
解这个整式方程, 得 X=10
检验:把x=10代入x(x-7), 得
10×(10-7)≠0
所以, 2021/7/24 x=10是原方程的解.
17
(2) xx22x2164xx22
x+5=10
分式两边同乘了等于0的式子,所得整式方程的解使
分母为0,这个整式方程的解就不是原分式方程的解
2021/7/24
13
【分式方程解的检验】
= 120
20+x
2800-x当两x边=4同时乘,((2200++xx))((2200--xx))≠1020(20-x)=80(20+x)
2021/7/24
12
【分式方程的解】
上面两个分式方程中,为什么
120 20+x
=
80 20-x
x1-去5 分= 母x1后20-2得5 到去的分整母式后方得程到的的解整就式是方它程的的解解,却而不
18
【例题】
解分式方程
x x-1
-1 =
3 (x-1)(x+2)
解 :方程两边同乘以最简公分母(x-1) (x+2),得
X(x+2)-(x-1)(x+2)=3
解整式方程,得 x = 1
检验:当x = 1 时,(x-1) (x+2)=0,x=1不
是原分式方程的解,原分式方程无解.
解分式方程
(1)
2 x-1
如何去掉分母,化 为整式方程还保持
等式成立?
16
解方程 100 30 x x7
解 方程两边同乘以x(x-7),约去分母,得 100(x-7)=30x
解这个整式方程, 得 X=10
检验:把x=10代入x(x-7), 得
10×(10-7)≠0
所以, 2021/7/24 x=10是原方程的解.
17
(2) xx22x2164xx22
x+5=10
分式两边同乘了等于0的式子,所得整式方程的解使
分母为0,这个整式方程的解就不是原分式方程的解
2021/7/24
13
【分式方程解的检验】
= 120
20+x
2800-x当两x边=4同时乘,((2200++xx))((2200--xx))≠1020(20-x)=80(20+x)
分式方程复习课件

1 2
A,B两地间的距离为15千米,甲从A地出发步行前往B地,20分钟后,乙 从B地出发骑车前往A地,且乙骑车比甲步行每小时多走10千米.乙到 达A地后停留40分钟,然后骑车按原路原速返回,结果甲乙二人同时到 达B地.请你就”甲从A地到B地步行所用的时间”或”甲步行的速度” 提出一个用分式方程解决的问题,并写出解题过程.
x=-2是增根,应舍去,原方程无解
• 4、某文化用品商店用2000元购进一批学生 书包,上市后发现供不应求,商店又购进 第二批同样的书包,购进的数量是第一批 购进数量的3倍,但每个贵了4元,结果第 二批用了6300元,问:第一批购进了多少 个书包?
5.在某一城市美化工程招标时,有甲.乙两个 工程队投标.经测算:甲队单独完成这项 工程需要60天;若由甲队先做20天,剩下的工 程由甲乙合作24天可以完成. (1)乙队单独完成这项工程需要多少天? (2)甲队施工一天,需付工程款3.5万元,乙队施 工一天需付工程款2万元.若该工程计划在70 天内完成,在不超过计划天数的前提下,是由 甲队或乙队单独完成该工程省钱?还是由甲 乙两队全程合作完成该工程省钱?
跟踪练习
x 1 1 1.把分式方程 化成整式方程,正确的是( c x 3 2 3 x
)
A.2 x x 3 1 C .2 x x 3 2
2.解方程:
1 B.x 1 2 D.2 x x 3 2
x=4
1 1 x 2 x 3 3 x
x 1 3.解方程: 2 x 4 2( x 2)
5
5
9
9
考点3.分式方程的增根问题. 3、若方程
A 0或2 B0
4 x 0 2 x 2x x 2
有增根,则增根为( c )
分式 复习课件 (共34张PPT)

第九章分式
式分
{
概念
{
A 的形式 B
B中含有字母B≠0
{
分式有意义
分式的值为0
分式的加减
{
同分母相加减 异分母相加减 约分
通分
同分母相加减
分式的乘除 解分式方程 分式方程应用 去分母
最简分式 验根
解整式方程
1.分式的定义:
A 形如 ,其中 A ,B 都是整式, B 且 B 中含有字母.
2.分式有意义的条件:
4
(1) 0.000030
3.0 10
5
6x y 例(1) 2 12 xy 2 6x y 解:原式 2 12 xy
2
7、约分 :
m 4m 4 例(2) 2 m 4 x 2 m 2 2 y 解:原式= ( m 2)(m 2)
2
m2 m2
把分子、分母的最大公因式(数)约去。 1.约分:
2.通分: 把分母不相同的几个分式化成分母相
同的分式。
关键是找最简公分母:各分 母所有因式的最高次幂的积 .
1.约分
(1)
-6x2y 27xy2
(2)
-2(a-b)2
-8(b-a)3
关键找出分子和 分母的公因式
(3)
m2+4m+4 m2 - 4
2.通分
3 1 ( 1 ) 3 2x 2 1 x 解:两边同乘 2( x 1) 3 1 2( x 1) 2( x 1) 3 2( x 1) 2( x 1) x 1 3 2 6x 3 6 一化(整式) 6 x 7 7 二解 x 6 7
经检验: x
5、整数指数幂:
a 1
0
式分
{
概念
{
A 的形式 B
B中含有字母B≠0
{
分式有意义
分式的值为0
分式的加减
{
同分母相加减 异分母相加减 约分
通分
同分母相加减
分式的乘除 解分式方程 分式方程应用 去分母
最简分式 验根
解整式方程
1.分式的定义:
A 形如 ,其中 A ,B 都是整式, B 且 B 中含有字母.
2.分式有意义的条件:
4
(1) 0.000030
3.0 10
5
6x y 例(1) 2 12 xy 2 6x y 解:原式 2 12 xy
2
7、约分 :
m 4m 4 例(2) 2 m 4 x 2 m 2 2 y 解:原式= ( m 2)(m 2)
2
m2 m2
把分子、分母的最大公因式(数)约去。 1.约分:
2.通分: 把分母不相同的几个分式化成分母相
同的分式。
关键是找最简公分母:各分 母所有因式的最高次幂的积 .
1.约分
(1)
-6x2y 27xy2
(2)
-2(a-b)2
-8(b-a)3
关键找出分子和 分母的公因式
(3)
m2+4m+4 m2 - 4
2.通分
3 1 ( 1 ) 3 2x 2 1 x 解:两边同乘 2( x 1) 3 1 2( x 1) 2( x 1) 3 2( x 1) 2( x 1) x 1 3 2 6x 3 6 一化(整式) 6 x 7 7 二解 x 6 7
经检验: x
5、整数指数幂:
a 1
0
分式复习优质课市公开课一等奖省优质课获奖课件

1 x2 2x 1
3
x 2x2
2 1
2 x2 1 4x 4
x2
4 (π
x)2
第4页
2.分式基本性质:
分式分子和分母都乘以(或除以)同一个不等 于0整式,分式值不变.
A AM A AM
,
(其中M是不等于0整式)
B BM B BM
第5页
1.以下式子
(1) a x a (1 2)
b x b1
n ;na ,a 0
b ; a 1
ab
(3) x y x; y(4)
xy xy
ba ab ca ac
中正确是
()
A 、1个 B 、2 个 C、 3 个 D、 4 个
第9页
4b、值若分将别分扩式大为a原ab来b (2a倍、,b均则为分正式数值)为中(字)母a、
A.扩大为原来2倍 B.缩小为原来 1
C.不变
D.缩小为原来 2
x2 y2
B、 x y2
y2 x2 C、 x y
x2 y2 D、 x 2 y xy 2
第13页
1.计算:
第14页
第15页
5. a2 b2 (1 a2 b2 )
a2b ab2
2ab
6. x 3 (x 2 5 )
x2
x2
第16页
3.化简并求值:
x2
x2
2x
x2
x 1 4x 4
x y z
4.分式
,
,
5b2c 10a 2b 2ac
最简公分母是
;
3
y
x 2 y y 3 , xy x 2
最简公分母是
.
第11页
4.什么是最简分式? 一个分式分子和分母没有公因式时叫做最
分式方程的复习课件

THANKS
[ 感谢观看 ]
步骤
1. 整理方程;2. 确定分母;3. 使用公式求解
换元法
简化复杂分式方程的有效手段
输入 标题
详细描述
换元法是通过引入新的变量来替换原方程中的复杂部 分,从而将复杂方程转化为简单方程。这种方法在解 复杂分式方程时非常有效。
总结词
适用范围
1. 确定需要替换的部分;2. 引入新变量;3. 替换并整 理方程;4. 解出新变量的值;5. 还原为原变量得到解
$x = frac{5}{4}$。
综合练习题
题目
解方程 $frac{x + 1}{2} - frac{4x - 3}{5} = frac{2x + 1}{3} + frac{1}{15}$
解析
首先将方程两边都乘以15(最小公倍数)来消去分母,得到 $15(x + 1) - (4x - 3) = (2x + 1) times 3 + 1$,然后去括号、移项、合并同类项,最后解得 $x = frac{49}{17}$。
对于有实际意义的分式方程,解必须符合实际情况,例如在 物理问题中,解需要符合物理定律和常识。
解的取值范围
确定解的取值范围
在解分式方程时,需要考虑解的取值范围,以确保解是有效的。
验证解的连续性和可导性
对于一些需要求导数或者需要验证连续性的问题,需要确保解在指定区间内是连续和可导的。
避免常见错误
避免解的扩大化
。
步骤
复杂或难以直接解出的分式方程
消去法
总结词
通过消除分式方程中的分母来 求解
详细描述
消去法是通过对方程两边同时 乘以公共分母,消除分母,将 分式方程转化为整式方程,然 后求解。
《中考复习分式方程》PPT课件

11、(09广东省)解方程:
2 x2 1
x
1 1
x=-3
11. (09上海市)用换元法解分式方程
x1 3x 10时,如果设 x 1 y ,
x x1
x
将原方程化为关于y的整式方程,那 么这个整式方程是(A )
A. y2+y-3=0 B. y2-3y+1=0 C. 3y2-y+1=0 D. 3y2-y-1=0
原分式方程无解。 精选PPT
7
增根的定义
增根:在去分母,将分式方程转化为整式方 程的过程中出现的不适合于原方程的根.
········· 使分母值为零的根
产生的原因:分式方程两边同乘以一个
零不是因分式式后方,所程得的的根根.是整·式·方·程·的根,而
····
精选PPT
8
解分式方程的思路是:
分式 方程
6.(2008枣庄)某一工程,在工程招标时, 接到甲、乙两个工程队的投标书.施工一天, 需付甲工程队工程款1.2万元,乙工程队工程 款0.5万元.工程领导小组根据甲、乙两队的 投标书测算,有如下方案: (1)甲队单独完成这项工程刚好如期完成; (2)乙队单独完成这项工程要比规定日期多用 6天; (3)若甲、乙两队合做3天,余下的工程由乙 队单独做也正好如期完成. 试问:在不耽误工期的前提下,你觉得哪一 种施工方案最节省工程款?请说明理由.
解分式方程容易犯的错误有:
(1)去分母时,原方程的整式部分漏乘.
(2)约去分母后,分子是多项式时, 要 注意添括号. (3)增根不舍掉。
精选PPT
10
1、(09成都)分式方程
2 3x
1 x 1
的
解是_____x_=__2_
2024版年度分式方程的应用公开课精品课件

分式方程和不等式是数学建模中 的重要工具,可以帮助我们理解 和描述现实世界中的复杂关系。
2024/2/2
22
分式方程与函数综合应用
2024/2/2
函数关系描述 分式方程可以用来描述函数关系,通过解析式表示出自变 量和因变量之间的关系。这种关系可以用于预测、控制和 分析实际问题。
函数图像分析 分式方程的函数图像具有独特的特点,如渐近线、拐点等。 通过分析这些特点,我们可以更深入地理解函数的性质和 变化规律。
课程目的
通过本次公开课,使学生了解分式方程 的基本概念、性质和解法,掌握分式方 程在实际问题中的应用,培养学生的逻 辑思维能力和数学素养。
2024/2/2
4
分式方程简介
01
02
03
分式方程的定义
分式方程是含有分式(即 分母中含有未知数的式子) 的方程。
2024/2/2
分式方程的特点
分式方程具有形式复杂、 解法多样等特点,需要灵 活运用各种数学知识和技 巧进行求解。
分式方程的应用
分式方程在实际生活中有 着广泛的应用,如工程问 题、经济问题、物理问题 等。
5
课程内容与安排
课程内容
本次公开课将涵盖分式方程的基本概念、性质、解法以及应用等方面。具体包 括分式方程的定义、性质、解法介绍,以及通过实例讲解分式方程在实际问题 中的应用。
课程安排
本次公开课将分为多个环节,包括理论讲解、例题演示、学生互动、课堂练习 等。通过丰富多样的教学形式,使学生更好地理解和掌握分式方程的应用。
1)$,进一步化简求解得到 $x=1$,但需要注意 $x=1$ 是原方程的增根,因此原方
程无解。
求解分式方程 $frac{2}{x+1} - frac+1)(x-2)$,然后将方程两 边乘以最简公分母,得到整 式方程 $2(x-2) - x(x+1) = (x+1)(x-2)$,进一步化简求
2024/2/2
22
分式方程与函数综合应用
2024/2/2
函数关系描述 分式方程可以用来描述函数关系,通过解析式表示出自变 量和因变量之间的关系。这种关系可以用于预测、控制和 分析实际问题。
函数图像分析 分式方程的函数图像具有独特的特点,如渐近线、拐点等。 通过分析这些特点,我们可以更深入地理解函数的性质和 变化规律。
课程目的
通过本次公开课,使学生了解分式方程 的基本概念、性质和解法,掌握分式方 程在实际问题中的应用,培养学生的逻 辑思维能力和数学素养。
2024/2/2
4
分式方程简介
01
02
03
分式方程的定义
分式方程是含有分式(即 分母中含有未知数的式子) 的方程。
2024/2/2
分式方程的特点
分式方程具有形式复杂、 解法多样等特点,需要灵 活运用各种数学知识和技 巧进行求解。
分式方程的应用
分式方程在实际生活中有 着广泛的应用,如工程问 题、经济问题、物理问题 等。
5
课程内容与安排
课程内容
本次公开课将涵盖分式方程的基本概念、性质、解法以及应用等方面。具体包 括分式方程的定义、性质、解法介绍,以及通过实例讲解分式方程在实际问题 中的应用。
课程安排
本次公开课将分为多个环节,包括理论讲解、例题演示、学生互动、课堂练习 等。通过丰富多样的教学形式,使学生更好地理解和掌握分式方程的应用。
1)$,进一步化简求解得到 $x=1$,但需要注意 $x=1$ 是原方程的增根,因此原方
程无解。
求解分式方程 $frac{2}{x+1} - frac+1)(x-2)$,然后将方程两 边乘以最简公分母,得到整 式方程 $2(x-2) - x(x+1) = (x+1)(x-2)$,进一步化简求
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1若关于X方程
3 2x
4
x
a
2
1
无解,
则a应是__a_=_1_._5_.4Biblioteka 若分练式习方4 程若分KX
1 1
2
的解
为负数,则K的取值范围是
___K_<__3_且_K__≠_1__ 5. 若分式方程 1 1 X a 的解为
X 3 3 X
非负数,则a的取值范围
是 a ≥-2且a ≠4 .
❖
2、
2x x 1
2
1 1 x2
❖ 说说你的收获:
中考链接
3、(2010•张掖)分式方程 2 1
的解是 X=1 .
x 1 x
4、 (2017岳阳)解分式方程 2 2x 1 , x 1 1 x
可知方程的解为( D )
A. x=1 B. x=3 C. x=-1 D. 无解
考点二.
学习内容:
一、分式方程的概念
二、解分式方程
三、分式方程解的情况及应 用
复习回顾一:
一、什么是分式方程?
分母中含有未知数的方程。
复习回顾二:
二、解分式方程
(1)基本思路(转化思想) 分式方程 去分母 整式方程
复习回顾二:
(2).解分式方程的一般步骤
(1)、 在方程的两边都乘以最简公分母,约去分母, 化成整式方程.
一、分式方程的概念
二、解分式方程
1、思想是什么?方法是
什么?
2、解分式方程必须
。
三、对有其他字母参数分式方 程
解,需考虑
不为零。
所以我们解分式方程时一定要代 入最简公分母检验
解分式方程出现增根应舍去
例题精讲:
例1、解分式方程: 2 1 x3 x
中考链接
复习回顾二:
1、(2013•张掖)方程
的解是【D】
A x=﹣2 B x=1 C x=2 D x=3
例题精讲
❖ 解分式方程:1、 1 X 2 1 X 1 X 1
走出 区 误
1. 已知分式方程解的情况,确定字母的取值范 围:
(1)将分式方程化为整式方程,把分式方程的解 用含某字母的代数式表示出来;
(2)根据该分式方程解的具体情况,转化为不等 式或不等式组,求出字母的取值范围,要特 别注意字母的取值要使分式有意义.
根据分式方程的根的情况, 求字母参数的值或取值范围。
(2)、解这个整式方程.
(3)、 把整式方程的根代入最简公分母,看结果是 不是为零,使最简公分母为零的根是原方程的增根, 必须舍去.
(4)、写出原方程的根.
(3)解分式方程的最易错: 根的检验
无解(增根)产生的原因:分式方 程两边同乘以一个 零因式后, 所得的根是整式方程的根,而不是 分式方程的根.