生物化学第一章
生物化学第一章的名词解释

生物化学第一章的名词解释生物化学是研究生物体内化学成分及其相互作用的科学,它的研究对象包括生物大分子及其在生物体内的结构、功能和代谢等方面的相关过程。
在生物化学的学习过程中,有许多重要的名词需要我们进行深入的解释和理解。
在本文中,我们将会从不同的角度对这些重要名词进行解析。
1. 生物体:生物体是指生活在地球上,由细胞组成的独立生命体,可以是单细胞生物,也可以是由多个细胞组成的多细胞生物。
生物体是通过不同的器官和系统来完成各种生物功能的。
2. 生命大分子:生命大分子是构成生物体的基本分子单位。
包括核酸、蛋白质、多酶和多糖等。
核酸是生物体存储遗传信息的重要分子,包括DNA和RNA。
蛋白质是构成生物体各种生物化学反应和功能的重要分子,具有酶活性的蛋白质称为酶。
多酶是由蛋白质组成的具有多个酶活性的复合物。
多糖是由多个糖分子通过糖基键连接而成的生物大分子,包括淀粉、糖原和纤维素等。
3. 代谢:代谢是指生物体内发生的一系列化学反应,包括分解代谢和合成代谢两类。
分解代谢是指生物体通过将有机物降解为较小的化合物来释放能量的过程。
合成代谢是指生物体通过合成新的分子来构建细胞组分和维持生命活动的过程。
4. 酶:酶是生物体内催化化学反应的蛋白质,它能够加速并控制生物体内几乎所有生物化学反应的进行。
酶通过降低反应的活化能,使反应在生物体内的速率达到可接受的水平。
5. 光合作用:光合作用是光能转化为化学能的过程,是地球上生物体生存的重要基础之一。
在光合作用中,光能被植物中的叶绿素吸收,通过一系列化学反应将二氧化碳和水转化为有机物和氧气。
6. ATP:ATP(腺苷三磷酸)是生物体内能量转化的基本分子单位。
在细胞中,ATP通过供能的方式,将储存的能量释放出来,驱动各种生物化学反应的进行。
7. 基因:基因是DNA中携带遗传信息的特定片段,它是决定生物体遗传性状和调控生物体发育和功能的基本单位。
基因通过遗传方式传递给后代,决定了个体的遗传特征。
生物化学 第一章

剂度不同。
溶质在流动相中的浓度 分配系数=
溶质在固定相中的浓度
流动相:推动溶质向前移动的溶液;如正丁醇。 固定相:固定在纤维素上的溶液。如结合到滤纸上的水
下 行 法
上 行 法
2、离子交换层析法 原理:用离子交换树脂作支持物,分离离子状态
基 酸
(α-氨基β-巯基丙酸)
H– HO–CH2 –
Gln E 谷氨酰胺 (α-氨基-戊酰胺酸)
3
Asn N
天冬酰胺
( α-氨基丁酰胺酸)
Tyr Y
酪 氨 酸( α-氨
基β-对羟基苯丙酸)
带
正 Lys K ※赖 氨 酸
电 荷
( α,ω-二氨基己酸)
的 Arg R 精 氨 酸
极 ( α-氨基γ-胍基戊酸) 性
生物化学
概述
1、生物化学 是研究生命现象的化学,即用物理、化学方法, 从分子水平研究生物体的化学组成及各组成的性质功能,研究生物 体物质和能量的变化 过程及其变化规律的科学。
种瓜得瓜,种豆得豆。
DNA复制
亲代DNA作模板
新合成的子链 DNA片段
用15N-NH4Cl为唯 一氮源连续培养多 用含14N培
蛋白质含量=试样中氮的含量×6.25
6.25即16%的倒数是蛋白质系数,为1克氮所代表的蛋白质含量。
第二节 组成蛋白质的基本单位—氨基酸
蛋白质在酸碱作用下,或在酶的催化下逐步水解
成分子量越来越小的肽段,直到最后成为氨基酸
(Amino acid)的混合物。
蛋白质
盐酸(6mol/L),硫酸(4mol/L),回流煮沸 20h,完全水解
生物化学第一章

三、蛋白质的分类
* 根据蛋白质组成成分 单纯蛋白质 结合蛋白质 = 蛋白质部分 + 非蛋白质部分 * 根据蛋白质形状 纤维状蛋白质
球状蛋白质
第二节
蛋白质的分子结构
The Molecular Structure of Protein
蛋白质的分子结构包括
一级结构(primary structure)
第一章
蛋白质化学
Structure and Function of Protein
一、什么是蛋白质?
蛋 白 质 (protein) 是 由 许 多 氨 基 酸
(amino acids)通过肽键(peptide bond)相连 形成的高分子含氮化合物。
二、蛋白质的生物学重要性
1. 蛋白质是生物 体重要组成成分 分布广:所有器官、组织都含有蛋白质; 细胞的各个部分都含有蛋白质。
酰胺平面与α-碳原子的二面角( φ和ψ )
二面角
两相邻酰胺平面之间,能以共同的 Cα 为定点而旋转, 绕Cα-N键旋转的角度称φ角,绕C-Cα键旋转的角度称ψ角
。φ和ψ称作二面角,亦称构象角。当φ或ψ旋转健所处的
肽平面的取向而等分 H-Cα-R平面,且该旋转健两侧的主 链处于顺时针构型时,规定φ=0,同时ψ=0,从Cα沿健轴 的方向观察,顺时针旋转的φ和ψ角度为(+),逆时针时 旋转的为(-)。
* 多肽链(polypeptide chain)是指许多氨基 酸之间以肽键连接而成的一种结构。
多肽链有两端
N 末端:多肽链中有自由氨基的一端
C 末端:多肽链中有自由羧基的一端
N末端
C末端
牛核糖核酸酶
(二) 几种生物活性肽 1. 谷胱甘肽(glutathione, GSH)
生物化学

生物化学重点第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。
二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。
第一章 生物化学绪论

第一节、生物化学发展简史
生物化学是在近代化学和生理学的基础上逐渐发展 起来的,故最初称为“生理化学”。直到 1903年才由 德国科学家C.A. Neuberg 提出“Biochemistry” 而成 为一门独立的学科。 纵观生物化学的发展史,可大致分为三个阶段,即 叙述生物化学、动态生物化学和分子生物学阶段。
第三节 生物化学与药学的关系
由生物化学、分子生物学、微生物学相结合而快速发展起
来的现代生物技术已有可能生产人体内几乎所有痕量、稀有 的多肽和蛋白质, 这些技术包括基因工程、酶工程、细胞工 程和发酵工程。生物技术制药从1982年重组人胰岛素上市至 今新批准用于治疗的生物技术药物已超百种,我国亦有包括 胰岛素、白细胞介素、干扰素、促红细胞生成素、粒细胞集 落刺激因子、胸苷激酶基因工程细胞制剂,乙肝疫苗共20多 种生物技术药物批准上市。 因此生物化学基本理论、方法和技术是药学专业学生 必备的理论知识和实践技能。
第一节、生物化学发展简史
20世纪70年代Berg成功地进行了DNA 体外重组, 标志现代基因工程的诞生。20世纪80年代后,分子 生物学和基因工程得以飞速发展,推动了医药工业 和农业的发展。20世纪末启动人类基因组计划,经 近10年努力,终于在2001年2月由人类基因组计划 和Cerela共同公布了人类基因组草图。这是人类认 识生命本质的又一重大突破。将为人类的健康和疾 病的研究带来根本性的变革。
第二节
生物化学研究的主要内容
二、物质代谢、能量代谢及代谢调节
组成生物体的物质不断地进行着复杂而有规律的化学 变化,即新陈代谢。新陈代谢是生命的基本特征之一。生 物经新陈代谢不断与外界环境进行物质交换,以维持生物 体的繁殖、生长、发育、修补和自我更新。 物质代谢 新陈代谢 能量代谢
生物化学

第一章.生物化学绪论1.生命的生物化学定义:生命系统包含储藏遗传信息的核酸和调节代谢的酶蛋白。
但是已知某种病毒生物却无核酸(朊病毒)。
2.生命(生物体)的基本特征:(1)细胞是生物的基本组成单位(病毒除外)。
( 2 ) 新陈代谢、生长和运动是生命的基本功能。
( 3 )生命通过繁殖而延续,DNA是生物遗传的基本物质。
(4)生物具有个体发育和系统进化的历史。
( 5 )生物对外界可产生应激反应和自我调节,对环境有适应性。
3.化学是在原子、分子水平上,研究物质的组成,结构、性质和变化规律的一门基础自然科学。
生物化学就是生命的化学。
4.生物化学:运用化学的原理和方法,研究生物体的物质组成和生命过程中的化学变化,进而深入揭示生命活动的化学本质的一门科学。
5.生命体的元素组成:在地球上存在的92种天然元素中,只有28种元素在生物体内被发现。
第一类元素:包括C、H、O和N四种元素,是组成生命体最基本的元素。
这四种元素约占了生物体总质量的99%以上。
第二类元素:包括S、P、Cl、Ca、K、Na和Mg。
这类元素也是组成生命体的基本元素。
第三类元素:包括Fe、Cu、Co、Mn和Zn。
是生物体内存在的主要少量元素。
第四类元素:包括Al、As、B、Br、Cr、F、Ga、I、Mo、Se、Si等。
偶然存在的元素。
6.生命分子是碳的化合物:生命有机体的化学是围绕着碳骨架组织起来的。
生物分子中共价连接的碳原子可以形成线状的、分支的或环状的结构。
7.生物(生命)分子是生物体和生命现象的结构基础和功能基础,是生物化学研究的基本对象。
生物分子的主要类型包括:多糖、聚脂、核酸和蛋白质等生物大分子。
维生素、辅酶、激素、核苷酸和氨基酸等小分子。
8 .生物大分子的结构与功能:研究生物分子的结构和功能之间的关系,代表了现代生物化学与分子生物学发展的方向。
9.生物化学的内容:静态生物化学:研究生物有机体的化学组成、结构、性质和功能。
动态生物化学:研究生命现象的物质代谢、能量代谢与代谢调节。
生物化学第一章绪论

引言概述:生物化学是研究生物体内化学结构、组织和生命活动的科学,它承接了有机化学、生物学和物理学等多个学科的基础知识,并运用这些知识来解析生物体内的复杂化学反应。
本文将围绕生物化学第一章的绪论部分展开叙述,重点介绍生命的起源、生物大分子、生命的能量转化、生物膜和细胞器等方面的内容。
正文内容:一、生命的起源1.生命的化学基础:讲述有机分子在地球早期的环境下的合成过程,以及如何形成简单有机分子的实验模拟研究。
2.生命的起源理论:介绍了地球早期环境和过渡环境中生命起源的几种理论,如原生生命体说、RNA世界假说等,并对比分析它们的优缺点。
3.生命的进化:阐述了生命的起源与进化之间的关系,以及自然选择和基因突变在生命进化中的作用。
二、生物大分子1.蛋白质:描述蛋白质的组成、结构和功能,包括氨基酸的基本性质和反应、蛋白质的一级、二级、三级和四级结构以及蛋白质的功能多样性。
2.核酸:介绍DNA和RNA的结构和功能,包括核苷酸的组成、碱基配对的规则、DNA的双螺旋结构和复制等重要过程。
3.多糖:讲述多糖的种类和结构,包括淀粉、糖原和纤维素等,以及它们在生物体内的生理功能和代谢途径。
三、生命的能量转化1.糖代谢:详细阐述糖的有氧和无氧代谢途径,包括糖解、糖酵解、异源糖母嗣和糖异生等过程,以及这些过程的调控机制。
2.脂肪代谢:解析脂肪在生物体内的合成和降解途径,包括脂肪酸的合成、三酰甘油的降解和胆固醇的合成等重要过程。
3.氨基酸代谢:探讨氨基酸的合成和降解途径,以及转氨酶和脱氨酶在这些过程中的作用。
四、生物膜1.生物膜的结构:介绍生物膜的组成和结构,包括磷脂双分子层的构成、蛋白质和其他分子在生物膜中的分布以及生物膜的流动性等特点。
2.生物膜的功能:阐述生物膜在细胞内外界物质交换、信号传导和细胞间相互作用等方面的重要功能,并介绍生物膜的选择性通透性。
3.膜蛋白:探讨膜蛋白的结构和功能,包括通道蛋白、离子泵和受体蛋白,以及它们在维持细胞内外环境平衡和信号转导中的作用。
生物化学第一章绪论

1965年, Holly 排出酵母tRNAAla 的一级结构 1966年,Nirenberg & Khorana 破译了遗传密码 1970 年, Temin和 Baltimore 几乎同时发现逆向转录酶,证 实了 Temin 1964 年提出的“前病毒假说”,阐明在劳氏肉 瘤病毒(RSV)感染以后,首先产生含RNA病毒基因组全部 遗传信息的 DNA 前病毒,而子代病毒的 RNA 则是以前病毒 的DNA为模板进行合成。 1972 年~1973年, Berg 等成功地进行了 DNA 体外重组; Cohen创建了分子克隆技术,在体外构建成具有生物学功能 的细菌质粒,开创了基因工程新纪元。在此同时,Boyer等 在 E.coli 中成功表达了人工合成的生长激素释放抑制因子基 因
后发现维生素
1926年,美国化学家J. B. Sumner首次得到脲酶结晶 1912-1933,生物氧化得到了卓有成效的研究
30 年代,陆续得到了胃蛋白酶、胰蛋白酶、胰凝乳 蛋白酶,从而进一步证明酶是蛋白质
30年代,英国生化学家A.Krebs提出尿素循环和三羧 酸循环 40年代,能量代谢的提出为生物能学的发展奠定了 基础 此外,糖酵解途径、光合碳代谢途径得到证明,发 现了维生素和激素、血红素、叶绿素等
第一代转基因食品,是以增加农作物抗性和耐贮 性的转基因植物源食品。
这一代的转基因食品研究起始于20世纪70年代末80年代 初,是以转入抗除草剂基因、抗虫基因增加农作物的抗逆性 以及延迟成熟基因等为主要特点。
转基因抗虫水稻
转黄瓜抗青枯病基因的甜椒
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章糖化学
1.简述单糖及其分类。
2.简述单糖的构型。
3.简述葡萄糖的环式结构。
4.简述单糖的化学性质。
5.简述成苷反应与糖苷。
6.简述单糖的氧化反应。
7.简述重要双糖的还原性。
8.简述淀粉和纤维素的异同。
9.简述人体内的主要杂多糖。
参考答案:
1.单糖最简单的糖,只含一个多羟基醛或多羟基酮单位。
按分子中所含碳原子的数目,单糖可分为丙糖、丁糖、戊糖和己糖等。
自然界中最丰富的单糖是含6个碳原子的葡萄糖。
按分子中羰基的特点,单糖又分为醛糖和酮糖,如葡萄糖是醛糖,果糖是酮糖。
2.多数单糖分子所含原子或基团的空间排布是不对称的,我们说它们存在构型,是手性分子。
手性分子的构型可以用甘油醛作参照物表示。
甘油醛是最简单的单糖,其C-2为手性碳原子,其所结合的醛基、羟基、羟甲基和氢有两种排布方式,因而甘油醛存在两种构型异构体,分别称为D-甘油醛和L-甘油醛。
单糖的构型是根据其离羰基最远的手性碳原子连接的—OH来确定,与D-甘油醛一致的、—OH在右侧的单糖为D-构型,与L-甘油醛一致的、—OH 在左侧的单糖为L-构型。
生物体内的单糖多数具有D-构型。
3.在溶液状态下,D-葡萄糖的C-5羟基与C-1醛基发生分子内缩醛反应,形成环式半缩醛结构,使C-1成为手性碳原子,形成两种立体异构体,命名为α-和β-构型。
在水溶液中,开链结构与两种环式结构的葡萄糖形成一个动态平衡。
4.单糖既能发生醇的反应,也能发生醛或酮的反应,环式单糖的半缩醛羟基还能发生特殊反应。
⑴成苷反应:环式单糖的半缩醛羟基可与其他分子中的羟基(或活泼氢原子)缩合,生成糖苷。
⑵成酯反应:单糖分子中所有的羟基都能与酸成酯,其中具有重要生物学意义的是形成磷酸酯。
⑶氧化反应:一定条件下,单糖分子中的醛基和羟甲基可被氧化,氧化条件不同则氧化产物不同。
⑷还原反应:单糖可以被还原为相应的糖醇。
5.环式单糖的半缩醛羟基可与其他分子中的羟基(或活泼氢原子)缩合,生成糖苷。
例如,葡萄糖和甲醇缩合生成α-D-甲基葡萄糖苷和β-D-甲基葡萄糖苷。
糖苷分子包括糖基部分和非糖部分,一般将糖基部分称为糖苷基,非糖部分称为糖苷配基。
连接糖苷基和糖苷配基的化学键称为糖苷键,通常有氧糖苷键和氮糖苷键。
糖苷结构中没有游离半缩醛羟基,不能开环形成醛基,所以没有还原性。
6.一定条件下,单糖分子中的醛基和羟甲基可被氧化,氧化条件不同则氧化产物不同。
⑴与碱性弱氧化剂反应:在碱性条件下,醛能被碱性弱氧化剂氧化成酸,同时生成金属单质或低价金属氧化物。
醛糖能被碱性弱氧化剂氧化成糖酸等复杂产物,称为还原糖。
酮糖可通过醛酮异构生成醛糖,所以无论是醛糖还是酮糖,都能被碱性弱氧化剂氧化成糖酸等复杂产物,都是还原糖。
⑵与非碱性弱氧化剂反应:醛糖与非碱性弱氧化剂作用生成相应的糖酸。
例如葡萄糖与溴
水反应生成葡萄糖酸。
⑶酶促反应:在肝脏内,葡萄糖经酶促氧化生成葡糖醛酸,后者具有保肝、解毒作用。
⑷与较强氧化剂反应:单糖与较强氧化剂(如稀HNO3)作用生成糖二酸。
⑸彻底氧化:在体内,单糖(主要指葡萄糖)在酶的作用下,可以完全氧化分解生成CO2和H2O。
7.重要双糖包括麦芽糖、蔗糖和乳糖等。
⑴麦芽糖由两分子D-葡萄糖以α-1,4-糖苷键结合而成,其中一个葡萄糖在溶液中可以开环形成醛基。
麦芽糖具有还原性。
⑵蔗糖是自然界分布最广的双糖,由D-葡萄糖和D-果糖以α-1,2-β-糖苷键结合而成,在溶液中不能开环形成醛基。
因此,蔗糖没有还原性。
⑶乳糖存在于哺乳动物的乳汁中,由D-半乳糖和D-葡萄糖以β-1,4-糖苷键结合而成。
其中D-葡萄糖在溶液中可以开环形成醛基。
因此,乳糖具有还原性。
8.⑴淀粉和纤维素都是植物多糖,但功能不同,淀粉是糖的储存形式,纤维素是植物细胞壁的结构成分。
⑵淀粉和纤维素都由葡萄糖构成,但结构不同,葡萄糖以α-1,4-和α-1,6-糖苷键结
合形成淀粉,以β-1,4-糖苷键结合形成纤维素。
⑶淀粉包括直链淀粉和支链淀粉,后者有分支;纤维素都是直链结构,没有分支。
⑷直链淀粉溶于水,溶液与碘呈色,纤维素不溶于水,与碘不呈色。
9.杂多糖由多种单糖或单糖衍生物组成,包括糖胺聚糖(由氨基糖和糖醛酸等组成)、阿拉伯胶(由半乳糖和阿拉伯糖组成)等,以糖胺聚糖最为重要。
糖胺聚糖又称为氨基多糖,一般由N-乙酰氨基己糖和糖醛酸聚合而成。
因其溶液具有较大黏性,又称为黏多糖。
有的糖胺聚糖还有硫酸基团,因而具有酸性。
糖胺聚糖链还原端的半缩醛羟基与蛋白质结合形成蛋白聚糖。
糖胺聚糖广泛分布于动物体内,是许多结缔组织基质的重要成分,腺体与黏膜的分泌液、血及尿等体液都含有少量糖胺聚糖。
常见的有透明质酸、硫酸软骨素、肝素及血型物质等。