2020年人教版高中数学知识点总结(最新最全)

合集下载

高中数学知识点总结全(最新)

高中数学知识点总结全(最新)

高中数学知识点总结全(最新)一、集合与函数概念1. 集合的基本概念集合的定义:集合是确定的、互不相同的对象的全体。

元素与集合的关系:属于(∈)、不属于(∉)。

集合的表示方法:列举法、描述法、图示法。

2. 集合的基本运算并集(∪):由两个集合的所有元素组成的集合。

交集(∩):由两个集合的共同元素组成的集合。

补集(C):全集中不属于某集合的元素组成的集合。

差集():由一个集合中不属于另一个集合的元素组成的集合。

3. 函数的概念函数的定义:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。

函数的三要素:定义域、对应关系、值域。

4. 函数的性质单调性:增函数、减函数。

奇偶性:奇函数、偶函数。

周期性:存在一个非零常数T,使得对于定义域内的任意x,都有f(x+T) = f(x)。

最值:最大值、最小值。

二、基本初等函数1. 一次函数定义:形如y = kx + b(k≠0)的函数。

图像:一条直线。

性质:单调性(k>0时增,k<0时减)、截距(b为y 轴截距)。

2. 二次函数定义:形如y = ax² + bx + c(a≠0)的函数。

图像:一条开口向上或向下的抛物线。

性质:顶点(b/2a, c b²/4a)、对称轴(x = b/2a)、单调性、最值。

3. 指数函数定义:形如y = a^x(a>0且a≠1)的函数。

图像:过点(0,1),当a>1时单调递增,当0<a<1时单调递减。

性质:无界性、单调性、特殊点。

4. 对数函数定义:形如y = log_a(x)(a>0且a≠1)的函数。

图像:过点(1,0),当a>1时单调递增,当0<a<1时单调递减。

性质:定义域(x>0)、单调性、特殊点。

5. 三角函数正弦函数:y = sin(x),周期为2π,图像为波形曲线。

人教版高中数学知识点总结

人教版高中数学知识点总结

人教版高中数学知识点总结高中数学是学生进入高中阶段后所学习的一门主要学科,人教版高中数学是其中一种教材版本。

以下是针对人教版高中数学的知识点的总结:一、函数与方程1. 函数与映射- 函数的定义、性质和表示方法- 映射的定义和性质- 函数的四则运算和复合运算2. 一次函数与二次函数- 一次函数的定义、图像和性质- 一次函数的解析式及其在实际问题中的应用- 二次函数的定义、图像和性质- 二次函数的标准型、顶点型和一般型的相互转化- 二次函数的解析式及其在实际问题中的应用3. 指数与对数函数- 指数函数的定义、图像和性质- 对数函数的定义、图像和性质- 指数方程与对数方程的解法4. 三角函数- 弧度制和角度制- 三角函数的定义、图像和性质- 三角函数的周期性、奇偶性和单调性- 三角函数的和差化积公式和倍角公式- 三角方程和三角不等式的解法5. 不等式与方程组- 一元一次不等式与一元一次方程组的解法- 一元二次不等式的解法- 一元二次方程的解法- 二元一次方程组的解法6. 高次方程- 因式分解与求根公式- 高次方程的解的判别法和综合问题二、数列与数列的极限1. 数列的概念和表示- 数列的定义、性质和表示方法- 等差数列和等比数列的概念和表示2. 数列的通项公式及其性质- 等差数列和等比数列的通项公式- 数列的前n项和公式3. 数列的极限- 数列极限的定义和性质- 数列收敛和发散的判断- 等比数列和等差数列的极限性质三、平面几何1. 直线与线段- 直线、线段和射线的概念- 直线的方程和性质2. 角与三角形- 角的概念和性质- 三角形的概念和性质- 三角形的面积和周长公式- 三角形的分类和判定方法3. 圆与圆的切线- 圆的概念和性质- 圆的方程和性质- 圆的弦、弧和切线的概念和性质4. 二次曲线- 抛物线、椭圆和双曲线的概念和性质- 二次曲线的标准方程和性质四、立体几何和空间解析几何1. 空间中的直线和平面- 空间直线的概念和性质- 空间平面的概念和性质- 空间中的直线与平面的位置关系2. 空间中的立体图形- 空间中的球、柱、锥、棱柱和棱锥的概念和性质- 空间图形的表面积和体积公式3. 空间解析几何- 点、直线和平面的坐标表示和性质- 空间中的距离和夹角的计算五、概率论- 概率的概念和性质- 试验、基本事件和样本空间的概念- 随机事件的概念和性质- 事件的概率计算方法- 条件概率和独立事件的概念和计算方法总结:以上是人教版高中数学的主要知识点总结,其中包含了函数与方程、数列与数列的极限、平面几何、立体几何和空间解析几何以及概率论等内容。

人教版高中数学必修一知识点总结

人教版高中数学必修一知识点总结

人教版高中数学必修一知识点总结一、知识概述1. 集合①基本定义:集合就像是一个装东西的袋子,把确定的、不同的东西放在一起。

比如咱班里的所有同学就可以看成一个集合。

②重要程度:在高中数学里那是相当重要的基础概念,很多后面的知识都会用到集合的思想。

③前置知识:初中就接触过一些数的概念,这是理解集合的铺垫。

④应用价值:在统计分类、计算机的数据结构方面都有用,像统计不同年龄段的人数,就可以用集合思想先把人按年龄分类成不同集合。

2. 函数①基本定义:简单说函数就是一个输入某个值会得到唯一输出值的东西。

像投篮,根据出手角度这个输入值,球进与否或者球的落点有一个对应的结果(输出值)。

②重要程度:函数贯穿整个高中数学,代数方面大部分研究都和函数有关。

③前置知识:掌握变量的概念比较重要,像小学初中知道的路程= 速度×时间,这里路程、速度、时间就是变量。

④应用价值:生活中根据体重计算健康指数、根据房子面积计算房价都是函数在生活中的体现。

二、知识体系1. 集合部分①知识图谱:集合是数学基础概念,为后面函数定义域等概念做准备。

②关联知识:和逻辑关系紧密,像子集的概念就和逻辑里的包含关系很类似。

像是班级女学生组成的集合是班级所有学生组成集合的子集。

③重难点分析:掌握集合的各种表示方法(列举法、描述法)有点难,而且要搞清元素和集合的关系、集合与集合的关系。

关键在于理解集合概念的本质。

④考点分析:考试里经常考集合的表示、集合间的运算(交并补),大多以选择题或者填空题形式出现。

2. 函数部分①知识图谱:函数处于高中数学核心位置,关联方程、不等式等知识。

②关联知识:函数和方程紧密相关,函数的零点就是方程的根。

比如y = x²- 1这个函数,当y = 0时,就是x²- 1 = 0这个方程,解得x 就叫函数的零点。

③重难点分析:函数的定义域、值域这是难点,还有函数单调性、奇偶性的理解。

关键点在于多画图去直观感受。

人教版高三数学复习知识点总结(2篇)

人教版高三数学复习知识点总结(2篇)

人教版高三数学复习知识点总结高中数学是一门关于数与形的科学,是培养学生逻辑思维和分析问题能力的重要学科。

在高三阶段,数学的学习内容相对较多,需要对前几年的数学知识进行深入的复习和巩固。

接下来,我将对人教版高三数学的复习知识点进行总结,帮助学生们进行整理和复习。

一、函数与方程1. 二次函数- 二次函数的概念与性质- 图像的性质(开口方向、对称轴等)- 平移、伸缩与翻折- 二次函数的一般式、顶点式、交点式- 判别式与根的性质- 解二次不等式- 二次函数与其他函数的关系(函数的复合、反函数等)2. 指数和对数函数- 指数函数和对数函数的概念与性质- 指数函数和对数函数的图像特点- 指数幂的性质和运算法则- 对数运算的性质和运算法则- 指数方程和指数不等式的解法- 对数方程和对数不等式的解法3. 三角函数- 弧度制与角度制的换算- 三角函数的图像与周期性- 三角函数的基本关系式与恒等式- 三角函数的运算性质与运算法则- 三角函数方程与三角函数不等式的解法- 解三角形的实际问题4. 高次方程和不等式- 一元高次方程的解法- 二元高次方程的解法- 一元高次不等式的解法- 二元高次不等式的解法- 高次方程和不等式的应用(实际问题的建立和解决)二、数列与数学归纳法1. 等差数列- 等差数列的概念与性质- 等差数列的通项公式和前n项和公式- 等差数列特殊求和公式的推导和应用- 等差数列简单应用(等差中项、等差平均项等)2. 等比数列- 等比数列的概念与性质- 等比数列的通项公式和前n项和公式- 等比数列特殊求和公式的推导和应用- 等比数列简单应用(等比中项、等比平均项等)3. 等差数列与等比数列的综合应用- 等差数列与等比数列的综合应用(数列的运算、数列的混合应用)4. 数学归纳法- 数学归纳法的基本思想与步骤- 数学归纳法与数列的联系- 数学归纳法的简单应用(证明不等式、性质等)三、三角恒等变换1. 三角函数的基本关系式与恒等式- 三角函数的基本关系式(同角三角函数值之间的关系)- 三角函数的恒等变换(三角函数的和差化积、积化和差等)2. 三角恒等式的证明- 三角恒等式的证明方法和技巧- 三角恒等式的应用(证明不等式、求解方程等)四、数学推理与解题方法1. 数学证明- 数学证明的基本思路和方法- 数学证明的常用技巧(对称性、反证法、递推关系等)2. 数学建模与解题方法- 数学建模的基本流程和方法- 数学建模中的常用工具(函数图像、数列和方程)3. 解决问题的思维方法与策略- 解决数学问题的思维方法(逻辑推理、归纳演绎等)- 解决数学问题的策略(抽象化、归纳思考、逆向思维等)以上是人教版高三数学复习知识点的总结,希望能够对同学们的复习提供帮助。

(完整版)人教版高中数学知识点汇总,推荐文档

(完整版)人教版高中数学知识点汇总,推荐文档
-8-
人教版高中数学
当型循环结构、直到型循环结构 5、基本算法语句: ①赋值语句:“=”(有时也用“←”) ②输入输出语句:“INPUT” “PRINT” ③条件语句:
If … Then … Else … End If ④循环语句: “Do”语句 Do
… Until … End
“While”语句 While … … WEnd ⑹算法案例:辗转相除法—同余思想 第二章:统计 1、抽样方法: ①简单随机抽样(总体个数较少) ②系统抽样(总体个数较多) ③分层抽样(总体中差异明显) 注意:在 N 个个体的总体中抽取出 n 个个体组成样本,每个个体被抽到的机会(概率)均为 n 。
过定点 (1, 0)
减函数
增函数
减函数
增函数
x (, 0)时,y (1, x) (, 0)时,y (0,1) x (0,1)时,y (0, ) x (0,1)时,y (, 0) x (0, )时,y (0,1)x (0, )时,y (1, x) (1, )时,y (, 0x) (1, )时,y (0, ) 性 质

log
a
M N
log a
M
loga
N;
⑶ log a
Mn
n loga
M
.
5、换底公式: log a
b
log c log c
b a
a
0, a
1, c
0, c
1, b
0.
a 0, a 1, b 0, b 1.
-3-
6、
log a
b
1 log b
a
人教版高中数学
§2..2.2、对数函数及其性质
ab
表2
p q

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)1. 实数和复数:实数是数轴上的所有数,包括有理数和无理数;复数由实部和虚部组成,可以表示为a+bi的形式,其中a和b 为实数。

2. 幂和根:幂是指数运算,如a的n次幂表示为an;根是幂的逆运算,开x次方根表示为x√a。

3. 代数运算:加法、减法、乘法和除法是代数运算的基本运算,它们遵循相应的运算法则。

4. 贝叶斯定理:条件概率和全概率公式的应用,用于计算事件的概率。

5. 几何:包括平面几何和立体几何,涉及到图形的性质,如平行、垂直、相似、全等等。

6. 向量:具有大小和方向的量,在代数中用坐标表示,可以进行向量的加法、减法和数量乘法等运算。

7. 函数:函数是自变量与因变量之间的依赖关系,常见的函数有线性函数、二次函数、指数函数、对数函数等。

8. 三角函数:包括正弦、余弦、正切、余切等,广泛应用于几何、物理等领域。

9. 极限与连续性:极限是指当自变量趋近于某个特定值时,函数的变化趋势;连续性是指函数在其定义域上无断点。

10. 导数与微分:导数表示函数在某一点处的变化率,微分是导数的几何意义。

11. 积分与不定积分:积分表示函数在一定区间上的面积或曲线长度,不定积分是积分的逆运算。

12. 概率与统计:概率是描述随机事件发生的可能性,统计是收集、整理和分析数据的方法。

13. 矩阵与行列式:矩阵是一个按照一定规则排列的数的矩形阵列,行列式是矩阵的一种特殊表示形式。

14. 数列与数级数:数列是由一个或多个数按一定规律排列而成的序列,数级数是数列的无穷求和。

15. 数论:研究整数性质和整数之间的关系,包括质数、最大公约数、同余等。

16. 解析几何:利用坐标表示几何图形的性质和关系。

17. 空间几何:研究三维空间中图形的性质和关系。

18. 数学证明:用严密的推理和逻辑方法证明数学命题的正确性。

19. 数学建模:将实际问题转化为数学模型,利用数学方法进行求解和分析。

20. 科学计算:利用计算机和数值方法解决数学问题,如差值、插值、数值积分等。

河北省2020年新高一数学必修一第三章函数的概念与性质知识点总结(人教版)

河北省2020年新高一数学必修一第三章函数的概念与性质知识点总结(人教版)

2020年新高一数学必修一知识点总结第三章函数的概念与性质3.1函数的概念及其表示1.函数是刻画变量间对应关系的数学模型和工具。

2.函数问题的共同特征:①定义域、值域均为非空数集;②定义域和值域间有一个对应关系;③对于定义域中的任何一个自变量,在值域中都有唯一确定的数与之对应。

3.函数中的对应关系可用解析式、图象、表格等表示,为了表示方便,引进符号f 统一表示对应关系。

【注】函数符号()y f x =是由德国数学家莱布尼茨在18世纪引入的。

4.函数定义一般地,设,A B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记作(),y f x x A =∈。

其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合(){}f x x A ∈叫做函数的值域。

5.函数的三要素:①定义域;②对应关系;③值域。

6.(1)函数的定义域和对应关系可以确定出函数的值域,即一个函数的值域是由它的定义域和对应关系决定的。

(2)没有特别说明的情况下,函数的定义域默认是使其有意义的自变量取值范围。

如y =,则默认定义域是{}0x x ≠(3)实际问题中的函数定义域要根据实际情况定.如:匀速直线运动中位移、速度和时间的关系:()s t v t = ,隐含着0t ≥。

6.几个特殊函数的定义域和值域(1)正比例函数()0y kx k =≠,定义域和值域都为全体实数R。

(2)一次函数()0y kx b k =+≠,定义域和值域都为全体实数R。

(3)反比例函数()0k y k x=≠,定义域为{}0x x ≠,值域为{}0y y ≠。

(4)一元二次函数()20y ax bx c a =++≠,定义域为R。

①当0a >时,值域为244ac b y y a ⎧⎫-⎪⎪≥⎨⎬⎪⎪⎩⎭;②当0a <时,值域为244ac b y y a ⎧⎫-⎪⎪≤⎨⎬⎪⎪⎩⎭。

2020年人教版高中数学知识点总结(最全)

2020年人教版高中数学知识点总结(最全)

2020年人教版高中数学知识点总结(最新最全)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高中数学 必修1知识点第一章 集合与函数概念 【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U A{|,}x x U x A∈∉且1()UA A=∅ 2()UA A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a> ||,||(0)ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O一元二次方程20(0)ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0)ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R 20(0)ax bx c a++<>的解集12{|}x x x x<<∅∅()()()U U UA B A B=()()()U U UA B A B=〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a xb <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法o函数的 性 质定义图象 判定方法 函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,a -∞、,)a +∞上为增函数,分别在[,0)a 、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法 函数的性 质定义图象 判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =. ③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式;③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ) 〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n 是偶数时,正数a 的正的n 次方根用符号示,负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:na =;当n a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数 【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-=③数乘:log log ()na a n M M n R =∈ ④log a Na N =⑤log log (0,)b na a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且【2.2.2】对数函数及其性质(5)对数函数设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x fy -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图y 原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=. ③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=.(4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2b q a ->,则()m f q =02a ()q ()f pxxxxx x(q) 0x①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a=- ③若2b q a ->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注意:对于集合{x | a x b}与区间 (a, b) ,前者 a 可以大于或等于 b ,而后者必须
ab.
(3)求函数的定义域时,一般遵循以下原则:
① f (x) 是整式时,定义域是全体实数.
② f (x) 是分式函数时,定义域是使分母不为零的一切实数.
③ f (x) 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
y y=f(X)
f(x1)
o
x1
f(x2)
x2
x
(2)利用已知函数 的单调性 (3)利用函数图象 (在某个区间图
象上升为增) (4)利用复合函数
单调性 如果对于属于定义域 I 内
(1)利用定义
某个区间上的任意两个自 y
y=f(X)
(2)利用已知函数
变量的值 x1、x2,当 x.1.<.x.2. 时,都有 .f.(x.1..)>..f.(x.2..),那么
满足 a x b 的实数 x 的集合叫做开区间,记做 (a, b) ;满足 a x b ,或 a x b 的
实数 x 的集合叫做半开半闭区间,分别记做 [a, b) ,(a, b] ;满足 x a, x a, x b, x b
的实数 x 的集合分别记做[a, ), (a, ), (,b], (,b) .
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于 1.
⑤ y tan x 中, x k (k Z ) . 2
⑥零(负)指数幂的底数不能为零.
⑦若 f (x) 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本
初等函数的定义域的交集.
⑧对于求复合函数定义域问题,一般步骤是:若已知 f (x) 的定义域为 [a, b] ,其复合函数
(6)映射的概念
①设 A 、 B 是两个集合,如果按照某种对应法则 f ,对于集合 A 中任何一个元素,在集合
B 中都有唯一的元素和它对应,那么这样的对应(包括集合 A , B 以及 A 到 B 的对应法则 f )叫做集合 A 到 B 的映射,记作 f : A B .
②给定一个集合 A 到集合 B 的映射,且 a A,b B .如果元素 a 和元素 b 对应,那么我 们把元素 b 叫做元素 a 的象,元素 a 叫做元素 b 的原象.
【1.1.3】集合的基本运算
(8)交集、并集、补集
名称 记号
意义
性质
交集 A B
{x | x A, 且 x B}
(1) A A A (2) A (3) A B A
A BB
并集 A B
{x | x A, 或 x B}
(1) A A A (2) A A (3) A B A
A BB
题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.
【1.2.2】函数的表示法
(5)函数的表示方法 表示函数的方法,常用的有解析法、列表法、图象法三种.
解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两 个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.
{x | a x a}
| x | a(a 0)
x | x a 或 x a}
| ax b | c,| ax b | c(c 0)
(2)一元二次不等式的解法 判别式
b2 4ac
0
把 ax b 看 成 一 个 整 体 , 化 成 | x | a , | x | a(a 0) 型不等式来求解
x f (x) 分别在 (, a ]、[ a , ) 上为增函数,分别在
[ a , 0) 、 (0, a ] 上为减函数.
(3)最大(小)值定义
o
x
①一般地,设函数 y f (x) 的定义域为 I ,如果存在实数 M 满足:(1)对于任意的 x I ,
都有 f (x) M ;
(2)存在 x0 I ,使得 f (x0 ) M .那么,我们称 M 是函数 f (x)
判定方法
(1)利用定义(要 先判断定义域是否 关于原点对称) (2)利用图象(图 象关于原点对称)
(1)利用定义(要 先判断定义域是否 关于原点对称) (2)利用图象(图 象关于 y 轴对称)
②若函数 f (x) 为奇函数,且在 x 0 处有定义,则 f (0) 0 .
③奇函数在 y 轴两侧相对称的区间增减性相同,偶函数在 y 轴两侧相对称的区间增减性相
②伸缩变换
y f (x) 01,1缩, 伸 y f (x)
y f (x) 0AA1,1伸,缩 y Af (x)
③对称变换
y f (x) x轴 y f (x)
y f (x) y轴 y f (x)
y f (x) 原点 y f (x)
补集
1 A ( U A)
2 A ( U A) U
U A {x | x U ,且x A} U (A B) ( U A) ( U B)
U ( A B) ( U A) ( U B)
示意图
A
B
A
B
【补充知识】含绝对值的不等式与一元二次不等式的解法
(1)含绝对值的不等式的解法
不等式
解集
| x | a(a 0)
B 的对应法则 f )叫做集合 A 到 B 的一个函数,记作 f : A B .
②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法
①设 a, b 是两个实数,且 a b ,满足 a x b 的实数 x 的集合叫做闭区间,记做[a, b];
【1.3.2】奇偶性
(4)函数的奇偶性
①定义及判定方法
函数的 性质
定义
图象
如果对于函数 f(x)定义域
内任意一个 x,都有 .f.(-.x..)=.
-..f.(x..),那么函数 f(x)叫做
奇.函.数..
函数的 奇偶性
如果对于函数 f(x)定义域 内任意一个 x,都有 .f.(-. x..)=..f.(x..),那么函数 f(x)叫做 偶.函.数..
③判别式法:若函数 y f (x) 可以化成一个系数含有 y 的关于 x 的二次方程
a( y)x2 b( y)x c( y) 0 ,则在 a( y) 0时,由于 x, y 为实数,故必须有
b2 ( y) 4a( y) c( y) 0 ,从而确定函数的值域或最值.
④不等式法:利用基本不等式确定函数的值域或最值. ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问
f(x 1) f(x2 )
的单调性 (3)利用函数图象 (在某个区间图
就说 f(x)在这个区间上是 o
减.函.数..
x1
x2
x
象下降为减)
(4)利用复合函数
②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个
减函数为增函数,减函数减去一个增函数为减函数.
③ 对 于复 合函 数 y f [g(x)] , 令 u g(x) , 若 y f (u) 为 增 , u g(x) 为 增, 则
〖1.3〗函数的基本性质
【1.3.1】单调性与最大(小)值
(1)函数的单调性
①定义及判定方法
函数的 性质
定义
图象
判定方法
如果对于属于定义域 I 内
(1)利用定义
函数的
某个区间上的任意两个自 变量的值 x1、x2,当 x.1.<.x.2. 时,都有 .f.(x.1..)<..f.(x.2..),那么 就说 f(x)在这个区间上是 增.函.数..
0
0
二次函数
y ax2 bx c(a 0)
O
的图象
一元二次方程
ax2 bx c 0(a 0)
的根
x1,2 b
b2 4ac 2a
(其中 x1 x2 )
ax2 bx c 0(a 0)
的解集
ax2 bx c 0(a 0)
的解集
{x | x x1 或 x x2} {x | x1 x x2}
利用基本函数图象的变换作图:
要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等 各种基本初等函数的图象.
①平移变换
y f (x) hh00,右,左移移|h h个|个单单位位 y f (x h)
y f (x) kk00,下,上移移|k k个|个单单位位 y f (x) k
的最大值,记作
fmax (x) M .
②一般地,设函数 y f (x) 的定义域为 I ,如果存在实数 m 满足:(1)对于任意的 x I ,
都有 f (x) m ;(2)存在 x0 I ,使得 f (x0 ) m .那么,我们称 m 是函数 f (x) 的最小
值,记作 fmax (x) m .
f [g(x)] 的定义域应由不等式 a g(x) b 解出.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中 存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实 质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值. ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确 定函数的值域或最值.
相关文档
最新文档