(完整版)含绝对值不等式的解法(含答案)
含绝对值不等式的解法

形如|x+m|±|x+n|<(或>)x+p的不等式的解法
例5 解不等式|x-1|+|2-x|>3+x.
【解】 原不等式变为|x-1|+|x-2|>3+x, 当x≥2时,原不等式变为x-1+x-2>3+x, 即x>6,∴x>6; 当1≤x<2时,原不等式变为x-1-(x-2)>3 +x, 即x<-2, ∴x∈∅;
即|x-4|+|x-3|≥1.
∴当a>1时,不等式有解.
变式训练 +4.
解不等式:|x-1|+|3x+5|≤4x
5 解:当 x<- 时,有-x+1-3x-5≤4x 3 +4, ∴8x≥-8.∴x≥-1, 此时无解. 5 当- ≤x<1 时,有 3 -x+1+3x+5≤4x+4, ∴2x≥2.∴x≥1, 此时无解.
当x≥1时,有
x-1+3x+5≤4x+4. ∴4≤4成立, ∴原不等式解集为{x|x≥1}.
5 当 x≥2 时,x-1+x-2>2,∴x> . 2 1 5 综上,原不等式解集为{x|x< 或 x> }. 2 2 法二:设 y1=|x-1|+|x-2|,y2=2.
-2x+3 ∴y1=1 1≤x<2 2x-3 x≥2
x<1 .
其图象如图.
1 5 ∴原不等式的解集为{x|x< 或 x> }. 2 2
a|≥3},且A∪B=R,求a的取值范围.
【思路点拨】 化简两个集合,求出解集形 式,通过两解集区间端点的关系求a.
【解】 ∵A={x||2-x|<5}={x||x-2|<5}= {x|-5<x-2<5}={x|-3<x<7};
01绝对值不等式(含经典例题+答案)

绝对值不等式一、绝对值三角不等式1.定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.2.定理2:如果a,b,c是实数,则|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤a x+b≤c ;(2)|a x+b|≥c⇔a x+b≥c或a x+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤ax+b≤c ;(2)|a x+b|≥c⇔ax+b≥c或ax+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.1.不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.2.|x-a|+|x-b|≥c表示到数轴上点A(a),B(b)距离之和大于或等于c的所有点,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.例4:若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是________.解:由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,所以只需a≤3即可.若本题条件变为“∃x∈R使不等式|x+1|+|x-2|<a成立为假命题”,求a的范围.解:由条件知其等价命题为对∀x∈R,|x+1|+|x-2|≥a恒成立,故a≤(|x+1|+|x-2|)min,又|x+1|+|x-2|≥|(x+1)-(x-2)|=3,∴a≤3.例5:不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则实数a的取值范围是________.解:由绝对值的几何意义知:|x-4|+|x+5|≥9,则log3(|x-4|+|x+5|)≥2所以要使不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则需a<2.例6:某地街道呈现东——西,南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点,请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间的路程的和最短.解:设格点(x,y)(其中x,y∈Z)为发行站,使6个零售点沿街道到发行站之间的路程的和最短,即使(|x+2|+|y-2|+(|x-3|+|y-1|)+(|x-3|+|y-4|)+(|x+2|+|y-3|)+(|x-4|+|y-5|)+(|x-6|+|y-6|)=[(|x+2|+|x-6|)+(|x+2|+|x-4|)+2|x-3|]+[|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|]取得最小值的格点(x,y)(其中x,y∈Z).注意到[(|x+2|+|x-6|)+(|x+2|+|x-4|) +2|x-3|]≥|(x+2)-(x-6)|+|(x+2)-(x-4)|+0=14,当且仅当x=3取等号;|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|=(|y-1|+|y-6|)+(|y-2|+|y-5|+(|y-3|+|y-4|)≥|(y-1)-(y-6)|+|(y-2)-(y-5)|+|(y-3)-(y-4)|=9,当且仅当y=3或y=4时取等号.因此,应确定格点(3,3)或(3,4)为发行站.又所求格点不能是零售点,所以应确定格点(3,3)为发行站.1.对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.2.该定理可以强化为:||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.3.对于求y=|x-a|+|x-b|或y=|x+a|-|x-b|型的最值问题利用绝对值三角不等式更简洁、方便.例7:设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的例9:已知关于x的不等式|2x+1|+|x-3|>2a-32恒成立,求实数a的取值范围.y =⎩⎪⎨⎪⎧ -3x +2,x <-12,x +4,-12≤x <3,3x -2,x ≥3,∴当x =-12时,y =|2x +1|+|x -3|取最小值72,∴72>2a -32,即得a <52. 例10:已知f (x )=1+x 2,a ≠b ,求证:|f (a )-f (b )|<|a -b |.解:∵|f (a )-f (b )|=|1+a 2-1+b 2|=|a 2-b 2|1+a 2+1+b 2=|a -b ||a +b |1+a 2+1+b 2, 又|a +b |≤|a |+|b |=a 2+b 2<1+a 2+1+b 2,∴|a +b |1+a 2+1+b 2<1.∵a ≠b ,∴|a -b |>0.∴|f (a )-f (b )|<|a -b |.例11:已知a ,b ∈R 且a ≠0,求证:|a |2|a |≥|a |2-|b |2. 证明:①若|a |>|b |,则左边=|a +b |·|a -b |2|a |=|a +b |·|a -b ||a +b +a -b |≥|a +b |·|a -b ||a +b |+|a -b |=11|a +b |+1|a -b |. ∵1|a +b |≤1|a |-|b |,1|a -b |≤1|a |-|b |,∴1|a +b |+1|a -b |≤2|a |-|b |.∴左边≥|a |-|b |2=右边,∴原不等式成立. ②若|a|=|b|,则a 2=b 2,左边=0=右边,∴原不等式成立.③若|a|<|b|,则左边>0,右边<0,原不等式显然成立.综上可知原不等式成立.证明:|f(x)-f(a)|=|x 2-x +43-a 2+a -43|=|(x -a)(x +a -1)|=|x -a|·|x +a -1|.∵|x -a|<1, ∴|x|-|a|≤|x -a|<1.∴|x|<|a|+1.∴|f(x)-f(a)|=|x -a|·|x +a -1|<|x +a -1|≤|x|+|a|+1<2(|a|+1). 例13:已知函数f (x )=log 2(|x -1|+|x -5|-a ).(1)当a =2时,求函数f (x )的最小值;(2)当函数f (x )的定义域为R 时,求实数a 的取值范围.解:函数的定义域满足|x -1|+|x -5|-a >0,即|x -1|+|x -5|>a .(1)当a =2时,f (x )=log 2(|x -1|+|x -5|-2),设g (x )=|x -1|+|x -5|,则g (x )=|x -1|+|x -5|=⎩⎪⎨⎪⎧ 2x -6,x ≥5,4,1<x <5,6-2x ,x ≤1,g (x )min =4,f (x )min =log 2(4-2)=1.(2)由(1)知,g (x )=|x -1|+|x -5|的最小值为4,|x -1|+|x -5|-a >0,∴a <4.∴a 的取值范围是(-∞,4). x -4|-|x -2|>1.解:(1)f (x )=⎩⎪⎨⎪⎧ -2, x >4,-2x +6, 2≤x ≤4,2, x <2.则函数y =f (x )的图像如图所示.(2)由函数y =f (x )的图像容易求得不等式|x -4|-|x -2|>1的解集为5,2⎛⎫-∞ ⎪⎝⎭。
含绝对值的不等式解法(总结归纳)

含绝对值的不等式解法、一元二次不等式解法[教材分析] |x|的几何意义是实数x在数轴上对应的点离开原点O的距离,所以|x|<a (a>0)的解集是{x|-a<x<a};不等式|x|>a (a>0)的解集是{x|x>a或x<-a}。
把不等式|x|<a与|x|>a (a>0)中的x替换成ax+b,就可以得到|ax+b|<c与|ax+b|>c (c>0)型的不等式的解法。
一元二次不等式ax2+bx+c>0(或<0)的解可以联系二次函数y=ax2+bx+c的图象(a≠0)图象在x轴上方部分对应的x值为不等式ax2+bx+c>0的解,图象在x轴下方部分对应的x值为不等式ax2+bx+c<0的解。
而方程ax2+bx+c=0的根表示图象与x轴交点的横坐标。
求解一元二次不等式的步骤,先把二次项系数化为正数,再解对应的一元二次方程,最后根据一元二次方程的根,结合不等号的方向,写出不等式的解集。
求解以上两种不等式的方法,就是将不等式转化为熟悉,可解的不等式,因此一元二次不等式的求解,也可采用以下解法。
x2+3x-4<0 (x+4)(x-1)<0 或或-4<x<1或。
原不等式解集为{x|-4<x<1}。
x2+3x-4<0 (x+)2< |x+|< -<x+< -4<x<1。
原不等式解集为{x|-4<x<1}。
[例题分析与解答]例1.解关于x的不等式|ax-2|<4,其中a∈R。
[分析与解答]:|ax-2|<4属于|x|<c(c>0)型。
∴-4<ax-2<4, 不等号各端加2,得-2<ax<6。
当a>0时,-<x<,当a<0时,->x>,当a=0时,不等式化为2<4,显然x∈R。
(完整版)含绝对值不等式的解法(含答案)

含绝对值的不等式的解法一、 基本解法与思想解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。
(一)、公式法:即利用a x >与a x <的解集求解。
主要知识:1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。
2、a x >与a x <型的不等式的解法。
当0>a 时,不等式>x 的解集是{}a x a x x -<>或,不等式a x <的解集是{}a x a x <<-;当0<a 时,不等式a x >的解集是{}R x x ∈不等式a x <的解集是∅;3.c b ax >+与c b ax <+型的不等式的解法。
把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。
当0>c 时,不等式c b ax >+的解集是{}c b ax c b ax x -<+>+或,不等式c b ax <+的解集是{}c b ax c x <+<-;当0<c 时,不等式c b ax >+的解集是{}R x x ∈不等式c bx a <+的解集是∅;例1 解不等式32<-x分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。
答案为{}51<<-x x 。
(解略)(二)、定义法:即利用(0),0(0),(0).a a a a a a >⎧⎪==⎨⎪-<⎩去掉绝对值再解。
例2。
解不等式22x xx x >++。
分析:由绝对值的意义知,a a =⇔a ≥0,a a =-⇔a ≤0。
解:原不等式等价于2xx +<0⇔x(x+2)<0⇔-2<x <0。
2.4含绝对值不等式的解法(含答案)

含绝对值的不等式的解法一、 基本解法与思想解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。
(一)公式法:即利用a x >与a x <的解集求解。
主要知识:1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。
2、a x >与a x <型的不等式的解法。
当0>a 时,不等式>x 的解集是{}a x a x x -<>或,不等式a x <的解集是{}a x a x <<-;当0<a 时,不等式a x >的解集是{}R x x ∈不等式a x <的解集是∅;3.c b ax >+与c b ax <+型的不等式的解法。
把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。
当0>c 时,不等式c b ax >+的解集是{}c b ax c b ax x -<+>+或,不等式c b ax <+的解集是{}c b ax c x <+<-;当0<c 时,不等式c b ax >+的解集是{}R x x ∈不等式c bx a <+的解集是∅;[例1] 解不等式32<-x分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。
答案为{}51<<-x x 。
[例2] 不等式|x 2-3x|>4的解集是________.分析 可转化为(1)x 2-3x >4或(2)x 2-3x <-4两个一元二次不等式.由可解得<-或>,.(1)x 1x 4(2)∅答 填{x|x <-1或x >4}.[例3]解不等式2<|2x -5|≤7.解法1:原不等式等价于⎩⎨⎧≤->-7|52|2|52|x x∴⎩⎨⎧≤-≤--<--7|5272522|52x x x 或即⎪⎩⎪⎨⎧≤≤-<>612327x x x 或∴原不等式的解集为{x |-1≤x <23或27<x ≤6}解法2:原不等式的解集是下面两个不等式解集的并集. (Ⅰ)2<2x -5≤7 (Ⅱ)2<5-2x ≤7 不等式(Ⅰ)的解集为{x |27<x ≤6},不等式(Ⅱ)的解集是{x |-1≤x <23}∴原不等式的解集是{x |-1≤x <23或27<x ≤6}.[例4] 解关于x 的不等式10832<-+x x解:原不等式等价于1083102<-+<-x x,即⎩⎨⎧<-+->-+1083108322x x x x ⇒⎩⎨⎧<<--<->3621x x x 或∴ 原不等式的解集为)3,1()2,6(--- 练习:(1)4321x x ->+; (2)4|23|7x <-≤ ; (3)3529x ≤-<; (4)1|1|3x <+< (5)x x3102≤- (6) 241<--x 。
含绝对值不等式解法-精选文档

x c x c cxc
xc x c x c , 或 xc
② ①
-c
0
2
2
②
2
2
②
c
几何意义:
①到原点的距离小于c的点所对应的实数x的集合 ②到原点的距离大于c的点所对应的实数x的集合
当c=0时,两不等式有无解? 当c<0 时,两不等式有无解? 贵有恒何必三更眠五更起,最无益
只怕一日曝十日寒 与君共勉
3
cxc (c0 ) | x|c Φ (c0 )
c或 x< c(c 0 ) x> | x |> cx 0 (c 0 ) R (c 0 )
还可通过讨论绝对值里面的数的正负来去绝对值
2
解: 10 x 3 x 8 10
2
x 3x 8 10 2 x 3x - 8 10
2
6 x 3 或x 2 x 1
原不等式的解集为 ( 1 ,3 ) ( 6 , 2 )
贵有恒何必三更眠五更起,最无益 只怕一日曝十日寒 与君共勉 6
3 2 x 3 5 , 或 5 2 x 3 3
3 x 4 , 或 1 x 0 .
原不等式的解集是 { x | 1 x 0 , 或 3 x 4 }.
-1 0 3 4
11
贵有恒何必三更眠五更起,最无益 只怕一日曝十日寒 与君共勉
贵有恒何必三更眠五更起,最无益 只怕一日曝十日寒 与君共勉 4
( 1 ) 、 2 x 3 2
解: 2 x 3 2 或 2 x 3 2
原不等式的解集为: 1 5 ( , ) ( , ) 2 2
含绝对值不等式的解法1

方法一:等价于 不等式组
| ax b | n | ax b | m
方法二:几何意义
-m
-n 0 n
m
n ax b m,或 m ax b n
推广 a f(x) b a f(x) b或-b f(x) a
题型二:不等式n<| ax + b | <m (m>n>0) 的解集
∴原不等式的解集为{x | x<-2或x>-1}.
解题反思:
1、采用了整体换元。
2、归纳型如(a>0)
| f(x)|<a, |f(x)|>a 不 等式的解法。
| f(x)|<a | f(x)|>a
-a<f(x)<a
f(x)<-a或 f(x)>a
变式例题:型如 | f(x)|<a, |f(x)|>a的不等式中
题型四:含多个绝对值不等式的解法
练习4 解不等式 x+1 - x-3 2
解不等式
x2 x3 7
2x 4 3x 3 7
3.解不等式:| x 2 || x 1| 3
x 2
三、例题讲解
① -1 ② 3 ③
例2 解不等式|x +1| + |3-x| >2 + x.
解析原不等式变形为| X +1| + |X -3| > 2 + X.
不等式解集为 x x≥-1
推广 f x g x f x2 g x2
题型三:不等式 的解集|f(x)|> |g(x)| 练习3 解不等式 | x 2 || x 1|
四、练习
2.解不等式 x 9 x 1
解: x 9 x 1
x 92 x 12
含绝对值不等式的解法

4.重要绝对值不等式 ||a|-|b||≤|ab|≤|a|+|b|. 使用时(特别是求最值)要注意等号成立的条件, 即: |a+b|=|a|+|b|ab≥0; |a-b|=|a|+|b|ab≤0; |a|-|b|=|a+b|b(a+b)≤0; |a|-|b|=|a-b|b(a-b)≥0. 注: |a|-|b|=|a+b||a|=|a+b|+|b| |(a+b)-b|=|a+b|+|b| b(a+b)≤0. 同理可得 |a|-|b|=|a-b|b(a-b)≥0.
典型例题 2 解不等式 ||x+3|-|x-3||>3.
解法一 零点分区间讨论 原不等式等价于: x<-3, -3≤x≤3, x>3, |-x-3+x-3|>3, 或 |x+3+x-3|>3, 或 |x+3-x+3|>3. 3 <x≤3 或 x>3. 即 x<-3 或 -3≤x<- 3 或 2 2 3 3 ∴x<- 2 或 x> 2 . 3 3 ∴原不等式的解集为 (-∞, - 2 )∪( 2 , +∞). 解法二 两边平方 原不等式等价于 (|x+3|-|x-3|)2>9. 即 2x2+9>2|x2-9|( 2x2+9)2>(2|x2-9|)2. 3 3 2 即 4x -9>0. ∴x<- 2 或 x> 2 . 3 3 ∴原不等式的解集为 (-∞, - 2 )∪( 2 , +∞).
备选题 4 已知函数 f(x)=x3+ax+b 定义在区间 [-1, 1] 上, 且 f(0)=f(1), 又 P(x1, y1), Q(x2, y2) 是其图象上任意两点(x1x2). (1)设直线 PQ 的斜率为k, 求证: |k|<2; (2)若 0≤x1<x2≤1, 求证: |y1-y2|<1. 解: (1)∵f(0)=f(1), ∴b=1+a+b. ∴a=-1. ∴f(x)=x3-x+b. y 2- y 1 1 则 k= x -x = x -x [(x23-x2+b)-(x13-x1+b)] 2 1 2 1 1 = x -x [(x23-x13)-(x2-x1)] =x22+x1x2+x12-1. 2 1 ∵x1, x2[-1, 1] 且 x1x2, ∴0<x22+x1x2+x12<3. ∴-1<x22+x1x2+x12-1<2. ∴|x22+x1x2+x12-1|<2. 即 |k|<2. (2)∵0≤x1<x2≤1, ∴由(1)知 |y2-y1|<2|x2-x1|=2(x2-x1). ① 又 |y2-y1|=|f(x1)-f(x2)|=|f(x1)-f(0)+f(1)-f(x2)| ≤|f(x1)-f(0)|+|f(1)-f(x2)|<2|x1-0|+2|1-x2|=2(x1-x2)+2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含绝对值的不等式的解法一、 基本解法与思想解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。
(一)、公式法:即利用a x >与a x <的解集求解。
主要知识:1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。
2、a x >与a x <型的不等式的解法。
当0>a 时,不等式>x 的解集是{}a x a x x -<>或,不等式a x <的解集是{}a x a x <<-;当0<a 时,不等式a x >的解集是{}R x x ∈不等式a x <的解集是∅;3.c b ax >+与c b ax <+型的不等式的解法。
把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。
当0>c 时,不等式c b ax >+的解集是{}c b ax c b ax x -<+>+或,不等式c b ax <+的解集是{}c b ax c x <+<-;当0<c 时,不等式c b ax >+的解集是{}R x x ∈不等式c bx a <+的解集是∅;例1 解不等式32<-x分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。
答案为{}51<<-x x 。
(解略)(二)、定义法:即利用(0),0(0),(0).a a a a a a >⎧⎪==⎨⎪-<⎩去掉绝对值再解。
例2。
解不等式22x xx x >++。
分析:由绝对值的意义知,a a =⇔a ≥0,a a =-⇔a ≤0。
解:原不等式等价于2xx +<0⇔x(x+2)<0⇔-2<x <0。
(三)、平方法:解()()f x g x >型不等式。
例3、解不等式123x x ->-。
解:原不等式⇔22(1)(23)x x ->-⇔22(23)(1)0x x ---<⇔(2x-3+x-1)(2x-3-x+1)<0⇔(3x-4)(x-2)<0 ⇔423x <<。
说明:求解中以平方后移项再用平方差公式分解因式为宜。
二、分类讨论法:即通过合理分类去绝对值后再求解。
例4 解不等式125x x -++<。
分析:由01=-x ,02=+x ,得1=x 和2=x 。
2-和1把实数集合分成三个区间,即2-<x ,12≤≤-x ,1>x ,按这三个区间可去绝对值,故可按这三个区间讨论。
解:当x <-2时,得2(1)(2)5x x x <-⎧⎨---+<⎩,解得:23-<<-x 当-2≤x ≤1时,得21,(1)(2)5x x x -≤≤⎧⎨--++<⎩,解得:12≤≤-x当1>x 时,得1,(1)(2) 5.x x x >⎧⎨-++<⎩ 解得:21<<x综上,原不等式的解集为{}23<<-x x 。
说明:(1)原不等式的解集应为各种情况的并集;(2)这种解法又叫“零点分区间法”,即通过令每一个绝对值为零求得零点,求解应注意边界值。
三、几何法:即转化为几何知识求解。
例5 对任何实数x ,若不等式12x x k +-->恒成立,则实数k 的取值范围为 ( )(A)k<3(B)k<-3(C)k ≤3(D)k ≤-3分析:设12y x x =+--,则原式对任意实数x 恒成立的充要条件是min k y <,于是题转化为求y 的最小值。
解:1x +、2x -的几何意义分别为数轴上点x 到-1和2的距离1x +-2x -的几何意义为数轴上点x 到-1与2的距离之差,如图可得其最小值为-3,故选(B )。
2x四、典型题型1、解关于x 的不等式10832<-+x x解:原不等式等价于1083102<-+<-x x ,即⎩⎨⎧<-+->-+1083108322x x x x ⇒⎩⎨⎧<<--<->3621x x x 或 ∴ 原不等式的解集为)3,1()2,6(---2、解关于x 的不等式2321>-x 解:原不等式等价于⎪⎩⎪⎨⎧<-≠-2132032x x ⇒⎪⎩⎪⎨⎧<<≠474523x x 3、解关于x 的不等式212+<-x x解:原不等式可化为22)2()12(+<-x x ∴ 0)2()12(22<+--x x 即 0)13)(3(<+-x x解得:331<<-x∴ 原不等式的解集为)3,31(-4、解关于x 的不等式1212-<-m x )(R m ∈ 解:⑴ 当012≤-m 时,即21≤m ,因012≥-x ,故原不等式的解集是空集。
⑵ 当012>-m 时,即21>m ,原不等式等价于1212)12(-<-<--m x m解得:m x m <<-1综上,当21≤m 时,原不等式解集为空集;当21>m 时,不等式解集为{}m x m x <<-15、解关于x 的不等式1312++<--x x x解:当3-<x 时,得⎩⎨⎧++-<----<1)3()12(3x x x x ,无解当213≤≤-x ,得⎪⎩⎪⎨⎧++<---≤≤-13)12(213x x x x ,解得:2143≤<-x 当21>x 时,得⎪⎩⎪⎨⎧++<-->131221x x x x ,解得:21>x 综上所述,原不等式的解集为43(-,)216、解关于x 的不等式521≥++-x x (答案:),2[]3,(+∞--∞ ) 解:五、巩固练习1、设函数)2(,312)(-++-=f x x x f 则= ;若2)(≤x f ,则x 的取值范围是 .2、已知a ∈R ,若关于x 的方程2104x x a a ++-+=有实根,则a 的取值范围 是 .3、不等式121≥++x x 的实数解为 . 4、解下列不等式 ⑴4321x x ->+; ⑵ |2||1|x x -<+; ⑶ |21||2|4x x ++->;⑷ 4|23|7x <-≤ ; ⑸ 241<--x ; ⑹ a a x <-2(a R ∈) 5、若不等式62<+ax 的解集为()1,2-,则实数a 等于 ( ).A 8 .B 2 .C 4- .D 8- 6、若x R ∈,则()()110x x -+>的解集是( ).A {}01x x ≤<.B {0x x <且1}x ≠-.C {}11x x -<< .D {1x x <且1}x ≠-7、()1对任意实数x ,|1||2|x x a ++->恒成立,则a 的取值范围是 ;()2对任意实数x ,|1||3|x x a --+<恒成立,则a 的取值范围是 ;()3若关于x 的不等式|4||3|x x a -++<的解集不是空集,则a 的取值范围是 ;8、不等式x x 3102≤-的解集为( ).A {|2x x ≤≤ .B {}|25x x -≤≤ .C {}|25x x ≤≤ .D {}|5x x ≤≤9、解不等式:221>-+-x x10、方程x x x x x x 323222++=++的解集为 ,不等式xxx x ->-22的解集是 ; 12、不等式x 0)21(>-x 的解集是( ).A )21,(-∞ .B )21,0()0,( -∞ .C ),21(+∞ .D )21,0( 11、不等式3529x ≤-<的解集是.A ()(),27,-∞-+∞ .B []1,4 .C [][]2,14,7- .D (][)2,14,7-12、 已知不等式a x ≤-2)0(>a 的解集为{}c x R x <<-∈1|,求c a 2+的值13、解关于x 的不等式:①解关于x 的不等式31<-mx ;②a x <-+132)(R a ∈ 14、不等式1|1|3x <+<的解集为( )..A (0,2) .B (2,0)(2,4)- .C (4,0)- .D (4,2)(0,2)--15、 设集合{}22,A x x x R =-≤∈,{}21,2≤≤--==x x y y B ,则()R C A B 等于 ( ).A R .B {},0x x R x ∈≠ .C {}0 .D ∅ 16、不等式211x x --<的解集是 .17、设全集U R =,解关于x 的不等式: 110x a -+->()x R ∈(参考答案)1、 6 ; ∅ ;2、 ]4,0[3、)23,2()2,(----∞4、⑴ ⎭⎬⎫⎩⎨⎧><231x x x 或 ⑵ ⎭⎬⎫⎩⎨⎧>21x x ⑶ ⎭⎬⎫⎩⎨⎧>-<121x x x 或 ⑷ ⎭⎬⎫⎩⎨⎧≤<-<≤-527212x x x 或 ⑸ {}7315<<-<<-x x x 或 ⑹ 当0>a 时,{}a x a x 22<<-;当0≤a 时,不等式的解集为∅ 5、C 6、D 7、⑴ 3<a ; ⑵ 4>a ; ⑶ 7>a ; 8、C 9、⎭⎬⎫⎩⎨⎧><2521x a x x 或 10、{}023>≤<-x x x 或;{}02<>x x x 或11、D 12、 1513、① 当0=m 时,R x ∈;当0>m 时,m x m 42<<-;当0<m 时,mx m 24-<< ② 当01>+a ,即1->a 时,不等式的解集为⎭⎬⎫⎩⎨⎧-<<-122a x a x ;当01≤+a ,即1-≤a 时,不等式的解集为∅; 14、D 15、B 16、0(,)217、当01>-a ,即1<a 时,不等式的解集为{}a x a x x -><2或;当01=-a ,即1=a 时,不等式的解集为{}1≠x x ; 当01<-a ,即1>a 时,不等式的解集为R ;。