含绝对值不等式的解法(含答案)

含绝对值不等式的解法(含答案)
含绝对值不等式的解法(含答案)

含绝对值的不等式的解法

一、 基本解法与思想

解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。

(一)、公式法:即利用a x >与a x <的解集求解。 主要知识:

1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2

x 两点间的距离.。

2、a x >与a x <型的不等式的解法。

当0>a 时,不等式>x 的解集是{}

a x a x x -<>或,

不等式a x <的解集是{}

a x a x <<-;

当0的解集是{}

R x x ∈

不等式a x <的解集是?;

3.c b ax >+与c b ax <+型的不等式的解法。

把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{}

c b ax c b ax x -<+>+或,

不等式c b ax <+的解集是{}

c b ax c x <+<-;

当0+的解集是{}

R x x ∈

不等式c bx a <+的解集是?;

例1 解不等式32<-x

分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{}

51<<-x x 。(解略)

(二)、定义法:即利用(0),0(0),(0).a a a a a a >??

==??-

去掉绝对值再解。

例2。解不等式

22

x x

x x >++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。

解:原不等式等价于2

x

x +<0?x(x+2)<0?-2<x <0。

(三)、平方法:解()()f x g x >型不等式。 例3、解不等式123x x ->-。

解:原不等式?22(1)(23)x x ->-?22(23)(1)0x x ---<

?(2x-3+x-1)(2x-3-x+1)<0?(3x-4)(x-2)<0 ?

4

23

x <<。 说明:求解中以平方后移项再用平方差公式分解因式为宜。 二、分类讨论法:即通过合理分类去绝对值后再求解。 例4 解不等式125x x -++<。

分析:由01=-x ,02=+x ,得1=x 和2=x 。2-和1把实数集合分成三个区间,即2-x ,按这三个区间可去绝对值,故可按这三个区间讨论。

解:当x <-2时,得2

(1)(2)5x x x <-??---+

解得:23-<<-x

当-2≤x ≤1时,得21,

(1)(2)5

x x x -≤≤??--++

解得:12≤≤-x

当1>x 时,得1,

(1)(2) 5.x x x >??-++

解得:21<

综上,原不等式的解集为{}

23<<-x x 。 说明:(1)原不等式的解集应为各种情况的并集;

(2)这种解法又叫“零点分区间法”,即通过令每一个绝对值为零求得零点,求解应注意边界值。

三、几何法:即转化为几何知识求解。

例5 对任何实数x ,若不等式12x x k +-->恒成立,则实数k 的取值范围为 ( )

(A)k<3

(B)k<-3

(C)k ≤3

(D)

k ≤-3

分析:设12y x x =+--,则原式对任意实数x 恒成立的充要条件是min k y <,于是题转化为求y 的最小值。

解:1x +、2x -的几何意义分别为数轴上点x 到-1和2的距离1x +-2x -的几何意义为数轴上点x 到-1与2的距离之差,如图可得其最小值为-3,故选(B )。

四、典型题型

1、解关于x 的不等式10832

<-+x x

解:原不等式等价于1083102<-+<-x x ,

即?

??<-+->-+1083108322x x x x ???

?<<--<->3621x x x 或 ∴ 原不等式的解集为)3,1()2,6(---Y

2、解关于x 的不等式

23

21

>-x

2

x

解:原不等式等价于?????<-≠-2

132032x x ??????

<<≠4

74523x x 3、解关于x 的不等式212+<-x x

解:原不等式可化为22)2()12(+<-x x ∴ 0)2()12(22<+--x x 即 0)13)(3(<+-x x

解得:331

<<-x

∴ 原不等式的解集为)3,3

1

(-

4、解关于x 的不等式1212-<-m x )(R m ∈ 解:⑴ 当012≤-m 时,即2

1

m ,因012≥-x ,故原不等式的解集是空集。

⑵ 当012>-m 时,即2

1

>

m ,原不等式等价于1212)12(-<-<--m x m

解得:m x m <<-1

综上,当21≤m 时,原不等式解集为空集;当2

1

>m 时,不等式解集为

{}m x m x <<-1

5、解关于x 的不等式1312++<--x x x

解:当3-

??++-<----<1)3()12(3

x x x x ,无解

当213≤≤-x ,得?????++<---≤

≤-13)12(2

13x x x x ,解得:2143≤<-x 当21>x 时,得?????++<-->

13122

1x x x x ,解得:21>x 综上所述,原不等式的解集为43(-,)2

1

6、解关于x 的不等式521≥++-x x

(答案:),2[]3,(+∞--∞Y ) 解:

五、巩固练习

1、设函数)2(,312)(-++-=f x x x f 则= ;若2)(≤x f ,则x 的取值范围是 .

2、已知a ∈R ,若关于x 的方程21

04

x x a a ++-

+=有实根,则a 的取值范围 是 .

3、不等式

12

1

≥++x x 的实数解为 . 4、解下列不等式 ⑴

4321x x ->+; ⑵ |2||1|x x -<+; ⑶ |21||2|4x x ++->;

⑷ 4|23|7x <-≤ ; ⑸ 241<--x ; ⑹ a a x <-2

(a R ∈) 5、若不等式62<+ax 的解集为()1,2-,则实数a 等于 ( )

.A 8 .B 2 .C 4- .D 8-

6、若x R ∈,则()()110x x -+>的解集是( )

.A {}01x x ≤<.B {0x x <且1}x ≠-.C {}11x x -<< .D {1x x <且1}x ≠- 7、()1对任意实数x ,|1||2|x x a ++->恒成立,则a 的取值范围是 ;

()2对任意实数x ,|1||3|x x a --+<恒成立,则a 的取值范围

是 ;

()3若关于x 的不等式|4||3|x x a -++<的解集不是空集,则a 的取值范围

是 ;

8、不等式x x 3102

≤-的解集为( )

.A

{|2x x ≤≤ .B {}|25x x -≤≤ .C {}|25x x ≤≤ .

D {}

|5x x ≤≤

9、解不等式:221>-+-x x 10、方程

x x x x x x 32322

2++=++的解集为 ,不等式x

x

x x ->-22的解集是 ; 12、不等式x 0)21(>-x 的解集是( )

.A )21,(-∞ .B )21,0()0,(Y -∞ .C ),21(+∞ .D )2

1,0( 11、不等式3529x ≤-<的解集是

.A ()(),27,-∞-+∞U .B []1,4 .C [][]2,14,7-U .D (][)2,14,7-U

12、 已知不等式a x ≤-2)0(>a 的解集为{}c x R x <<-∈1|,求c a 2+的值

13、解关于x 的不等式:①解关于x 的不等式31<-mx ;②a x <-+132)(R a ∈ 14、不等式1|1|3x <+<的解集为( ).

.A (0,2) .B (2,0)(2,4)-U .C (4,0)- .D (4,2)(0,2)--U

15、 设集合{}

22,A x x x R =-≤∈,{

}

21,2

≤≤--==x x y y B ,则()R C A B I 等于 ( )

.A R .B {},0x x R x ∈≠ .C {}0 .D ? 16、不等式211x x --<的解集是 . 17、设全集U R =,解关于x 的不等式: 110x a -+->()x R ∈

(参考答案)

1、 6 ; ? ;

2、 ]4,0[

3、)2

3,2()2,(----∞Y

4、⑴ ????

??><23

1x x x 或 ⑵ ????

??>

21x x ⑶ ?

??

??

?>-<121x x x 或 ⑷ ?

??

?

??

≤<-<≤-5272

12x x x 或 ⑸ {}7315<<-<<-x x x 或 ⑹ 当0>a 时,{

}

a x a x 22<<-

;当0≤a 时,不等式的解集为?

5、C

6、D

7、⑴ 3a ; ⑶ 7>a ;

8、C 9、????

??

><2521x a x x 或 10、{}023>≤<-x x x 或;

{}02<>x x x 或

11、D 12、 15

13、① 当0=m 时,R x ∈;当0>m 时,m x m 42<<-

;当0

x m 24-<< ② 当01>+a ,即1->a 时,不等式的解集为?

???

??

-<<-122a x a x ; 当01≤+a ,即1-≤a 时,不等式的解集为?; 14、D 15、B 16、0(,)2

17、当01>-a ,即1

a x a x x -><2或;

当01=-a ,即1=a 时,不等式的解集为{

}

1≠x x ; 当01<-a ,即1>a 时,不等式的解集为R ;

绝对值不等式(经典题型)

1.若a >0,且|x |>a ,则____________;若a >0,且|x |c (c >0)型不等式的解法: 3.解下列不等式. (1)|2x +5|<7. (2)|2x +5|>7+x . (3)|x 2-3x +1|<5. (4)|2x -1|<2-3x . (5)1<|2-x |≤7. (6)1<|x -2|≤3 4.集合A ={x ||2-x |<5},B ={x ||x +a |≥3},且A ∪B =R ,求a 的取值范围 |x -a |+|x -b |≥c |x -a |+|x -b |≤c 5.解不等式 (1)|x -1|+|x -2|>2. (2)|x +2|-|x -1|<2 |(3)x +2|-|x -1|<2x 6.恒成立问题 (1)对任意x ∈R ,若|x -3|+|x +2|>a 恒成立,则实数a 的取值范围 . (2)关于x 的不等式a >|x -3|+|x +2|的解集非空,则实数a 的取值范围 . (3)关于x 的不等式a >|x -3|+|x +2|在R 上无解,则实数a 的取值范围 . (4)若不等式|x +3|-|x -5|x -2x 的解集是________. 10..已知函数f (x )=|x +2|-|x -1|,则f (x )的值域是________. 11. 对于x ∈R ,不等式||x +10-||x -2≥8的解集为______ 12.设函数f(x)=|3x -1|+x +2. (1)解不等式f(x)≤3; (2)若不等式f(x)>a 的解集为R ,求a 的取值范围.

含参不等式的专题练习教学设计 .doc

例2 解不等式135 x <-< 课后练习: 一.选择题(共2小题) 1.(2015春?石城县月考)已知m为整数,则解集可以为﹣1<x<1的不等式组是() A .B . C . D . 2.(2002?徐州)已知实数x、y同时满足三个条件:①3x﹣2y=4﹣p,②4x﹣3y=2+p,③x>y,那么实数p 的取值范围是() A .p>﹣1 B . p<1 C . p<﹣1 D . p>1 二.填空题(共7小题) 3.(2012?谷城县校级模拟)若不等式组恰有两个整数解.则实数a的取值范围 是. 4.(2010?江津区)我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1 <<3,则x+y的值是. 5.若不等式组的解集是﹣1<x<1,则(a+b)2009=. 6.关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是. 7.不等式组的解是0<x<2,那么a+b的值等于. 8.已知不等式组的解集1≤x<2,则a=. 9.若关于x的不等式的解集为x<2,则k的取值范围是. 三.解答题(共4小题)

10.(1)解方程组: (2)求不等式组的整数解. 11.(2013?乐山)已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值. 12.(2011?铜仁地区)为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元. (1)篮球和排球的单价分别是多少元? (2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案? 13.(2011?邵阳)为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛.规则一:合唱队的总人数不得少于50人,且不得超过55人. 规则二:合唱队的队员中,九年级学生占合唱团总人数的,八年级学生占合唱团总人数的,余下的为七年 级学生. 请求出该合唱团中七年级学生的人数.

中职数学含绝对值的不等式教案

含绝对值的不等式教案 一、条件分析 1.学情分析 本课是开学第一课,学生对上学期的知识已经比较陌生,而本课的内容要以上学期的不等式内容为基础,是不等式内容的提升,所以本课先复习上学期的内容,让学生顺利过渡到新知识中来。 2.教材分析 本节教材首先分别讨论含有绝对值的等式的三种情况,从而推导出含有绝对值的不等式的公式,然后例题加以巩固。由于我校学生基础薄弱,对于理论性的知识掌握不牢固,所以我们在教授的时候从简单的具体的例子推导含有绝对值的不等式的公式,由浅入深,层层递进,符合学生的认知。 二、三维目标 知识与技能目标 } A层: 1.理解绝对值的概念; 2.了解绝对值不等式的解法; 3.会解含有绝对值的不等式; 4.通过数轴解不等式培养学生的数形结合的数学思想; 5.通过研究含有绝对值不等式,培养分类讨论的思想方法,培养抽象概括能力和辩证思维能力. B层: 1.理解绝对值的概念; ? 2.了解绝对值不等式的解法; 3.会解含有绝对值的不等式; 4.通过数轴解不等式培养学生的数形结合的数学思想. C层:

1.理解绝对值的概念; 2.了解绝对值不等式的解法; 3.会解含有绝对值的不等式. 过程与方法目标 ( 复习法、讲授法、练习法、自讲法 情感态度与价值观目标 激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时培养辩证思维能力。 三、教学重点 含有绝对值不等式的解法 四、教学难点 将含有绝对值的不等式等价转化为不含绝对值的不等式 五、主要参考资料: ( 中等职业教育课程教材数学基础模块(上)、学生学习指导用书、教学参考书。 六、教学进程: 1.复习导入 绝对值的含义 在数轴上,一个数到原点的距离叫做该数的绝对值.如:5指在数轴上表示数5的点与原点的距离,这个距离是5,所以5的绝对值是5,-5的绝对值是5。 正数的绝对值是它本身。负数的绝对值是它的相反数。0的绝对值还是0。 2.讲授新课 (1)求下列各数的绝对值 ¥ 3、- 4、1 2、1- 2

含有绝对值的不等式·典型例题分析

含有绝对值的不等式·典型例题分析 例1 求下列函数的定义域和值域: 分析利用绝对值的基本概念. 解 (1)x+|x|≠0,即|x|≠-x.∴x>0. ∴定义域为(0,+∞),值域为(0,+∞). (2)|x|≥x,x∈R.|x|-x≥0,∴y∈[0,+∞). (3)x+|x|>0,x∈R+.y∈R. 画出函数图象如图5-17所示.不难看出,x∈R,y∈[-1,1]. 说明本例中前三个易错,第四个要分析写出函数表达式,并画出函数图象,此法在求值域时常用. 例2 解不等式|x+1|>|2x-3|-2.

将不等式中的绝对值符号去掉,转化成与之同解的不含绝对值的不等式(组),再去求解.去绝对值符号的关键是找零点(使绝对值等于零的那个数所对应的点),将数轴分成若干段,然后从左向右逐段讨论. (1)当x≤-1时原不等式化为-(x+1)>-(2x-3)-2. ∴x>2与条件矛盾,无解. 综上,原不等式的解为{x|0<x<6}. 注意找零点去绝对值符号最好画数轴,零点分段,然后从左向右逐段讨论,这样做条理分明、不重不漏. 例3 解不等式|x2-4|<x+2. 分析解此题的关键是去绝对值符号,而去绝对值符号有两种方法:

二是根据绝对值的性质:|x|<a?-a<x<a,|x|>a?x>a或x<-a,因此本题有如下两种解法. ∴2≤x<3或1<x<2 故原不等式的解集为{x|1<x<3}. 解法二原不等式等价于-(x+2)<x2-4<x+2 例4 求使不等式|x-4|+|x-3|<a有解的a的取值范围. 分析此题若用讨论法,可以求解,但过程较繁;用绝对值的几何意义去求解十分简便. 解法一将数轴分为(-∞,3],[3,4],(4,+∞)三个区间 当3≤x≤4 时,得(4-x)+(x-3)<a,即a>1;

含绝对值的不等式解法练习题及答案

含绝对值的不等式解法练习题及答案 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

例1 不等式|8-3x|>0的解集是 [ ]答选C. 例2 绝对值大于2且不大于5的最小整数是 [ ] A.3 B.2 C.-2 D.-5 分析列出不等式. 解根据题意得2<|x|≤5. 从而-5≤x<-2或2<x≤5,其中最小整数为-5, 答选D. 例3不等式4<|1-3x|≤7的解集为________. 分析利用所学知识对不等式实施同解变形. 解原不等式可化为4<|3x-1|≤7,即4<3x-1≤7或-7例4已知集合A={x|2<|6-2x|<5,x∈N},求A. 分析转化为解绝对值不等式. 解∵2<|6-2x|<5可化为 2<|2x-6|<5 因为x∈N,所以A={0,1,5}. 说明:注意元素的限制条件.

例5 实数a,b满足ab<0,那么 [ ] A.|a-b|<|a|+|b| B.|a+b|>|a-b| C.|a+b|<|a-b| D.|a-b|<||a|+|b|| 分析根据符号法则及绝对值的意义. 解∵a、b异号, ∴ |a+b|<|a-b|. 答选C. 例6 设不等式|x-a|<b的解集为{x|-1<x<2},则a,b 的值为 [ ] A.a=1,b=3 B.a=-1,b=3 C.a=-1,b=-3 分析解不等式后比较区间的端点. 解由题意知,b>0,原不等式的解集为{x|a-b<x<a+b},由于解集又为{x|-1<x<2}所以比较可得. 答选D. 说明:本题实际上是利用端点的位置关系构造新不等式组.例7 解关于x的不等式|2x-1|<2m-1(m∈R)

含绝对值的不等式解法·典型例题

含绝对值的不等式解法·典型例题 能力素质 例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 }...≠.? 83 分析∵->,∴-≠,即≠. |83x|083x 0x 83 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为-≤<-或<≤.3x 14x 2x 1{x|2x 1x }53835383 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-, 52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4???

解之得<<或<<.4x x 211212 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=1232 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2 a b -=-+=,解之得=,=.???1232 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 112 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 12 x <m .

高考含绝对值不等式的解法

高考中常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 (2008年四川高考文科卷)不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x ,

所以 222<-<-x x . 即 ?????<-->+-0 20222x x x x , 解得: ? ??<<-∈21x R x , 所以 )2,1(-∈x ,故选A. 类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 (2004年高考全国卷)不等式311<+

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与 c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{ } c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{}c b ax c x <+<-; 当0+的解集是{}R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略) (二)、定义法:即利用(0),0(0),(0).a a a a a a >??==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于 2 x x +<0?x(x+2)<0?-2<x <0。

绝对值不等式中的含参问题(原创)

绝对值不等式中的含参问题 在高中数学中,绝对值不等式的求解及含参问题是高考中不等式选讲部分重要的考点,面对诸多的含参问题,我们来对这些类型的题目作以梳理。绝对值不等式的核心是去掉绝对值符号,将它转化为一般不等式加以解决。 一、绝对值的最值问题 1、当绝对值中x的系数相同时。 运用三角不等式:a?b≤a±b≤a+b 例1:求函数f x=x?3+x?4的最值 解:x?3+x?4≥x?3?x?4=1,函数f x的最小值为1。 例2:求函数f x=2x?1?2x?3的最值 解:2x?1?2x?3≤2x?1?2x?3=2,即得到?2≤2x?1?2x?3≤2,函数f x的最小值为?2,最大值为2。 2、当绝对值中x的系数不相同时。 ①零点分段,②写出分段函数,③画草图(或直接由直线的上升与下降判断最高或最低处),在分界点处求最值。 例:求函数f x=2x?2+x+2的最值 解:当 x≤?2 ?x+2?(2x?2)即 x≤?2 ?3x, 当 ?2

则有f x= ?3x, x≤?2 ?x+4, ?2f x恒成立,则a>f max(x) 例1:x?3+x?4>a对一切x∈R恒成立,求a的取值范围。 析:先求函数f x=x?3+x?4的最小值,再a f max(x)二次不等式。 解:由于x∈0,1,则f x=2x?1?x?2, 当 0≤x≤1 2 ?2x?1?x?2 即 0≤x≤1 2 ?3x?1 当 1 2

含绝对值不等式的题型

含绝对值不等式题型 一、单绝对值问题 1.解下列不等式: (1).4321x x ->+; (2).|2||1|x x -<+; (3).4|23|7x <-≤: (4).|23|3x x ->; (5). 2x x +≥ 2. 不等式1|1|3x <+<的解集为( ). .A (0,2) .B (2,0)(2,4)- .C (4,0)- .D (4,2)(0,2)-- 3. 已知全集{12345}U =,,,,,集合{} 32A x Z x =∈-<,则U C A = ( ) .A {1234},,, .B {234},, .C {15}, .D {5} 4. 设集合{}22,A x x x R =-≤∈,{}2,12B y x x ==--≤≤,则()R C A B 等于 ( ) .A R .B {},0x x R x ∈≠ .C {}0 .D ? 5. 不等式2103x x -≤的解集为( ) .A {|2x x ≤≤ .B {}|25x x -≤≤ .C {}|25x x ≤≤ .D {}5x x ≤ 6. 若x R ∈,则()()110x x -+>的解集是 ( ) .A {} 01x x ≤< .B {0x x <且1}x ≠- .C {}11x x -<< .D {1x x <且1}x ≠- 7. 不等式()120x x ->的解集是( ) .A ()1 2,-∞ .B ()()1 2,00,-∞ .C ()12,+∞ .D ()120, 8. 不等式3529x ≤-<的解集是 ( ) .A ()(),27,-∞-+∞ .B []1,4 .C [][]2,14,7- .D (][)2,14,7- 9. 不等式211x x --<的解集是_______________. 10. 方程223x x x ++223x x x ++=的解集为___________,不等式22||x x x x -->的解集是_______

含参数不等式及绝对值不等式的解法

含参数不等式及绝对值不等式的解法 例1解关于x 的不等式:2(1)0x x a a ---> 0)(3 22<++-a x a a x 01)1(2<++-x a ax 02)12(2>++-x a ax 22+≥+ a x ax 11 +>-a x x 11<-x ax ()()02 21>----x a x a 0)2(≥--x x a x 01 2≥--x ax x a x x <- 0)2)(1(1≥----x x k kx 例2: 关于x 的不等式01)1(2 <-+-+a x a ax 对于R x ∈恒成立,求a 的取值范围。

例3:若不等式210x ax ≥++对于一切1(0,)2 x ∈成立,则a 的取值范围. 例4:若对于任意a (]1,1-∈,函数()()a x a x x f 2442-+-+=的值恒大于0,求x 的 取值范围。 例5:已知19≤≤-a ,关于x 的不等式: 0452 <+-x ax 恒成立,求x 的范围。 例 6: 对于∈x (0,3)上的一切实数x,不等式()122-<-x m x 恒成立,求实数m 的 取值范围。 例7:2212<--+x x 1332+<-x x 321+<+x x x x 332≥- 例8、 若不等式a x x >-+-34,对一切实数x 恒成立,求a 的取值范围 若不等式a x x >---34,对一切实数x 恒成立,求a 的取值范围 若不等式a x x <---34有解,求a 的取值范围 若不等式a x x <---34的解集为空集,求a 的取值范围 若不等式a x x <---34解集为R ,求a 的取值范围

含绝对值的不等式-公开课教案

含绝对值的不等式 教学目标 1.认知目标 (1)掌握|x|a(a>0)型的绝对值不等式的解法; (2)理解掌握绝对值的意义和利用数轴表示含绝对值的不等式的解集 2.能力目标 (1)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力; (2)通过将含绝对值的不等式同解变形为不含绝对值的不等式,培养学生化归的思想和转化的能力; (3)采用分析与综合的方法,培养学生逻辑思维能力; (4)通过学生练习和老师点拨,培养学生的运算能力 3.情感目标 培养学生的学习兴趣和端正的学习态度,让学生理解学习数学的重要性 4.德育教育 我们为什么而读书 教学重点:|x|a(a>0)型的不等式的解法; 教学难点:利用绝对值的意义分析、解决问题.

教学过程设计 教师活动学生活动设计意图 一、导入新课 【提问】正数的绝对值什么?负数的绝对值是什么?零的绝对值是什么?举例说明? 口答 a (a>0) |a|= 0 (a=0) -a (a<0) 绝对值的概念是解|x|>a与 |x|0)型绝对值不等 式的基础,为解这种类型的 绝对值不等式做好铺垫. 二、新课 【导入】2的绝对值等于几?-2的绝对值等于几?绝对值等于2的数有哪些?在数轴上表示出来. 【讲述】求绝对值等于2的数可以用方程|x|=2来表示,这样的方程叫做绝对值方程.显然,它有两个解一个是2,另一个是-2. 【绝对值的意义】在数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值. 【提问】如何解绝对值方程. 【设问】 1 解绝对值不等式|x|<2,并用数轴表示它的解集。 2 解绝对值不等式|x|>2,并用数轴表示它的解集。 【讲述】根据绝对值的意义,由右面的数轴可以看出,不等式|x|<2的解集就是表示数轴上到原点的距离小于2的点的集合;不等式|x|>2的解集就是表示数轴上到原点的距离大于2的点的集合。【巩固旧知识】 1.数轴的含义和几何意义 学生口答 归纳:数轴是一条规定了 原点、方向和单位长度的直 线。原点、方向和单位长度称 为数轴的三要素。 【笔答并点拨】 注意观察数轴上所表示的 集合,理解和区分两种情况 根据绝对值的意义自然引出 绝对值方程|x|=a(a>0)的 解法. 由浅入深,循序渐进,在 |x|=a(a>0)型绝对值方程 的基础上引出|x|0)型 绝对值方程的解法. 针对解|x|>a(a>0)绝对值不 等式学生常出现的情况,运 用数轴质疑、解惑. 落实会正确解出|x|0) 与|x|>a(a>0)绝对值不等式 的教学目标.

专题一、含绝对值不等式的解法(含答案)

第三讲 含绝对值不等式与一元二次不等式 一、知识点回顾 1、绝对值的意义:(其几何意义是数轴的点A (a )离开原点的距离a OA =) ()()()?? ? ??<-=>=0,0,00,a a a a a a 2、含有绝对值不等式的解法:(解绝对值不等式的关键在于去掉绝对值的符号) (1)定义法; (2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式; (3)平方法:通常适用于两端均为非负实数时(比如()()x g x f <); (4)图象法或数形结合法; (5)不等式同解变形原理:即 ()a x a a a x <<-?><0 ()a x a x a a x -<>?>>或0 ()c b ax c c c b ax <+<-?><+0 ()c b ax c b ax c c b ax -<+>+?>>+或0 ()()()()()x g x f x g x g x f <<-?< ()()()()()()x g x f x g x f x g x f <>?>或 ()()()()a x f b b x f a a b b x f a -<<-<><<或0 3、不等式的解集都要用集合形式表示,不要使用不等式的形式。 4、二次函数、一元二次方程、一元两次不等式的联系。(见P8) 5、利用二次函数图象的直观性来研究一元二次方程根的性质和一元二次不等式解集及变化,以及含字母的有关问题的讨论,渗透数形结合思想。 6、解一元二次不等式的步骤: (1)将不等式化为标准形式()002≥>++c bx ax 或()002≤<++c bx ax (2)解方程02=++c bx ax (3)据二次函数c bx ax y ++=2的图象写出二次不等式的解集。 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与c b ax <+型的不等式的解法。

绝对值不等式的解法教学设计教学内容

绝对值不等式的解法 教学设计

《绝对值不等式的解法》教学设计 富源四中朱树平 课题:绝对值不等式的解法 科目数学教学对象学生课 时 1 提供者朱树平单位富源四中 一、教学目标 熟练掌握含一个或两个绝对值不等式的解法,会用函数的思想来解决不等式的相关问题.培养学生观察、分析、解决问题的能力 二、教学内容及模块整体分析 含一个或两个绝对值不等式的解法,零点分段法解绝对值不等式,函数思想的应用。 三、学情分析 学生基础差,少讲多练,以基础题为主。 四、教学策略选择与设计 讲练结合,多媒体展现。 五、教学重点及难点 熟练掌握含一个或两个绝对值不等式的解法,会用函数的思想来解决不等式的相关问题. 六、教学过程 教师活动学生活动设计意图 提问的方式总结前面学过的知识问题: 你能一眼看出下面两个不等式的解集吗? ⑴1 x< ⑵ 1 x> 让学生熟练 掌握 一般地,可得解集规律: 形如|x|a (a>0)的含绝对值的不等式的解集: 不等式|x|a的解集为 {x|x<-a或x>a } 课堂练习一: 试解下列不等式: 熟练地掌握 方法 (1)|32|7 x -≥ 仅供学习与交流,如有侵权请联系网站删除谢谢2

注:如果0 a≤,不等式的解集易得. 利用这个规律可以解一些含有绝对值的不等式. 解绝对值不等式的思路是转化为等价的不含绝对值符号的不等式(组),根据式子的特点可用下列解法公式进行转化:⑴()()() f x a a f x a f x a (0) >>?><- 或; ⑵()() (0) f x a a a f x a <>?-<<; ⑶()()() f x g x f x g x f x g x ()()() >?><- 或; ⑷()() ()()() f x g x g x f x g x ?> ???? 更熟练的掌 握一般情况 试解不等式 |x-1|+|x+2|≥5 利用|x-1|=0,|x+2|=0的零 点,将数轴分为三个区间, 然后在这三个区间上将原不 等式分别化为不含绝对值符 号的不等式求解.体现了分 类讨论的思想. {} 23 ≥≤ x x x- 或熟练掌握零点分段法在解不等式中的应用。 学习小结: 解绝对值不等式的基本思路是去绝对值符号转化为一般不等式来处理。 主要方法有: 1、同解变形法:运用解法公式直接转化; 2、分类讨论去绝对值符1、解不等式|2x-4|-|3x+9|<1 2、对任意实数x,若不等式|x+1|-|x-2|>k 恒成立,则k的取值范围是() ()3 A k<()3 B k<-()3 C k≤()3 D k- ≤ 3.不等式有解的条件是 2 (2)|3|4 x x -< (3)|32|1 x-> 43 x x a -+-< 仅供学习与交流,如有侵权请联系网站删除谢谢3

含绝对值的不等式解法练习题及答案

学习好资料欢迎下载 例 1不等式|8-3x|>0的解集是 [] A. B . R C. {x|x ≠88 }D.{ } 33 8 分析∵ |8-3x|>0,∴ 8-3x≠ 0,即x≠. 答选 C. 例 2绝对值大于 2 且不大于 5 的最小整数是 [] A . 3 B. 2 C.- 2 D.- 5 分析列出不等式. 解根据题意得2<|x|≤ 5. 从而- 5≤x<- 2 或 2< x≤ 5,其中最小整数为-5, 答选 D. 例 3 不等式4<|1-3x|≤7的解集为________. 分析利用所学知识对不等式实施同解变形. 解原不等式可化为4< |3x- 1|≤ 7,即 4<3x- 1≤7 或- 7 ≤ 3x- 1<- 4解之得5 < x≤ 8 或- 2≤ x<- 1,即所求不等式解集为33 58 . {x| - 2≤ x<- 1或< x≤} 33 例 4已知集合 A = {x|2 < |6- 2x|< 5,x∈ N} ,求 A .分析转化为解绝对值不等式. 解∵ 2<|6- 2x|< 5 可化为 2< |2x- 6|<5 -5< 2x- 6< 5, 即 2x - 6> 2或 2x - 6<- 2, 1< 2x <11, 即 2x > 8或 2x< 4, 解之得 4< x<11 或 1 < x< 2.22 因为 x∈ N,所以 A = {0 ,1, 5} . 说明:注意元素的限制条件. 例 5实数a,b满足ab<0,那么 []

A . |a-b|< |a|+ |b| B. |a+ b|> |a- b| C. |a+ b|< |a- b| D. |a-b|< ||a|+ |b|| 分析根据符号法则及绝对值的意义. 解∵ a、b 异号, ∴|a+ b|< |a-b|. 答选C. 例 6 设不等式|x-a|<b的解集为{x|-1<x<2},则a,b的值为 [] A . a=1, b= 3 B. a=- 1, b= 3 C. a=- 1, b=- 3 1 3 D . a=2, b=2 分析解不等式后比较区间的端点. 解由题意知, b> 0,原不等式的解集为{x|a - b< x< a+ b} ,由于解集又为{x| - 1<x< 2} 所以比较可得. a- b=- 11 , b=3. ,解之得 a= a+ b= 222 答选 D. 说明:本题实际上是利用端点的位置关系构造新不等式组.例 7 解关于x的不等式|2x-1|<2m-1(m∈R) 分析分类讨论. 解若 2m- 1≤ 0即m≤1 ,则 |2x- 1|< 2m- 1恒不成立,此时原不等 2式的解集为; 若 2m- 1> 0即 m>1 ,则- (2m- 1) < 2x- 1< 2m- 1,所以 1- m< 2 x< m. 综上所述得:当m≤1 时原不等式解集为;2 当 m>1 时,原不等式的解集为2 {x|1 - m< x<m} . 说明:分类讨论时要预先确定分类的标准. 例 8 解不等式3-|x| ≥ 1 .|x|+ 2 2 分析一般地说,可以移项后变形求解,但注意到分母是正数,所以能直接去分母.

含绝对值的不等式解法(北师版)

1.4 含绝对值的不等式解法 1.不等式|x-2|>1的解集是(D ) A .}31|{<--x ,∴1x . 2.不等式1|31|<-x 的解集为(C ) A .,0|{x B .,3 2 |{-x C .}3 20|{<3 |1|11 ||x x B .? ??-<>-3212x x C .?? ?≤->3 1 x x D .? ? ?≤->3|1|1 ||x x 提示:逐一求解不等式组,或直接判断可知A 中不等式组是恒成立的不等式组. 4.已知集合M={x||x-1|<2}与集合P={x||x-1|>1},则M ∩P=(C ) A .{x|-13} 提示:M=}31|{<<-x x ,P=0|{x . 5.已知不等式|x-a|

C .3、9 D .-3、6 提示:必有0>b ,∴b a x b <-<-,即不等式的解为b a x b a +<<-,令3-=-b a ,9=+b a 解得. 6.已知不等式|x+3|≥|x-5|成立,则实数x 的取值范围是(B ) A .{x|x>1} B .{x|x ≥1} C .{x|x<1} D .{x|x ≤1} 提示:即0)5()3(22≥--+x x ,∴0)53)(53(≥+-+-++x x x x . 7.已知a 2=9,则不等式x 2-|a|≥0的解集是(B ) A .{x|x ≤3-,或x ≥3} B .{x|x ≤3-,或x ≥3} C .{x|3-≤x ≤3} D .{x|3-≤x ≤3} 提示:即32 ≥x . 8.不等式|21||3|x x ->+的解集是(A ) A .2 {|3 x x <- ,或4}x > B .{|3x x <-,或4}x > C .{|34}x x -<< D .2 {|4}3 x x - << 提示:原不等式即22(21)(3)x x ->+,∴(213)(213)0x x x x -++--->,即(32)(4)0x x +->,∴2 3 x <-,或4x >,故选A . 9.设集合M={2|||<-a x x },P={x | 12 1 2<+-x x },若M ?P ,则实数a 的取值范围是(A ) A .{a |0≤≤a 1} B .{a |0<>的解集是)2()2(∞+--∞,, ,则不等式3|3 |-≤-a a x 的解集是(C ) A .)1[]1(∞+--∞,, B .R C .Ф D .]11[, - 提示:由已知得a=2,则不等式3|3 | -≤-a a x 即为1||-

含绝对值的不等式解法练习题及答案

含绝对值的不等式解法 练习题及答案 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 } ...≠.?8 3 分析∵->,∴-≠,即≠. |83x|083x 0x 8 3 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为 -≤<-或<≤. 3x 14x 2x 1{x|2x 1x }538 3 538 3 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-,52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4??? 解之得<< 或<<.4x x 21121 2 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么 [ ]

A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=123 2 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2 a b -=-+=,解之得=,=.?? ?123 2 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 11 2 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 1 2 x <m . 综上所述得:当≤时原不等式解集为; 当>时,原不等式的解集为 m m 1 2 1 2 ? {x|1-m <x <m}. 说明:分类讨论时要预先确定分类的标准. 例解不等式 -+≥.8 321 2 ||||x x

含参不等式的解法(教师版)

不等式(3)----含参不等式的解法 当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。解参数不等式一直是高考所考查的重点内容。 (一)几类常见的含参数不等式 一、含参数的一元二次不等式的解法: 例1:解关于的x 不等式2(1)410()m x x m R +-+≤∈ 分析:当m+1=0时,它是一个关于x 的一元一次不等式;当m+1≠1时,还需对m+1>0及m+1<0来分类讨论,并结合判别式及图象的开口方向进行分类讨论:⑴当m<-1时,⊿=4(3-m )>0,图象开口向下,与x 轴有两个不同交点,不等式的解集取两边。⑵当-10, 图象开口向上,与x 轴有两个不同交点,不等式的解集取中间。⑶当m=3时,⊿=4(3-m )=0,图象开口向上,与x 轴只有一个公共点,不等式的解为方程24410x x -+=的根。⑷当m>3时,⊿=4(3-m )<0,图象开口向上全部在x 轴的上方,不等式的解集为?。 解:11,|;4m x x ? ?=-≥???? 当时原不等式的解集为 ???? ??+-+≤≤+--<<-? ?????+-+≤+--≥-3时, 原不等式的解集为?。 小结:⑴解含参数的一元二次不等式可先分解因式再讨论求解,若不易分解,也可对判别式分类讨论。⑵利用函数图象必须明确:①图象开口方向,②判别式确定解的存在范围,③两根大小。⑶二次项的取值(如取0、取正值、取负值)对不等式实际解的影响。 牛刀小试:解关于x 的不等式)0(,04)1(22>>++-a x a ax 思路点拨:先将左边分解因式,找出两根,然后就两根的大小关系写出解集。具体解答请同学们自己完成。 二、含参数的分式不等式的解法: 例2:解关于x 的不等式02 12>---x x ax 分析:解此分式不等式先要等价转化为整式不等式,再对ax -1中的a 进行分类讨论求解,还需用到序轴标根法。 解:原不等式等价于0)1)(2)(1(>+--x x ax 当a =0时,原不等式等价于0)1)(2(<+-x x 解得21<<-x ,此时原不等式得解集为{x|21<<-x };

相关文档
最新文档