光模块的光电技术参数

合集下载

光模块参数说明

光模块参数说明

对于硬件开发工程师而言,光模块有很多很重要的光电技术参数,但对于GBIC和SFP这两种热插拔光模块而言,只需要了解光模块的如下3种主要参数就可以顺利开展工作了:第一、中心波长:单位纳米(nm),目前主要有3种:1) 850nm(MM,多模,成本低但传输距离短,一般只能传输500M);2) 1310nm (SM,单模,传输过程中损耗大但色散小,一般用于40KM以内的传输);3) 1550nm (SM,单模,传输过程中损耗小但色散大,一般用于40KM以上的长距离传输,最远可以无中继直接传输120KM);第二、传输速率:指每秒钟传输数据的比特数(bit),单位bps,目前常用的有4种: 155Mbps、1.25Gbps、2.5Gbps、10Gbps等。

传输速率一般向下兼容,因此155M光模块也称FE(百兆)光模块,1.25G光模块也称GE(千兆)光模块,这是目前光传输设备中应用最多的模块。

此外,在光纤存储系统(SAN)中它的传输速率有2Gbps、4Gbps和8Gbps;第三、传输距离:指光信号无需中继放大可以直接传输的距离,单位千米(也称公里,km),光模块一般有以下几种规格:多模550m,单模15km、40km、80km和120km等等,详见第一项说明。

光模块的其他概念:除以上3种主要技术参数外,光模块还有如下几个基本概念,这些概念只需简单了解就行:1)激光器类别:激光器是光模块中最核心的器件,将电流注入半导体材料中,通过谐振腔的光子振荡和增益射出激光。

目前最常用的激光器有FP和DFB激光器,它们的差异是半导体材料和谐振腔结构不同,DFB激光器的价格比FP激光器贵很多。

传输距离在40KM以内的光模块一般使用FP激光器;传输距离≥40KM的光模块一般使用DFB激光器;2)损耗和色散:损耗是光在光纤中传输时,由于介质的吸收散射以及泄漏导致的光能量损失,这部分能量随着传输距离的增加以一定的比率耗散。

色散的产生主要是因为不同波长的电磁波在同一介质中传播时速度不等,从而造成光信号的不同波长成分由于传输距离的累积而在不同的时间到达接收端,导致脉冲展宽,进而无法分辨信号值。

光模块的波长

光模块的波长

光模块的波长
光模块是一种可插拔式的光电传输模块,通常由激光驱动器、接收器、接口、封装等组成。

在使用光模块进行数据传输时,其波长是非常重要的参数。

波长是光信号传输中的一个关键指标,它直接影响着光信号的传输距离和性能。

光模块的波长通常是在850nm、1310nm和1550nm这三个波段中选取的。

在这三种不同的波段中,每一种波长都具有不同的优点和应用场景。

850nm波长的光模块在短距离的数据传输中表现出色,其传输距离一般在几十米到几百米之间。

1310nm波长的光模块适用于中短距离的数据传输,其传输距离一般在几百米到几千米之间。

1550nm波长的光模块适用于长距离的数据传输,其传输距离可以达到几十公里以上。

此外,不同的光模块波长还会对信号的传输速率产生影响。

一般来说,波长越短,传输速率越快。

在短距离的数据传输中,850nm波长的光模块可以实现高达10Gbps的传输速率;在长距离的数据传输中,1550nm波长的光模块可以实现更高的传输速率。

综上所述,选择合适的光模块波长是保证光信号传输质量和性能的关键。

在实际应用中,需要根据具体的传输距离和传输速率要求来选择合适的光模块波长。

- 1 -。

光收发一体模块参数

光收发一体模块参数

光收发一体模块的参数主要包括以下几项:
1. 中心波长:常用的有850nm(MM,多模,成本低但传输距离短,一般只能传输500M)、1310nm(SM,单模,传输过程中损耗大但色散小,一般用于40KM以内的传输)、1550nm (SM,单模,传输过程中损耗小但色散大,一般用于40KM以上的长距离传输,最远可以无中继直接传输120KM)。

2. 传输速率:常用的有155Mbps、1.25Gbps、2.5Gbps、10Gbps等。

3. 接口类型:常见的接口类型有LC、FC、SC等。

4. 传输距离:光模块的传输距离与中心波长和光功率等因素有关。

一般来说,短距离光模块的传输距离在几米到几十米之间,长距离光模块的传输距离可以达到几百米甚至几公里。

5. 光功率:光功率是光模块的一个重要参数,它决定了光模块的发送光信号的能力。

一般来说,光功率越高,传输距离越远。

但同时,光功率过高可能会对光模块的接收端造成过载,因此需要根据实际需求选择合适的光功率。

6. 插损:插损是指光模块插入后对信号的衰减程度。

插损越小,信号衰减越少,传输质量越高。

7. 带宽:光模块的带宽决定了其传输数据的能力。

一般来说,带宽越宽,传输速率越高。

8. 封装形式:光模块的封装形式决定了其与光纤的连接方式,常见的封装形式有SFP、SFP+、QSFP+等。

9. 可靠性:光模块的可靠性是指其在规定条件下和规定时间内完成规定功能的能力。

可靠性越高的光模块越能保证系统的稳定运行。

以上是光收发一体模块的一些主要参数,选择合适的光模块需要根据实际需求进行综合考虑。

光模块技术参数

光模块技术参数

光模块的技术参数2007-12-06 17:151、光模块传输数率:指每秒传输比特数,单位Mb/s或Gb/s。

2、光模块发射光功率和接收灵敏度:发射光功率指发射端的光强,接收灵敏度指可以探测到的光强度。

两者都以dBm为单位,是影响传输距离的重要参数。

光模块可传输的距离主要受到损耗和色散两方面受限。

损耗限制可以根据公式:损耗受限距离=(发射光功率-接收灵敏度)/光纤衰减量来估算。

光纤衰减量和实际选用的光纤相关。

一般目前的光纤可以做到1310nm波段km,1550nm 波段km甚至更佳。

50um多模光纤在850nm波段4dB/km 1310nm波段2dB/km。

对于百兆、千兆的光模块色散受限远大于损耗受限,可以不作考虑。

3、10GE光模块遵循的标准,传输的距离和选用光纤类型、光模块光性能相关。

4、饱和光功率值指光模块接收端最大可以探测到的光功率,一般为-3dBm。

当接收光功率大于饱和光功率的时候同样会导致误码产生。

因此对于发射光功率大的光模块不加衰减回环测试会出现误码现象。

5、传输距离光模块的传输距离分为短距、中距和长距三种。

一般认为2km及以下的为短距离,10~20km的为中距离,30km、40km及以上的为长距离。

光模块的传输距离受到限制,主要是因为光信号在光纤中传输时会有一定的损耗和色散。

损耗是光在光纤中传输时,由于介质的吸收散射以及泄漏导致的光能量损失,这部分能量随着传输距离的增加以一定的比率耗散。

色散的产生主要是因为不同波长的电磁波在同一介质中传播时速度不等,从而造成光信号的不同波长成分由于传输距离的累积而在不同的时间到达接收端,导致脉冲展宽,进而无法分辨信号值。

因此,用户需要根据自己的实际组网情况选择合适的光模块,以满足不同的传输距离要求。

6、中心波长中心波长指光信号传输所使用的光波段。

目前常用的光模块的中心波长主要有三种:850nm波段、1310nm波段以及1550nm波段850nm波段:多用于短距离传输1310nm和1550nm波段:多用于中长距离传输光纤光模块应用特性和检测参数值的参考1引言今天,以太网技术已成为局域网中不可或缺、暂时还无可取代的技术。

光照模块介绍

光照模块介绍

光照模块介绍
光模块是一种光收发一体模块,由光电子器件、功能电路和光接口等组成。

其中,光电子器件包括发射和接收两部分。

发射部分是将输入的电信号经内部的驱动芯片处理后驱动半导体激光器(LD)或发光二极管(LED)发射出相应速率的调制光信号,其内部带有光功率自动控制电路,使输出的光信号功率保持稳定。

接收部分是将输入的光信号由光探测二极管转换为电信号,经前置放大器后输出相应码率的电信号,输出的信号一般为PECL电平。

同时,在输入光功率小于一定值后会输出一个告警信号。

光模块的基本参数包括传输速率、波长、传输距离和连接器类型等。

根据不同的传输协议和系统需求,光模块有不同的接口规范和封装形式,例如SFP、SFP+、QSFP+等。

光模块在通信网络、数据中心等领域有着广泛的应用。

随着云计算、大数据等技术的发展,光模块的需求不断增加,技术也在不断进步和创新。

未来,随着5G、物联网等技术的普及,光模块的应用场景将更加广泛,技术将更
加成熟和先进。

光模块SFP与SFP、XFP、QSFP、QSFP的区别及参数

光模块SFP与SFP、XFP、QSFP、QSFP的区别及参数

光模块与、、、地区别收发器有多种不同地发送和接收类型,用户可以为每个链接选择合适地收发器,以提供基于可用地光纤类型(如多模光纤或单模光纤)能达到地"光学性能".可用地光学模块一般分为如下类别:纳米波长米距离地 ()、纳米波长公里距离地 ()、纳米波长公里距离地、公里距离地、公里距离地或,以及.收发器也提供铜缆接口,使得主要为光纤通信设计地主机设备也能够通过网络线缆通信.也存在波分复用()以及单光纤"双向"(纳米波长上行下行)地.商用收发器能够提供速率达到 . 收发器地几种封装形式为,以及与封装基本一致地新地变种"".( 地缩写),是将千兆位电信号转换为光信号地接口器件.设计上可以为热插拔使用.是一种符合国际标准地可互换产品.采用接口设计地千兆位交换机由于互换灵活,在市场上占有较大地市场份额. ()可以简单地理解为地升级版本.支持、、光纤通道()以及一些其他通信标准.此标准扩展到了,能支持传输速率,包括光纤通道和.引入了光纤和铜芯版本地模块版本,与模块地、或版本相比,模块将部分电路留在主板实现,而非模块内实现b5E2R。

模块经历了从,,,地发展,最终实现了用和一样地尺寸传输地信号,这就是.凭借其小型化低成本等优势满足了设备对光模块高密度地需求,从年标准推出,到年已经取代成为市场主流.p1Ean。

光模块优点:、具有比和封装更紧凑地外形尺寸(与尺寸相同);、可以和同类型地直接连接;、成本比产品低.DXDiT。

和地区别:、和外观尺寸相同;、协议规范:、;和地区别:、和都是地光纤模块,且与其它类型地模块可以互通;、比外观尺寸更小;、因为体积更小将信号调制功能,串行解串器、、时钟和数据恢复(),以及电子色散补偿()功能从模块移到主板卡上;、遵从地协议:协议;、遵从地协议:、、;、是更主流地设计.、协议规范:、、.RTCrp。

:四通道接口(),是为了满足市场对更高密度地高速可插拔解决方案地需求而诞生地.这种通道地可插拔接口传输速率达到了.很多中成熟地关键技术都应用到了该设计中.可以作为一种光纤解决方案,并且速度和密度均优于通道接口.由于可在相同地端口体积下以每通道地速度支持四个通道地数据传输,所以地密度可以达到产品地倍,产品地倍.具有通道且密度比高地接口已经被标准所采用.5PCzV。

光模块的关键参数-概述说明以及解释

光模块的关键参数-概述说明以及解释

光模块的关键参数-概述说明以及解释1.引言1.1 概述概述部分的内容:光模块作为光通信系统中的关键组件,扮演着传输光信号的重要角色。

它将电信号转换为光信号,并在光纤之间进行传输。

光模块的性能和参数对于光通信系统的性能和稳定性具有至关重要的影响。

因此,了解光模块的关键参数是设计和优化光通信系统的关键步骤。

本文将详细介绍光模块的关键参数,以帮助读者更好地理解光模块的性能和工作原理。

在正文部分,我们将重点介绍三个关键参数,它们分别是关键参数1,关键参数2和关键参数3。

通过对这些参数的深入理解,读者将能够更好地评估光模块的性能,并选择适合自己需求的光模块。

在结论部分,我们将对这些关键参数进行总结,并分析它们对光模块性能的影响。

同时,我们也将探讨光模块未来的发展方向,以及可能的改进和创新方向。

通过本文的阅读,读者将对光模块的关键参数有更深入的了解,并能够更好地应用和优化光通信系统中的光模块。

1.2文章结构文章结构部分是为了帮助读者更好地理解整篇文章的组织和内容安排。

本文主要围绕光模块的关键参数展开,分为引言、正文和结论三个部分。

引言部分是文章的开篇,主要介绍本文的背景和目的。

概述部分简要说明了光模块的重要性及应用范围。

文章结构部分则提供了本篇长文的整体框架,让读者对文章内容有一个大致的了解。

目的部分明确说明了本文的目标,即通过解析光模块的关键参数,全面了解光模块的性能。

总结部分对本文进行了一次小结,概括了后续章节的内容和意义。

正文部分是本文的核心部分,分为三个章节,分别介绍了光模块的三个关键参数。

具体来说,关键参数1章节详细介绍了xxx参数的含义、重要性和测量方法。

关键参数2章节则着重探讨了xxx参数的特点、对光模块性能的影响以及常见的改进方法。

关键参数3章节则深入分析了xxx参数的实际应用场景和未来发展趋势。

结论部分是对整篇文章进行总结和回顾。

总结关键参数部分对前述章节的内容进行简要总结,概括出光模块关键参数的重要性和研究价值。

超详细的光模块介绍

超详细的光模块介绍

超详细的光模块介绍光模块发展简述光模块分类按封装:1*9 、GBIC、SFF、SFP、XFP、SFP+、X2、XENPARK、300pin 等。

按速率:155M、622M、1.25G、2.5G、4.25G、10G、40G等。

按波长:常规波长、CWDM、DWDM等。

按模式:单模光纤(黄色)、多模光纤(橘红色)。

按使用性:热插拔(GBIC、SFP、XFP、XENPAK)和非热插拔(1*9、SFF)。

封装形式光模块基本原理光收发一体模块(Optical Transceiver)光收发一体模块是光通信的核心器件,完成对光信号的光-电/电-光转换。

由两部分组成:接收部分和发射部分。

接收部分实现光-电变换,发射部分实现电-光变换。

发射部分:输入一定码率的电信号经内部的驱动芯片处理后驱动半导体激光器(LD)或发光二极管(LED)发射出相应速率的调制光信号,其内部带有光功率自动控制电路(APC),使输出的光信号功率保持稳定。

接收部分:一定码率的光信号输入模块后由光探测二极管转换为电信号,经前置放大器后输出相应码率的电信号,输出的信号一般为PECL电平。

同时在输入光功率小于一定值后会输出一个告警信号。

光模块内部结构光模块的主要参数1. 传输速率传输速率指每秒传输比特数,单位Mb/s 或Gb/s。

主要速率:百兆、千兆、2.5G、4.25G和万兆。

2.传输距离光模块的传输距离分为短距、中距和长距三种。

一般认为2km 及以下的为短距离,10~20km 的为中距离,30km、40km 及以上的为长距离。

■光模块的传输距离受到限制,主要是因为光信号在光纤中传输时会有一定的损耗和色散。

注意:• 损耗是光在光纤中传输时,由于介质的吸收散射以及泄漏导致的光能量损失,这部分能量随着传输距离的增加以一定的比率耗散。

• 色散的产生主要是因为不同波长的电磁波在同一介质中传播时速度不等,从而造成光信号的不同波长成分由于传输距离的累积而在不同的时间到达接收端,导致脉冲展宽,进而无法分辨信号值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对于硬件开发工程师而言,光模块有很多很重要的光电技术参数,但对于GBIC和SFP这两种热插拔光模块而言,只需要了解光模块的如下3种主要参数就可以顺利开展工作了:
第一、中心波长:单位纳米(nm),目前主要有3种:
1)850nm(MM,多模,成本低但传输距离短,一般只能传输500M);
2)1310nm (SM,单模,传输过程中损耗大但色散小,一般用于40KM以内的传输);
3)1550nm (SM,单模,传输过程中损耗小但色散大,一般用于40KM以上的长距离传输,最远可以无中继直接传输120KM);
第二、传输速率:指每秒钟传输数据的比特数(bit),单位bps,目前常用的有4种: 155Mbps、1.25Gbps、2.5Gbps、10Gbps等。

传输速率一般向下兼容,因此155M光模块也称FE(百兆)光模块,1.25G光模块也称GE(千兆)光模块,这是目前光传输设备中应用最多的模块。

此外,在光纤存储系统(SAN)中它的传输速率有2Gbps、4Gbps和8Gbps;
第三、传输距离:指光信号无需中继放大可以直接传输的距离,单位千米(也称公里,km),光模块一般有以下几种规格:多模550m,单模15km、40km、80km和120km等等,详见第一项说明。

光模块的其他概念:
除以上3种主要技术参数外,光模块还有如下几个基本概念,这些概念只需简单了解就行:1)激光器类别:激光器是光模块中最核心的器件,将电流注入半导体材料中,通过谐振腔的光子振荡和增益射出激光。

目前最常用的激光器有FP和DFB激光器,它们的差异是半导体材料和谐振腔结构不同,DFB激光器的价格比FP激光器贵很多。

传输距离在40KM以内的光模块一般使用FP激光器;传输距离≥40KM的光模块一般使用DFB激光器;
2)损耗和色散:损耗是光在光纤中传输时,由于介质的吸收散射以及泄漏导致的光能量损失,这部分能量随着传输距离的增加以一定的比率耗散。

色散的产生主要是因为不同波长的电磁波在同一介质中传播时速度不等,从而造成光信号的不同波长成分由于传输距离的累积而在不同的时间到达接收端,导致脉冲展宽,进而无法分辨信号值。

这两个参数主要影响光模块的传输距离,在实际应用过程中,1310nm光模块一般按0.35dBm/km计算链路损耗,1550nm光模块一般按0.20dBm/km计算链路损耗,色散值的计算非常复杂,一般只作参考;3)发射光功率和接收灵敏度:发射光功率指光模块发送端光源的输出光功率,接收灵敏度指在一定速率、误码率情况下光模块的最小接收光功率。

这两个参数的单位都是dBm(意为分贝毫瓦,功率单位mw的对数形式,计算公式为10lg,1mw折算为0dBm),主要用来界定产品的传输距离,不同波长、传输速率和传输距离的光模块光发射功率和接收灵敏度都会不同,只要能确保传输距离就行;
4)光模块的使用寿命:国际统一标准,7Х24小时不间断工作5万小时(相当于5年);5)光纤接口:SFP光模块都是LC接口的,GBIC光模块都是SC接口的,其他接口还有FC和ST等;
6)工作温度:0~+70℃;储藏温度:-45~+80℃;工作电压:3.3V;工作电平:TTL。

相关文档
最新文档