10KV档距确定
规范10KV及以下线路CAD制图标准的有关规定

统一、规范10KV及以下线路CAD制图标准的规定分公司各有关单位部门:图纸是生产活动中最基本的技术文件,在单位、部门之间起着交流、传递信息的作用。
施工图更是施工单位施工以及有关部门验收的直接依据。
目前在配电网建设及运行管理过程中,线路图纸(架空及电缆线路)的应用越来越广泛,上墙图更是规范化(星级)供电营业所创建活动的一项重要内容。
随着计算机的普及,CAD制图已经融入到我们的生产工作中。
为此,清楚、详细地绘制线路图纸,正确全面表达规划设计、电网网络及上墙图的内容,统一、规范图纸的各类图标符号显得非常重要。
现就制图的有关问题作如下规定。
希望有关单位部门理解掌握并正确使用。
一、架空配电线路制图的标准(以gbcbig.shx字体为标准的图纸;System: mytxt.shx, hztxt2 字体书写):1•线路走向图应标明的主要内容及标准:①电杆:圆半径0.8。
高拉杆:圆半径0.5并涂黑。
门型杆:电杆中心间距为6。
三联杆:相互电杆间距为3—4之间。
钢管杆:内圆半径0.8,外圆半径1.6,中心一致。
新立电杆(包括高拉杆):一撇(直线旋转45度)至电杆中拔除电杆(包括高拉杆):两撇(同时直线旋转45度)至电杆中心。
10KV线路:一档长度在15—18之间,一般为16。
并与电杆中心对直。
低压线路:一档长度在13—16之间,一般为14,用两撇、四撇表示低压二线、低压四线。
并与电杆对直或置于墙头一字铁中间。
同杆架设线路(最多双回:一路10KV、一路低压;双回10KV 线路、双回低压线路):一档长度依10KV为标准,分别平行离开电杆中心0.3并延长至电杆。
导线终端:导线上断头(绘制耐张)。
耐张电杆:导线上耐张并用圆弧搭头。
断头杆:导线上耐张但不搭头。
支接杆:支线导线上耐张并用圆弧搭头于主线导线。
单杆或墩子式变压器:直接引落的变压器,电杆与变压器相交;电缆引入的变压器,电杆上的跌落丝具与变压器间采用电缆连接。
双杆式变压器:两根电杆与变压器相交。
10-按强度推算的-最大档距.

《云南电网公司城农网10kV及以下配电线路通用设计》V3.0(试行)版各型电杆使用档距表云南电网公司2010年9月批准:审定:校核:杜新民设计计算:李叔昆说明1、10kV配电线路主要用于城市郊区的平地、丘陵及部分一般山地,其使用档距不分水平档距、垂直档距。
当用于山区线路时,其垂直档距不能过大。
2、计算使用档距的气象条件为:电线复冰厚度10mm,最大设计25m/s。
3、计算使用档距用的导线采用钢芯铝绞线,导线型号为LGJ-240/30、LGJ-185/25、LGJ-150/25、LGJ-120/20、LGJ-95/20、LGJ-70/10、LGJ-70/40、LGJ-50/8、LGJ-50/30、LGJ-35/6。
导线安全系数3.0~8.0,与所选用的塔型设计强度有关。
对于自力式角钢塔(如SJT2等)、应按导线型号、转角度数计算后确定;对于带拉线水泥杆转角杆,其拉线选择及杆头抗弯强度的校验也应按导线张力和转角度数计算后确定。
4、电杆的使用档距应从以下几方面来计算,取其最小者(计算中忽略杆身风压):A、电杆的允许弯矩;B、针式绝缘子的强度(瓷件强度、针脚强度);C、瓷横担破坏强度;D、导线间的距离。
5、在实际工程中,结合工程实际情况来选择电杆的档距。
当超过本表的范围时,可自行计算确定。
6、10kV配电线路计算档距引用数据表预应力电杆的技术数据注:强度安全系数1.8(表中未计入)拉线强度注:强度安全系数2.0(表中未计入)10kV配电线路档距与线间距离的关系(规程规定的线间距离对应的最大档距)使用针式瓷瓶时:D=0.4Lk+U/110+0.65x(F开方)只能作为参考。
10kV水泥拔梢杆最大使用档距表END。
10kV及以下线路验收细则

10kV及以下线路验收细则一、10kV线路部分1、线路基础施工工艺标准1)、直线杆横线路方向位移不应超过50mm。
2)、转角杆、分支杆的横线路、顺线路方向的位移均不应超过50mm。
3)、转角杆应向外角预偏,紧线后不应向内角倾斜,向外角侧倾斜时其杆梢位移不应大于杆梢直径。
4)、终端杆应向拉线侧预偏,紧线后不应向拉线反方向倾斜,拉线侧倾斜不应使杆梢位移大于杆梢直径。
5)、导线档距一般应控制在:县城集镇50-60m,乡村70-100m,2、拉线制作工艺标准1)、拉线对地面夹角为45°,若受地形限制,不应大于60°,不应小于30°。
2)、拉线穿过公路时,对路面中心的垂直距离不应小于6m,且对路肩的最小距离不应小于4.5m。
跨越道路(非公路)的水平拉线,对路面的垂直距离不应低于5m。
3)、不论拉棒长短,拉棒出土长度应控制在300mm至700mm之间。
4)、穿越和接近导线的电杆拉线必须装设与线路电压等级相同的拉线绝缘子;拉线绝缘子应装在最低导线以下,应保证在拉线绝缘子以下位置断拉线情况下,拉线绝缘子距地面不小于2.5m。
5)、采用UT型线夹及楔形线夹固定的拉线安装时,应符合以下规定:①线夹舌板与拉线接触应紧密,受力后无滑动现象,线夹凸肚应在尾线侧,安装时不应损伤线股。
②拉线弯曲部分不应明显松脱,拉线断头处与拉线主线应固定可靠。
钢绞线的端头露出部分规定:契形线夹300毫米,UT线夹300mm至500mm,且用直径不小于3.2毫米的单股镀锌铁线绑扎,绑扎长度不小于30mm,并做防锈处理。
③UT型线夹的螺杆应露扣,并应有不小于1/2螺杆丝扣长度可供调紧。
拉线调好后,UT型线夹露出的丝扣长度应为10~30毫米。
UT型线夹的双螺母应并紧。
3、电杆组立及铁附件安装工艺标准1)、电杆钢圈焊接后应将表面铁锈、焊渣与氧化层除尽,并进行防腐处理。
2)、10kV钢管杆均应与接地引下线连接,通过多点接地以保证可靠性。
10-按强度推算的-最大档距.

《云南电网公司城农网10kV及以下配电线路通用设计》V3.0(试行)版各型电杆使用档距表云南电网公司2010年9月批准:审定:校核:杜新民设计计算:李叔昆说明1、10kV配电线路主要用于城市郊区的平地、丘陵及部分一般山地,其使用档距不分水平档距、垂直档距。
当用于山区线路时,其垂直档距不能过大。
2、计算使用档距的气象条件为:电线复冰厚度10mm,最大设计25m/s。
3、计算使用档距用的导线采用钢芯铝绞线,导线型号为LGJ-240/30、LGJ-185/25、LGJ-150/25、LGJ-120/20、LGJ-95/20、LGJ-70/10、LGJ-70/40、LGJ-50/8、LGJ-50/30、LGJ-35/6。
导线安全系数3.0~8.0,与所选用的塔型设计强度有关。
对于自力式角钢塔(如SJT2等)、应按导线型号、转角度数计算后确定;对于带拉线水泥杆转角杆,其拉线选择及杆头抗弯强度的校验也应按导线张力和转角度数计算后确定。
4、电杆的使用档距应从以下几方面来计算,取其最小者(计算中忽略杆身风压):A、电杆的允许弯矩;B、针式绝缘子的强度(瓷件强度、针脚强度);C、瓷横担破坏强度;D、导线间的距离。
5、在实际工程中,结合工程实际情况来选择电杆的档距。
当超过本表的范围时,可自行计算确定。
6、10kV配电线路计算档距引用数据表预应力电杆的技术数据注:强度安全系数1.8(表中未计入)拉线强度注:强度安全系数2.0(表中未计入)10kV配电线路档距与线间距离的关系(规程规定的线间距离对应的最大档距)使用针式瓷瓶时:D=0.4Lk+U/110+0.65x(F开方)只能作为参考。
10kV水泥拔梢杆最大使用档距表END。
第四篇(10kv钢管杆)

第四篇10kV钢管杆1、 10kV钢管杆的选取和使用1.1 耐张杆采用钢管杆。
1.2杆高选择 钢管杆杆杆高分12.4米、12.7米和15.2米。
1.3使用档距 标准化设计中水平档距为60米、垂直档距为80米、最大档距为70米进行设计。
1.4 钢管杆横担与杆型配套,详见钢管杆制造图。
1.5 考虑到杆型分类表中对外荷载作了简化处理,使用者如需对特定的外荷载作进一步校验,可将计算的钢管杆根部弯距的标准值(计算时需考虑附加弯距的影响,将计算总弯距的标准值乘1.15得最终计算的钢管杆根部弯距的标准值)和下表提供的钢管杆根部许用弯距的标准值数据进行比较(并严格控制在下表许用范围之内),或将计 算的钢管杆根部弯距的设计值(计算时同样需考虑附加弯距的影响,将计算总弯距的设计值乘1.15得最终计算的钢管杆根部弯距的设计值)和下表提供的钢管杆根部许用弯距的设计值数据进行比较(并严格控制在下表许用范围之内)。
1.6 钢管杆主杆均选用Q235钢板。
1.7 所有钢管底部均设有调节螺母,可以调节电杆预偏值。
为考虑钢管杆在受外力时保持直立,钢管杆在施工时杆梢应向受力反侧预偏,并根据逐渐积累的施工运行经验(预偏值一般为1/2杆梢~1杆梢)确定预偏数值。
1.8 钢管杆设计依据《架空送电线路钢管杆设计技术规定》(DL/T 5130-2001)1.9 钢管杆加工制造时需符合《输变电钢管结构制造技术条件》(DL/T 646-2006)及相关行业规范。
1.10 本次标准设计将多边形钢管作为基本杆型,且要求主杆钢板整体卷制,杆身不允许有环向焊缝。
表4-1转角钢杆规划条件一览表序号 杆塔名称 水平档距(m) 垂直档距(m) 转角度数(°)呼高(m)备注1 10SJG1A 60 80 0~30 11.752 10SJG1B 60 80 0~30 10.553 10SJG2A 60 80 30~60 11.754 10SJG2B 60 80 30~60 10.555 10SJG3A 60 80 60~90 11.756 10SJG3B 60 80 60~90 10.557 10DJG1 60 80 0~30 12.15/14.258 10DJG2 60 80 30~60 12.15/14.259 10DJG3 60 80 60~90 12.15/14.25表4-2 地脚螺栓参数表序号 杆塔名称 根径(mm) 螺栓圆直径(mm) 螺栓数量/规格 螺栓等级1 10SJG1A 720 915 20M48A Q2352 10SJG1B 690 860 16M56A Q2353 10SJG2A 760 985 20M56A Q2354 10SJG2B 760 930 16M56A Q2355 10SJG3A 880 1105 20M56A Q235序号 杆塔名称 根径(mm) 螺栓圆直径(mm) 螺栓数量/规格 螺栓等级6 10SJG3B 890 1060 20M56A Q2357 10DJG1 820 990 20M56A Q2358 10DJG2 890 1295 20M72A Q2359 10DJG3 990 1345 20M68C 45号钢1.11 基础基础大小由工程设计人员根据具体工程地质条件进行设计。
10千伏架空线路档距允许误差

10千伏架空线路是电力输配系统中常见的一种电力输送方式,其安全可靠性关系到人民生命财产安全以及电力系统的稳定运行。
在10千伏架空线路的设计和施工中,档距的允许误差是一个重要的技术指标,对于保障线路安全运行和提高电网的供电质量具有重要意义。
一、10千伏架空线路的档距定义及作用1.档距定义10千伏架空线路的档距是指两个相邻的绝缘子串之间的垂直距离。
一般来说,档距与线路的电气参数、绝缘子串的型号、导线的材质和风载荷等因素有关,是线路设计中的重要参数之一。
2.档距的作用档距的大小直接关系到线路的运行安全和电气性能。
合理的档距能够保证线路的绝缘水平,减少线路的跳闸故障,降低线路的绝缘串中的电场强度,减小绝缘子串受到的风荷载,从而提高线路的可靠性和安全性。
档距的允许误差是需要严格控制的。
二、10千伏架空线路的档距允许误差标准根据《电力工程电气设备安装工程施工及验收规范》GB xxx-96的规定,10千伏架空线路的档距允许误差标准如下:- 水平档距误差≤±150mm- 垂直档距误差≤±100mm根据具体情况,对于一些特殊线路,还可以在设计文件中明确规定其档距允许误差范围。
三、档距允许误差的影响1.对电气性能的影响当档距偏大或偏小时,都会对线路的电气性能产生影响。
档距偏大会增大线路的电容,导致电压梯度过大,影响线路的绝缘水平;而档距偏小会造成线路的相间短路和跃闸故障。
档距允许误差需要在设计和施工中严格控制,确保线路的电气性能符合要求。
2.对结构安全的影响档距的偏差会直接影响到线路的结构安全。
当档距偏大时,会增加线路的悬挂点受力,加剧线路的挠度,增大线路对支柱、吊塔的侧向压力,从而影响线路的整体稳定;而档距偏小时会使线路绝缘子串受到过大的风压,影响绝缘子串的安全性。
要严格控制档距允许误差,确保线路的结构安全。
3.对供电质量的影响适当的档距能够减少线路的电场强度,减小绝缘子串受到的风压,提高线路的供电质量。
10kv弧垂和档距计算公式

10kV弧垂和档距计算公式引言在电力传输和分配系统中,弧垂和档距是关键的参数,用于确定电力线的设计和安装。
准确计算弧垂和档距对于确保电力线的安全运行至关重要。
本文将介绍10kV电力线的弧垂和档距计算公式及其应用。
1.弧垂的定义及重要性电力线的弧垂是指导线悬挂在两个支柱或塔之间时,导线自然形成的弧形的垂直距离。
弧垂的大小直接影响到电线的安全性和稳定性。
过大或过小的弧垂都会对电线的正常运行产生不利影响。
2.档距的定义及重要性档距是指两个导线之间的水平距离,通常以米为单位。
档距的大小与导线的安全间距、电力线的设计容量和电力系统的电压等因素有关。
适当的档距能够确保导线之间的绝缘完好,并降低导线之间的交流干扰。
3. 10kV电力线弧垂和档距计算公式3.1弧垂计算公式下面是10k V电力线弧垂计算的公式:H=(L^2-D^2)/(2*S)其中,H表示弧垂,L表示两个支柱或塔之间的水平距离,D表示导线的自重对应的间距,S表示导线的张力。
3.2档距计算公式下面是10k V电力线档距计算的公式:S=(L^2-H^2)*9.8*W/(2*L*T)其中,S表示档距,L表示两个支柱或塔之间的水平距离,H表示弧垂,W表示导线的单位长度重量,T表示导线的张力。
4.应用示例假设有一条10k V电力线,两个支柱或塔之间的水平距离为100米,导线的自重对应的间距为10米,导线的单位长度重量为0.78N/m,导线的张力为20kN。
我们可以使用上述公式来计算该电力线的弧垂和档距。
4.1计算弧垂根据弧垂计算公式,代入相应的数值,可以得到弧垂的计算结果:H=(100^2-10^2)/(2*20)≈245.00(米)因此,该10kV电力线的弧垂为245.00米。
4.2计算档距根据档距计算公式,代入相应的数值,可以得到档距的计算结果:S=(100^2-245^2)*9.8*0.78/(2*100*20)≈51.972(米)因此,该10kV电力线的档距为51.972米。
10KV架空线路施工标准

10KV架空线路施工标准10KV架空线路施工标准2011年04月09日10KV架空线路知识随着配电网的飞速发展,供电区域被树木覆盖,严重的腐蚀、台风等诸多因素的影响,使配电网的可靠性面临新的困难。
受到自然界对配电网构成的这种或那种威胁,从而产生了分裂架空绝缘导线。
架空绝缘导线与普通架空裸导线相比,具有许多优点,可解决常规裸导线在运行过程中遇到的一些难题,价格又比地埋电缆便宜得多,因此,在配电网中得到广泛的应用。
架空绝缘导线的主要特点(1)绝缘性能好。
架空绝缘导线由于多了一层绝缘层,比裸导线优越的绝缘性能,可减少线路相间距离,降低对线路的支持件的绝缘要求,提高同杆架设线路的回路数。
(2)防腐蚀性能好。
架空绝缘导线由于外层有绝缘层,比裸导线受氧化腐蚀的程度小,抗腐蚀能力较强,可延长线路的使用寿命。
(3)防外力破坏。
减少受树木,飞飘金属膜和灰尘等外在因素的影响,减少相间短路及接地事故。
(4)强度达到要求。
绝缘导线虽然少了钢心,但坚韧,使整个导线的机械强度能达到应力设计的要求。
2 架空绝缘导线的规格(1)线心。
架空绝缘导线有铝心和铜心两种。
在配电网中,铝心应用比较多,主要是铝材比较轻,而且较便宜,对线路连接件和支持件的要求低,加上原有的配电网也以钢心铝绞线为主,选用铝心线便于原有网络的连接。
在实际使用中也多选用铝心线。
铜心线主要是作为变压器及开关设备的引下线。
(2)绝缘材料。
架空绝缘导线的绝缘保护层有厚绝缘(3(4mm)和薄绝缘(2(5mm)两种。
厚绝缘的运行时允许与树木频繁接触,薄绝缘的只允许与树木短时接触。
绝缘保护层又分为交联聚乙烯和轻型聚乙烯,交联聚乙烯的绝缘性能更优良。
常用的lOkV架空绝缘导线如表1所示。
3 架空绝缘导线的敷设方式(1)单根常规敷设方式。
这种架设方式就是采用目前裸导线的常规水泥电杆、铁附件及陶瓷绝缘子配件,按裸体导线架设方式进行架设,比较适合于老线路进行改造和走廊较充分的区域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10KV档距确定
档距是指相邻两基电杆之间的水平直线距离。
10kv架空线路的档距应根据线路通过地区的气象条件、杆塔使用条件、导线排列型式和地形特点确定,一般采用下列数值:高压配电线路:城市40~50m,城郊及农村60~100m。
特殊跨越河流或线路经过丘陵山地档距可达100~200m。
档距选择是否适当,对于线路建设速度和经济性,供电的可靠性以及维修的方便性等影响很大。
本文从以下几方面谈谈10kv
架空线路跨度的确定。
1气象条件是线路档距确定的基础
作用在架空线路上的机械载荷随着气象条件的不断变化而变化。
架空线路的机械荷载不仅影响其自身的长度、垂度和拉应力,而且还决定了塔架和塔架基础的应力以及活部件与各方面之间的安全距离;这些因素与架空线路跨度的确定密切相关。
设计一般有九种气象条件:最高温度、最低温度、年平均温度、最大风速、最大结冰、内部过电压(即操作过电压)、外部过电压(即大气过电压)、安装、断开事故、,etc.2线路跨度上的塔架使用条件限制2.1线路跨度上的塔架强度限制
10kv架空线路直线杆一般使用单杆型式,在正常情况下一般仅承受导线、金具自重的下压力,在最大风速时杆塔承受导线的水平风荷载;直线杆(包括跨越杆)、不设拉线的直线型小转角杆及设备杆其电杆应满足下列简化计算条件:
单回线路:MB≥ G4×lsh×(h1+2h2)
双回线路:mb≥2g4×lsh×(h1+2h2)式中mb--电杆标准检验弯矩值(nm);
G4——每根无冰导线单位长度的风压值(n/M);LSH——水平跨度(m);
h1--上导线对地面垂直距离(m);h2--下导线对地面垂直距离(m)。
2.2杆塔的抗倾覆稳定对线路档距的限制杆塔的抗倾覆稳定应满足下列简化计算条件:单回线路:
mq≥g4×lsh×(h1+2h2)双回线路:mq≥g4×lsh×(h1+2h2)
式中MQ——允许的倾覆弯曲距离,由地质条件和塔的埋深决定。
2.3经济跨度的确定
在满足杆塔使用档距的前提下,线路档距增大,导线的弧垂增大,所用杆塔的呼称高度也随之增大,但挡距增大使每公里的杆塔的数量可以减少,故必有一个投资和材料消耗最少的经济呼称高度,与杆塔标准高度相应的档距(即充分利用杆塔高度的档距),称为经济档距。
经济档距的计算公式为:ljj=[8σ(h-λ-hx-△)/g]1/2式中λ--绝缘子串的长度;σ--导线最大弧垂时的应力;h--杆塔的呼称高度;
HX——导线与地面、水面和交叉物体的安全距离;
△--考虑测量、施工误差等所预留的裕度;g--导线最大弧垂时的比载。
塔架的水平跨度LSH决定了线路跨度。
从上面可以看出,当确定G4、H1和H2时,
LSH受到杆件允许倾覆弯矩MQ和标准检验弯矩MB的限制;因此,城区10kV线路导线截面较大,因地形原因无法安装拉线。
根据上述条件计算,跨度一般为40~50m。
3.导线排列类型对齿轮距离确定的影响
在农村配电线路中,导线比较普遍的型式有水平排列、等边三角形和等腰三角形排列
三种。
导线排列型式必须符合线路设计规程和过电压保护规程关于线间距离与绝缘配合的
要求,且要考虑经济效益原则。
3.1水平布置
横担过长(2600mm),受力不均,致使杆塔上两相一侧产生挠度,且两线侧挂线很费劲。
3.2等边三角形排列
横担长1500mm,安装方便,塔架受力均匀,但横担安装距离杆顶800mm。
对于相同的
导线和相同的弧垂,与横担安装在距杆顶100mm处的水平布置相比,计算跨度减少了
25~30m。
因此,每1km使用3~4根基极,增加了线路建设、运营和维护成本。
此外,杆顶
还加了一个铁帽。
3.3等腰三角形排列
横担长1700mm,中间装设一根350mm长的角铁,以安装中相绝缘子。
该横担施工方便,杆塔受力均匀,且横担装在离杆顶100mm处,
与等边三角形布置相比,同一塔和导线的跨度可扩大25~30m,从而充分利用塔的长度,降低成本。
从上述三种导线排列型式可以看出,等腰三角形排列可以充分利用杆塔放大线路档距,节约投资,符合\安全、经济\的原则。
4地形对线路档距的限制4.1跨越道路允许的档距
一般情况下,10kV线路经常穿越道路,尤其是在未形成路网的规划区域,我们应特别注意交叉装置的问题。
10kv线路的走廊要符合城建规划,普遍的杆塔中心点在人行道边缘绿化带处,距离人行道边缘0.5~1m位置;在路口人行道转弯圆弧的转弯半径r决定杆塔中心定点位置。
如
图1所示,n1~n2的档距为:ln1~n2=w+2r+△式中w--道路路面宽度(m);r--道路弯
半径(m);
△ -- 塔中心定点位置的裕度,一般为2~3M。
4.2特殊穿越或山体线的允许跨度
档距中高悬点的应力最大,且档距越大或高差越大,高悬点应力就越大。
设计中都是
以架空线最低点出现最大使用应力考虑的,因而高悬点应力必超过最大使用应力。
《规程》规定,悬点应力可较最低点应力高10%,即悬点应力允许为最低点应力的1.1倍。
这是高
悬点应力
跨度和高差的最大限制相应地限制了跨度和高差的范围。
在一定的高差下,跨度必须有一个最大允许值,称为“允许跨度”,用ly表示。
ly=2σ/g(2ucosβ-cos2β-1)
1/2-sinβ),其中σ——导体最低点的许用应力(n/mm2);
g--导线发生最大应力时的比载n/(mmm2);β--同一档内悬挂点之间高差角;
U——导线悬挂点的许用应力高于最低点的许用应力。
当安全系数=2.5时,u=1.111。
当实际档距大于允许档距时,保持档距和高差不变,则需要放松应力,使允许档距稍大于实际档距,这样悬挂点应力才不超过规定数值。
5结束语
10kV架空线路的跨度应按照“安全、经济”的原则确定。
根据线路所经地区的气象条件、杆塔的使用条件、导线布置形式和地形特点,调整跨距,确保供电安全,降低工程造价。