移动通信第3章 调制解调

合集下载

移动通信中的调制解调(2023版)

移动通信中的调制解调(2023版)

移动通信中的调制解调移动通信中的调制解调1.引言1.1 背景1.2 目的2.调制的概述2.1 调制的定义2.2 调制的目的2.3 调制的基本原理3.调制的分类3.1 模拟调制3.1.1 AM调制3.1.2 FM调制3.2 数字调制3.2.1 ASK调制3.2.2 FSK调制3.2.4 QAM调制4.调制器种类4.1 调幅器4.2 调频器4.3 调相器4.4 调性器5.解调的概述5.1 解调的定义5.2 解调的目的5.3 解调的基本原理6.解调的分类6.1 模拟解调6.1.1 按幅度解调 6.1.2 按频率解调 6.1.3 按相位解调 6.2 数字解调6.2.2 FSK解调6.2.3 PSK解调6.2.4 QAM解调7.解调器种类7.1 幅度解调器7.2 频率解调器7.3 相位解调器7.4 多解调器8.调制解调在移动通信中的应用8.1 调制解调在2G移动通信中的应用 8.2 调制解调在3G移动通信中的应用 8.3 调制解调在4G移动通信中的应用8.4 调制解调在5G移动通信中的应用9.未来发展趋势9.1 调制解调技术的进一步创新9.2 调制解调在物联网中的应用9.3 调制解调在中的应用附件:无法律名词及注释:1.调制:将信号按照一定规律调整成为适合传输的波形。

2.解调:从接收到的波形中还原出原始信号。

3.AM调制:调制信号的幅度随着原始信号的变化而变化。

4.FM调制:调制信号的频率随着原始信号的变化而变化。

5.ASK调制:调制信号的振幅随着原始信号的变化而变化。

6.FSK调制:调制信号的频率随着原始信号的变化而变化。

7.PSK调制:调制信号的相位随着原始信号的变化而变化。

8.QAM调制:将多个调制信号组合成一个符号,符号中的振幅和相位都可变化。

本文档涉及附件:无。

移动通信中的调制解调

移动通信中的调制解调

移动通信中的调制解调引言移动通信是一种无线通信技术,可以实现移动设备之间的语音、数据和图像传输。

在移动通信中,调制解调起着重要的作用。

调制解调是将数字信号转换为模拟信号,或将模拟信号转换为数字信号的过程。

调制的目的调制是为了适应信道传输的要求和提高信号的抗干扰能力。

由于信道通常是模拟的,而数字信号是离散的,在信道传输时需要将数字信号转换为模拟信号。

调制的目的是将数字信号转换为模拟信号,以便在信道输。

调制的分类调制可以分为模拟调制和数字调制两种类型。

模拟调制是将模拟信号调制为模拟载波进行传输,常见的模拟调制方式有调幅(AM)、调频(FM)和调相(PM)。

数字调制是将数字信号调制为数字载波进行传输,常见的数字调制方式有二进制振幅移键(ASK)、二进制频移键(FSK)和二进制相移键(PSK)。

解调的目的解调是将调制过的信号恢复为原始的数字信号。

在信道传输中,信号会受到噪声和干扰的影响,解调的目的是将接收到的调制信号恢复为原始的数字信号,以便进行后续的处理和分析。

解调的分类解调可以分为模拟解调和数字解调两种类型。

模拟解调是将模拟调制信号恢复为模拟载波,常见的模拟解调方式有包络检波、相干解调和同步解调。

数字解调是将数字调制信号恢复为数字信号,常见的数字解调方式有ASK解调、FSK解调和PSK解调。

调制解调技术在移动通信中的应用调制解调技术在移动通信中扮演着重要的角色。

在移动通信中,调制解调技术被广泛应用于无线传输系统中,如GSM、CDMA和LTE 等。

调制解调技术可以通过提高信号的抗干扰能力和提高传输效率,实现可靠和高效的无线通信。

移动通信中的调制解调是实现无线通信的关键技术之一。

调制是将数字信号转换为模拟信号的过程,解调是将调制信号恢复为原始的数字信号的过程。

调制解调技术在移动通信中有着广泛的应用,能够提高通信系统的效率和可靠性。

不断的技术创新和发展将进一步推动移动通信技术的进步和应用。

移动通信调制与解调实验PPT课件

移动通信调制与解调实验PPT课件
/NRZ:基带信号的差分编码信号输出点(仅在MSK、GMSK调制时有效);输 出为NRZ码,周期为15,码字为1010或1101相位比“NRZ”输出延迟一个码 元,码速率受拨码开关SW602控制,关系如(P5)表二所示。
BS:基带信号的位同步信号;输出为方波,频率受拨码开关SW602控制,关系 如表二所示。
You Know, The More Powerful You Will Be
谢谢你的到来
学习并没有结束,希望大家继续努力
Learning Is Not Over. I Hope You Will Continue To Work Hard
演讲人:XXXXXX 时 间:XX年XX月XX日
移动通信及设备实验要 求
1. 实验动手前用10分钟时间阅读实验指导书,了解实验目的、内容、要求与方法
2. 两人为一组,要求每人能掌握实验方法,独立完成实验内容。按每项实验要求 做好测试记录,提供老师作为平时成绩记录。 3. 报告内容见指导书每项实验的报告要求。实验报告要有实验原理,并要有相 应框图。各相关测量点的波形除标注参数外并要加以简单分析说明。文字或波形 可用手工或其它方法记录绘制。实验报告要回答实验思考题。 4. 实验上课到课率计入平时成绩参考,无故迟到、早退及旷课者将视情况少计或 不计实验成绩。 5. 实验时爱护使用仪器与实验设备,下课前整理好实验设备,关好电源,将电源 线、测试线及椅橙放回原位。 6. 实验报告要求于第四次实验后的下周一由班收集上交。
表一 调制类型选择
(8位拨码开关)
SW601
调制类型 MSK调制
BbTs=0.3的GMSK调制
BbTs=0.5的GMSK调制
A方式的QPSK调制
B方式的QPSK调制 A方式的OQPSK调制 B方式的OQPSK调制 A方式的DQPSK调制 B方式的DQPSK调制 π/4-DQPSK调制

移动通信- 第3章 移动通信中的调制解调技术

移动通信-  第3章 移动通信中的调制解调技术
• BPSK 信号相干解调的过程,是输入已调信号与本地载波信号进行极性比较的过程,因此可以采用极性比 较法进行解调,由于 BPSK 信号实际上是以一个固定初相的未调载波为参考,因此,解调时必须有与此同 频同相的同步载波。如果同步载波的相位发生变化,如 0 相位变为 π 相位或 π 相位变为 0 相位,则恢复 的数字信息就会发生“0”变“1”或“1”变“0”,从而造成错误的恢复,这种因为本地参考载波倒相, 而在接收端发生错误恢复的现象称为“倒 π”现象或“反向工作”现象。绝对移相的主要缺点是容易产生 相位模糊,造成反向工作。这也是它实际应用较少的主要原因。
• 3.2.2最小移频键控(MSK)调制
• 在 FSK 方式中,相邻码元的频率不变或者跳变一个固定值。而在两个相邻的频率跳变的码元之间,其相位 通常是不连续的,MSK(Minimum Shift Keying)的设计目标是对 FSK 信号作某种改进,使其相位始终 保持连续不变,从而使得调制后的频谱主瓣窄、旁瓣衰落快,满足通信系统信道宽度要求,节省频率资源。
• 3.3.2四相相移键控(QPSK)调制
• 对于输入的二进制数字序列先进行分组,将每两个比特编为一组,然后用 4 种不同的载波相位来表征,而 这种编组通常是按格雷码排列的,QPSK 信号载波相位矢量关系如图 所示:
• 3.3.3偏移四相相移键控(OQPSK)调制
• 采用 NRZ 直接进行调制所得的 QPSK 信号的幅度非常恒定,但缺点是它的信号频谱较宽,当 QPSK 进行 波形成形时,它们将失去恒包络的性质,从而发生的弧度为 π 的相移,会导致信号的包络在瞬间通过零点, 任何一种在过零点的非线性放大都会引起旁瓣再生和频谱扩展,必须使用效率较低的线性放大器放大QPSK 信号,这将使放大器的效率受到限制,进而影响到终端的小型化。

通信原理第三章答案

通信原理第三章答案

通信原理第三章答案在通信原理的学习中,第三章是非常重要的一部分,它涉及到了很多与通信相关的基础知识和原理。

在这一章节中,我们将学习到很多关于信号传输、调制解调、数字通信等方面的知识。

下面,我将对第三章的一些重要问题进行解答,希望能够帮助大家更好地理解这一部分内容。

1. 什么是信号传输?它的作用是什么?信号传输是指将信息从一个地方传送到另一个地方的过程。

在通信系统中,信号传输是非常重要的,它可以帮助我们实现信息的传递和交流。

通过信号传输,我们可以将声音、图像、数据等信息传送到远方,实现远程通信。

2. 什么是调制解调?它的作用是什么?调制解调是指将原始信号转换成适合在信道上传输的信号,以及将接收到的信号转换成原始信号的过程。

调制是为了适应信道的特性,使信号能够有效地在信道上传输;解调则是为了将接收到的信号转换成原始信号,以便我们能够正确地接收和理解信息。

3. 数字通信和模拟通信有什么区别?数字通信和模拟通信是两种不同的通信方式。

在模拟通信中,信号是连续变化的,它可以表示成无限个可能的数值;而在数字通信中,信号是离散的,它只能表示成有限个可能的数值。

数字通信具有抗干扰能力强、传输质量稳定等优点,而模拟通信则更适合传输连续变化的信号。

4. 为什么要进行信号调制?信号调制是为了适应不同信道的特性,使信号能够有效地在信道上传输。

不同的信道具有不同的传输特性,通过调制可以使信号更好地适应这些特性,提高信号的传输质量和可靠性。

5. 什么是码元和波特?码元是数字通信中的基本单位,它是表示数字信号的最小时间间隔。

波特是衡量数据传输速率的单位,它表示每秒传输的码元数。

在数字通信中,码元和波特是非常重要的概念,它们直接影响着数据传输的速率和效率。

通过以上问题的解答,我们对通信原理第三章的内容有了更深入的理解。

希望大家能够通过学习,掌握这些重要的知识点,为以后的通信技术应用打下坚实的基础。

同时,也希望大家能够在学习过程中多加思考,多进行实践,进一步提高自己的理论水平和实践能力。

《调制解调》课件

《调制解调》课件
《调制解调》PPT课件
本《调制解调》PPT课件将介绍调制解调的基本概念、信号传输、调制技术、 解调技术、以及调制解调技术在通信系统中的应用和发展趋势。
前言
调制解调是现代通信中关键的技术之一。本课程将着重介绍调制解调的基本 概念,以及课程的主要内容和目标。
信号传输
传输信号有两种基本类型:模拟信号和数字信号。了解噪声和失真的影响以 及信息传输中的信道对信号的影响。
调制技术
模拟调制技术
AM、FM、PM等模拟调制技术的原理和应用。
数字调制技术
了解脉冲调制、QAM、OSK、OFDM等数字调制 技术的基本原理。
解调技术
模拟解调技术
检波器、直接解调、抑制载波解调、同步解调等模拟解调技术。
数字解调技术
了解直接解调、差分解调、时钟恢复、解码和译码等数字解调技术。
应用和发展
调制解调技术在通信系统中的应用
了解调制解调技术在移动通信、宽带通信等领 域的广泛应用。
调制解调技术的发展趋势展望未来调制解ຫໍສະໝຸດ 技术的发展方向和应用前景。结语
总结本课程的重点和难点,同时展望调制解调技术在未来的应用前景和发展方向。

《移动通信--BPSK调制与解调》报告

《移动通信--BPSK调制与解调》报告《移动通信BPSK 调制与解调》报告在当今的信息时代,移动通信技术的发展日新月异,为人们的生活和工作带来了极大的便利。

其中,BPSK(Binary Phase Shift Keying,二进制相移键控)调制与解调技术作为一种重要的数字通信技术,在移动通信中发挥着关键作用。

一、BPSK 调制的基本原理BPSK 是一种最简单的相移键控方式。

在 BPSK 中,通常用二进制数字“0”和“1”来控制载波的相位。

当数字信号为“0”时,载波的相位为0 度;当数字信号为“1”时,载波的相位为 180 度。

从数学角度来看,假设发送的二进制数字序列为{an},其中 an 取值为 0 或 1,载波信号为Acos(2πfct),那么 BPSK 调制后的信号可以表示为:s(t) =Acos(2πfct +πan)通过这种方式,将数字信息加载到载波信号的相位上,实现了信号的调制。

二、BPSK 调制的实现方式在实际应用中,BPSK 调制可以通过多种方式实现。

一种常见的方法是使用乘法器。

将数字信号与一个正弦载波相乘,得到调制后的信号。

另一种实现方式是基于数字电路,通过逻辑门和计数器等组件来生成 BPSK 调制信号。

这种方式在数字通信系统中应用广泛,具有稳定性高、易于集成等优点。

三、BPSK 解调的基本原理解调是从接收到的已调信号中恢复出原始数字信号的过程。

BPSK的解调通常采用相干解调的方法。

相干解调需要在接收端产生一个与发送端载波同频同相的本地载波。

接收到的 BPSK 信号与本地载波相乘,然后通过低通滤波器滤除高频分量,再进行抽样判决,恢复出原始的数字信号。

四、BPSK 解调的实现过程首先,接收到的信号与本地载波相乘,得到:r(t) = s(t) × cos(2πfct +φ)其中,φ 为本地载波与发送端载波的相位差。

经过乘法运算后,得到:r(t) = 05A1 +cos(2πfct +πan +φ 2πfct)= 05A1 +cos(πan +φ)通过低通滤波器后,滤除高频分量,得到:r'(t) = 05A1 +cos(πan +φ)最后,对 r'(t) 进行抽样判决。

移动通信中的调制解调

移动通信中的调制解调移动通信中的调制解调1、简介1.1 调制解调的概念1.2 调制解调在移动通信中的作用2、调制技术2.1 模拟调制2.1.1 AM调制2.1.2 FM调制2.1.3 PM调制2.2 数字调制2.2.1 ASK调制2.2.2 FSK调制2.2.3 PSK调制2.2.4 QAM调制3、调制解调器3.1 调制解调器的基本原理 3.2 调制解调器的分类3.2.1 数字调制解调器 3.2.2 模拟调制解调器3.2.3 混合调制解调器4、调制解调过程4.1 发送端调制过程4.1.1 信号处理4.1.2 调制方法选择4.2 接收端解调过程4.2.1 信号接收4.2.2 解调方法选择5、调制解调的性能评估5.1 误码率性能5.2 谱效率5.3 传输延迟6、调制解调在移动通信中的应用6.1 调制解调在无线局域网中的应用6.2 调制解调在蜂窝网络中的应用7、附件本文档附带有以下附件:- 模拟调制示例代码- 数字调制解调器原理图8、法律名词及注释- 调制:将原始信号转换为适合传输的信号形式。

- 解调:将接收到的信号恢复为原始信号。

- AM调制:幅度调制,利用信号的幅度变化来表示信息。

- FM调制:频率调制,利用信号的频率变化来表示信息。

- PM调制:相位调制,利用信号的相位变化来表示信息。

- ASK调制:振幅假定键控调制,通过改变振幅来表示数字信号。

- FSK调制:频移键控调制,通过改变频率来表示数字信号。

- PSK调制:相位假定键控调制,通过改变相位来表示数字信号。

- QAM调制:正交幅度调制,利用正交信号的幅度和相位变化来表示数字信号。

移动通信中的调制解调

移动通信中的调制解调AM和FM射频信号被用来传递信息,信息有可能是音频,数据或者其他格式,该信息被调制(modulate)到载波信号上,并通过射频传送到接收器,在接收器端,信息从载波上分离出来,这个被称为解调(demodulation)。

而载波本身并不带有任何信息。

调制方法多种多样,简单的一般有幅度调制,频率调制和相位调制,尽管调频和调相本质上是相同的。

每种调制方法都有其有缺点。

了解每种调制方法的基础是很重要的,尽管大家更为关注的是移动通信系统的调制方法。

复习这些简单技术可以让大家对它们的优缺点有更好的认识。

载波无线通信的基础是载波,基本的载波如下图所示,这个信号在发射器部分产生,并不带有任何信息,在接收器部分也作为不变的信号出现。

调幅调制最显而易见的的方式就是调幅了,通过调整信号幅度大小传递信息。

最简单的调制是OOK(on–off keying,开关键控),载波以开关的形式传递信息。

这个是数字调制的基础,并用在传递莫斯(Morse)电码上面,莫斯在早期的“无线”应用上广为采用,通过开或关的长度传递码元。

在音频或其他领域应用更为常见的是,整个信号的幅度通过载波体现,如下图,这个被称为幅度调制(AM)。

AM解调音频信号的过程十分简单,只需要一个简单的二极管包络检波电路就可以实现,如图3-3,在这个电路中二极管只允许无线信号的半波通过,一个电容被作为低通滤波器来去除信号的高频部分,只留下音频信号。

这个信号直接通过放大后输出至扬声器。

该解调电路十分简单和易于实现,在目前的AM收音机接收上面还在广泛采用。

AM解调过程同样可以用更为有效的同步检波电路实现。

如图3-4,射频信号被本地载波振荡信号混频。

该电路的优点是比二极管检波器有更好的线性度,而且对失真和干扰的抵抗比较好。

产生本振信号的方法很多,其中最简单的就是把接收到的无线信号通过高通滤波器,从而滤掉调制信号保留精确频率和相位的载波,再与无线信号混频滤波就能得到原始音频信号。

电子科技大学《移动通信原理》 第三章 移动通信中的信源编码和调制解调技术

~ 64kbps ),话音质 量好(4.0~4.5),占用较高带宽。 低速率话音编码时,话音质量显著下降。 PCM,DPCM,ΔM 等。
第三章 移动通信中的信源编码和调制解调技术
7


典型波形编码方式

PCM:Pulse-Code Modulation
2014年3月
1 1 1
* a1 a2
1 1 1
16
推广: b1 b2
2014年3月
第三章 移动通信中的信源编码和调制解调技术
数字调制器
exp j 2p f c t
二进制序列 比特变 符号
基带调 制
成形滤 波

si t
图3.3 数字调制器功能框图
2014年3月
各类二进制调制波形
14
数字调制技术分类
不恒定包络 ASK(幅移键控) QAM(正交幅度调制) MQAM(星座调制) FSK (频移键控) BFSK(二进制频移键控) MFSK(多进制频移键控) BPSK(二进制相移键控) DPSK(差分二进制相移键控) QPSK OQPSK(偏移QPSK) (正交四相 p/4QPSK 相移键控) DQPSK(差分QPSK) MSK(最小频移键控) GFSK(高斯滤波MSK) TFM(平滑调频)
对于M阶调制信号,有:
E s Eb log 2 M Eb log 2 M N0 N0 N0
2014年3月
第三章 移动通信中的信源编码和调制解调技术
18
频带利用率

也是带宽效率

每赫兹可用带宽可以传输的信息速率: R W b s Hz
R:为信息比特速率 R R log M s 2 W:信号所需带宽
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2PSK信号的典型波形如图3-2所示。 两种不同的调制法框图如图3-3所示。
图3-2 2PSK信号的典型波形
图3-3 2PSK信号的调制框图
1.2PSK的频谱和带宽
设g(t)是宽度为Tb的矩形脉冲,其频谱 为G(ω),设“ +1”和“1”等概率出现, 则2PSK信号的功率谱为
1 2 2 (3-3) P2PSK ( f ) f b G( f fc ) G( f fc ) 4
QPSK信号解调原理及其实现方法; QPSK已调信号的频谱特性; 2FSK调制原理及实现方法; 2FSK信号解调原理及其实现方法;

2FSK已调信号的频谱特性; 2FSK已调信号带宽计算; 正交频分复用(OFDM)的调制、解调的原 理及实现方法。

难点: 相干解调的原理及分析过程; 2PSK已调信号的频谱特性; QPSK已调信号的频谱特性;
2FSK已调信号的频谱特性; 2FSK已调信号带宽计算分析; 正交频分复用(OFDM)的概念及实现原理。

3.1 概述
调制是在发送端把要传输的模拟信 号或数字信号(信源信号或基带信号) 变换成适合信道传输的高频信号(带通 信号)的过程。 信源信号或基带信号称为调制信号
调制完成后的带通信号称为已调信号。 解调是调制的反过程,在接收端将已调 信号还原成要传输的原始信号。
与本地载波相乘后,经低通滤波器 滤除高频分量,在抽样判决器输入端得 到
A nc (t ) v(t ) A nc (t )
发“ 1” (3-7) 发“ 1”
根据高斯分布的特点,v(t)的概率分布为
(v A)2 1 exp f1 v 2 2 n 2π n 2 1 ( v A ) f 1 v 2π exp 2 2 n n 发“ 1”
第3章 调制解调
3.1
概述
3.2
数字相位调制
3.3
正交振幅调制
3.4
数字频率调制
3.5
多载波调制
主要内容: 掌握调制、解调的概念; 掌握数字调制解调的分类; 掌握2PSK的调制、解调原理及其实现方 法,已调信号的频谱特性;
掌握QPSK的调制、解调原理及其实现方 法,已调信号的频谱特性; 了解OQPSK与 -QPSK与QPSK相比的特 点;
(3-6) 发“ 1 ”
经带通滤波器后输出为
y (t ) s2PSK t ni t A cos c t nc (t ) cos c t ns (t )sin c t A cos c t nc (t ) cos c t ns (t )sin c t 发“ 1” 发“ 1”
按照调制信号的形式,调制可分为 模拟调制(或连续调制)和数字调制。
图3-1 调制分类
模拟调制指利用输入的模拟信号直接 调制(或改变)载波(正弦波)的振幅、 频率或相位,从而得到调幅(AM)、调 频(FM)或调相(PM)信号。
数字调制指利用数字信号来控制载 波的振幅、频率或相位。 主要用于2G、3G及未来的系统中。 数字调制主要分为两类:幅度/相位 调制和频率调制。
由于假定信号是等概率出现的双极性 NRZ码,所以不存在直流成分,其功率谱 为连续谱,无离散谱,如图3-4所示。
图3-4 2PSK信号的功率谱密度
2PSK信号的带宽、频带利用率分别为
B2PSK 2 2 Bs 2 f b Tb
(3-4)
(3-5)
2PSK
1 (Baud/Hz) 2
3.2 数字相位调制
3.2.1 二进制相移键控
设输入比特为{an},an = ±1,n = −∞ ~ + ∞,则二进制相移键控(2PSK)的信号 形式为
A cos(c t ) s2PSK (t ) A cos(c t )
an 1 an 1
nTb≤t<(n + 1)Tb (3-1) c 2πfc表示载波幅度,Tb 为载 式中, 波角频率, 为输入数据流的比特宽度。
频率调制用非线性方法产生,其信 号包络一般是恒定的,因此称为恒包络 调制或非线性调制。 幅度/相位调制也称为线性调制。
移动系统选择具体的调制方式时, 需要综合考虑以下几点。 (1)高传输效率。 (2)高频带利用率(最小占用带宽)。 (3)高功率效率(最小发送功率)。 (4)对信道影响的抵抗能力(最小误比 特率)。
(3-8)
发“ 1”
在输入序列“ + 1”和“1”等概出现的 条件下,最佳判决门限取“0”,当发“1”判 为“1”或发“1”判为“1”都会导致产生 误码,因此相干解调的误码率为

了解QAM的原理及实现方法; 掌握2FSK的调制、解调原理及实现方法, 已调信号的频谱特性,带宽计算公式; 了解MSK、GMSK的调制、解调原理,与 2FSK的区别;

了解多载波调制的概念; 掌握正交频分复用(OFDM)调制的概念, 调制、解调的原理及实现方法。

重点: 2PSK调制原理及实现方法; 2PSK信号解调原理及其实现方法; 2PSK已调信号的频谱特性; QPSK调制原理及实现方法;
s2PSK (t ) 还可以表示为
1 an s2PSK (t ) an A cos c t A cos c t 2
π
nTb≤t<(n + 1)Tb
ቤተ መጻሕፍቲ ባይዱ(3-2)
即当输入为“ + 1”时,对应的信号 附加相位为“0”;当输入为“1”时, 对应的信号附加相位为“π”。
2.2PSK解调
2PSK接收端一般采用相干解调,其 相干解调系统模型如图3-5所示。
图3-5 2PSK的相干解调框图
若输入噪声为窄带高斯噪声n(t)(n(t) 均值为0,方差为σ2n),则解调器的输入 信号为
A cos ct n t yi (t ) A cos ct n t 发“” 1
相关文档
最新文档