复杂网络上动力系统同步的研究
复杂网络的演化动力学及网络上的动力学过程研究

复杂网络演化动力学
复杂网络演化动力学
复杂网络的演化是一个包含多种相互作用和动态过程的系统工程。在网络演 化的过程中,节点和边的动态变化会导致网络结构和功能的改变。典型的网络演 化动力学包括自组织、相变和混沌等现象。
复杂网络演化动力学
自组织是指网络在演化过程中,通过局部相互作用和自适应机制,形成具有 特定结构和功能整体的过程。在复杂网络中,自组织往往导致网络出现层次结构 和模块化等特征。相变则是指网络在演化过程中,由于外部环境变化或内部相互 作用改变,网络结构和功能突然发生剧变的现象。而混沌则是指网络演化过程中 的不可预测性和敏感依赖性。
内容摘要
复杂网络,由许多节点和连接这些节点的边构成,在各种科学领域中都有广 泛的应用。从生物学中的神经网络到社交网络,从互联网到电力网络,复杂网络 的身影无处不在。而在这些网络中,各种动力学过程也在悄然进行。本次演示将 探讨几种复杂网络上的动力学过程的研究进展。
一、传播动力学
一、传播动力学
在复杂网络中,信息的传播是一个重要的动力学过程。从疾病病毒的传播到 谣言的扩散,从知识的学习到观点的形成,信息的传播都是在网络中进行的。研 究这种传播过程,需要对网络的拓扑结构和传播机制有深入的理解。一种常用的 方法是使用传染病模型,如 SIR模型,通过模拟疾病在人群中的传播,来预测和 控制疾病的扩散。
未来研究方向
此外,随着大数据和计算能力的不断提升,未来的研究也可以更加深入地探 讨复杂网络结构和动态演化过程对合作演化和博弈动力学的影响。
结论
结论
复杂网络上的合作演化和博弈动力学研究在理解自然、社会和技术系统中的 合作行为方面具有重要的理论和实践价值。本次演示介绍了该领域的研究现状、 主要方法、实验结果以及未来研究方向。通过深入探讨复杂网络背景下的合作演 化和博弈动力学问题,我们可以更好地理解系统中各要素之间的相互作用和演化 过程,并为解决现实问题提供有益的启示。
复杂网络中的动力学与控制研究

复杂网络中的动力学与控制研究复杂网络是指由大量复杂交互系统构成的一类网络结构。
它的研究范畴通常包括生物学、社会学、计算机科学等领域。
复杂网络的研究最初是从描述网络上的任务转变为探索网络内部结构、动态性、演化规律以及控制问题。
其中,动力学和控制问题是研究的重点和难点之一。
网络中的动力学研究是指研究在复杂网络内部系统间的相互作用,产生的动态行为。
主要研究任务包括:探测网络的同步、耦合、聚类、自组织、崩溃等动态行为。
在这些研究中,探究网络中的同步问题是一项重要工作。
同步现象在自然界和社会生活中随处可见。
例如,雷雨时的闪电与雷声、人类呼吸与心跳、不同脑区的神经元活动等均可呈现出同步的现象。
在复杂网络中,同步现象也具有广泛的应用价值。
例如,在通讯、交通控制、电力系统等领域,同步现象能够保证网络稳定,提高通讯效率,减少能量的浪费。
控制问题是指在复杂网络中确定一种控制方法,使得网络能够达到某种预定的优化效果。
目前,针对网络控制问题主要有以下几个研究方向:第一,目标控制。
这一方法基于将网络考虑为一个容纳目标的系统,通过控制网络内部节点的行为,使网络中特定节点达到预定的目标。
第二,拓扑结构控制。
这种方法主要通过控制网络的拓扑结构,使得网络的性能在预定条件下得到优化。
第三,动力学控制。
这种方法针对动力学和耦合关系建立控制模型,通过控制节点间的行为,来协调网络内部的动力学。
第四,基于复杂网络的分布式控制。
这种方法利用分布式网络中的信息交换特性,通过在网络节点间进行信息传递、交互,来实现网络中全局性的控制。
以上控制方法均处于不同的阶段,并尚需进一步深入、细致的研究与实践。
同时,复杂网络中的动力学与控制问题是一个 multi-scale 的复杂问题,研究过程中不免会出现无序性、随机性和不可预测的现象。
因此,在研究过程中需要耐心、坚持,并不断地探索和创新。
总之,复杂网络中的动力学与控制问题是复杂网络研究领域中的热点问题。
它不仅是实现网络优化和改进网络稳定性的重要手段和方法,也能给我们带来更多的科学、技术和经济效益。
复杂系统的网络动力学研究

复杂系统的网络动力学研究在当今科技飞速发展的时代,复杂系统的研究成为了众多学科领域的焦点。
其中,复杂系统的网络动力学更是吸引了众多科学家的目光。
那么,什么是复杂系统的网络动力学呢?简单来说,它是研究由多个相互作用的元素组成的系统,如何随着时间的推移而演变和发展的科学。
复杂系统广泛存在于我们的生活中。
从生物体内的细胞网络,到社会中的人际关系网络,再到互联网中的信息传播网络,无一不是复杂系统的典型例子。
这些系统中的元素通过各种相互作用和连接形成了复杂的网络结构,而网络动力学则致力于揭示这些网络结构如何影响系统的行为和功能。
以生态系统为例,其中的各种生物物种之间存在着复杂的捕食、竞争和共生关系。
这些关系构成了一个庞大的生态网络。
在这个网络中,一个物种数量的变化可能会通过食物链和生态链的传递,对其他物种产生连锁反应,进而影响整个生态系统的稳定性和动态平衡。
网络动力学的研究可以帮助我们理解这种动态变化的规律,预测生态系统可能面临的问题,并为保护生态环境提供科学依据。
在社会系统中,人际关系网络的动力学研究也具有重要意义。
比如,信息、观念和行为在社交网络中的传播过程。
一个新的观念或行为模式可能在某个小群体中产生,然后通过人与人之间的交流和影响迅速传播到更大的范围。
网络动力学可以帮助我们分析这种传播的模式和速度,以及影响传播效果的关键因素。
这对于制定有效的社会政策、推广有益的社会行为以及控制不良信息的传播都具有重要的指导作用。
复杂系统的网络动力学研究并非一蹴而就,它面临着诸多挑战。
首先,复杂系统中的元素众多,相互作用关系复杂且多样化,这使得准确描述和建模变得极为困难。
其次,系统的动态变化往往是非线性的,这意味着微小的初始条件差异可能会导致截然不同的结果,增加了预测和分析的难度。
此外,实验研究复杂系统的网络动力学也面临着诸多限制,因为在现实中很难对大规模的复杂系统进行精确控制和观测。
为了应对这些挑战,科学家们采用了多种研究方法和技术。
复杂网络中的动力学模型与机理分析

复杂网络中的动力学模型与机理分析一、引言复杂网络是近年来引起广泛关注的研究领域,它可以用来模拟和分析各种复杂系统,如社交网络、生物网络和交通网络等。
动力学模型是研究复杂网络行为的重要工具,通过对网络节点之间的相互作用进行建模,我们可以深入了解复杂网络中的动态演化过程与机理。
本文将介绍一些常用的动力学模型,并对其机理进行分析。
二、随机图模型随机图模型是最早被引入到复杂网络研究中的模型之一,它假设网络中节点之间的连接是随机生成的。
其中最经典的是随机图模型中的ER模型,它假设每一对节点间的连接概率都是相等的。
通过该模型,我们可以研究网络中的群聚现象和相变行为等,揭示了复杂网络中的一些基本特性。
三、小世界网络模型小世界网络模型克服了随机图模型中的不足,它通过引入局部连接和随机重连机制,能够同时兼顾网络的聚类特性和短路径特性。
其中比较有代表性的是Watts-Strogatz模型,它将网络的随机重连程度作为参数,可以控制网络的小世界性质。
这种模型揭示了许多实际网络中普遍存在的“六度分隔”现象。
四、无标度网络模型无标度网络模型是另一类常用的动力学模型,它假设网络中部分节点的度数比其他节点更高。
这种模型能够较好地描述现实中一些特殊的网络,如互联网和社交网络等。
其中著名的模型是BA 模型,它通过优先连接机制,使得度数较高的节点更容易获得新节点的连接。
这一模型的提出揭示了复杂网络中的“rich get richer”原则。
五、动力学机理分析除了建立动力学模型,我们还需要分析模型中的动力学机理。
常用的方法包括稳定性分析和数值模拟等。
稳定性分析可以通过线性化系统方程来推导系统的稳定性条件,从而预测网络的稳定状态。
数值模拟则利用计算机模拟的方法,通过迭代网络的动力学方程,模拟网络的演化过程并得到网络的行为特性。
六、复杂网络中的动力学现象在复杂网络中,各种有趣的动力学现象被发现并研究。
例如,网络同步现象是指网络中的节点在相互作用下,逐渐趋于统一的状态。
复杂网络上动力学系统的同步研究的开题报告

复杂网络上动力学系统的同步研究的开题报告题目:复杂网络上动力学系统的同步研究一、研究背景随着信息技术和通信技术的发展,复杂网络已经成为包括社交网络、生物网络、物流网络等在内的各种实际系统的重要组成部分。
在复杂网络上引入动力学系统后,同步问题成为一个重要的研究方向。
同步是指在一定条件下,一些系统之间的状态会发生相同的变化,例如震荡系统的同步现象就表现为其振幅和频率发生了相同的变化。
而复杂网络上的同步研究,不仅可以帮助我们更深入地理解网络系统的运行机制,还可以应用于实际问题解决中。
二、研究内容本研究将探讨复杂网络上的动力学系统同步现象,主要包括以下内容:1. 复杂网络和动力学系统基础理论的介绍:对复杂网络和动力学系统的基础概念、理论和数学方法进行介绍,为后续研究打下基础。
2. 复杂网络上同步研究的现状分析:回顾国内外关于复杂网络同步问题的研究进展及研究热点,归纳同步研究中存在的问题和挑战。
3. 复杂网络上不同类型的同步:系统对称同步、反对称同步、异步模式等不同类型的同步现象的定义、特征分析、稳定性分析和应用探讨。
4. 复杂网络上同步的控制:控制复杂网络同步过程的控制器设计,改变耦合结构的方式、时间延迟的情况等对同步控制的影响,解决节点故障和干扰等实际问题。
5. 复杂网络上同步的应用研究:将同步研究应用到各种实际问题中,如通讯技术、生物科学、社会科学等领域,为解决现实问题提供参考。
三、研究意义1. 可深入理解复杂网络与动力学系统的内在机制。
2. 对动力学系统的调控, 风险控制, 智能化分析等具有重大意义。
3. 对促进人类社会的智能化, 发挥其具有的优势, 具有指导作用。
四、研究方法本研究将采用实验研究和数学建模相结合的方式进行。
首先通过复杂网络构建实验平台,然后引入不同类型的动力学系统进行同步实验,测量同步现象的特征,分析同步稳定性和影响因素。
同时,对实验结果进行理论分析和数学建模,给出同步控制方案和稳定性分析。
复杂网络上的动力学研究

e( x) 2毓 ∑肇他以 7‘
,。
(2· ;)
4
将(2.2) 代入( 2.1) 可以得到:
詈甜2娩e( xXI -^) 一‘
(t Z2..J3,)
茬( 2.3 ) 中我们考虑一个染病节点恢复健康的几率Y- - 1。同时,我们
l 羹_■
信息 科拳
复 杂 网 络 上 的动 力 学 研 究
张嘉龄 李茂青 ( 厦门大学信息科学与技术学院自动化系福建厦门36 1∞5 )
【摘要】 通过对复杂网络 动力学性质的研 究,一方面可以 使我们更好地了 解和解释现实 世界中复杂网络 所呈现出来的各 种动力学现象; 另一方面我们可 以将对
复杂网络 动力学性质研 究的理论成果应 用到具体问题 当中去,使得网 络理论可以为 我们所用。介 绍网络上的几个 动力学过程, 包括网络中的疾 病传播,网络 的同步
象一Bi s+Ti , 象=p¨w’ ( 2.1)
上式中p i 代表了一个处于易感状态的节点被其邻居传染的几率。对 于一个度为k 的节点,Past oSat or r a s等用B i 一0(^) .侧 幻代替 ,其 中 ^ 是通过与~个已染病的节点相连而被感染的几率,0( x) 是随机一条
连线指向一个染 病节点的几率:
和网络的鲁棒性。
[ 关键词】复杂网络动力研究
一
中图分类号:0 19 文献标识码:^ 文章编号:1672
一、 引膏 复杂 网络 的研 究从大 量的 实证 数据 的统计 分析 出发 ,然后 构建 相应 的 网络 演化 模型 ,最 终目 的是 为了 通过 复杂网 络的 拓扑 结构 来认 识网 络上 的 动力 学 行为。 复杂 网络 的结 构及 功能 之间 的相 互关 系已 经成 为物 理学 ,生 物学 ,信 息学以 及社 会学的 一个 重要的 研究 课题。 如人 们希望 了解 www网 络 的拓 扑结构 如何 影响web冲浪 和搜索 引擎; 社会 网络中 ,国家 问地 理关系 和 人口 结 构如何 影响 流行 病或 信息 的传 播, 食物 链网 络结 构如 何影 响种 群的 动力 学行 为; 销售 网络 的拓 扑结 构如 何影响 企业 收益 与利 润等 。不 同的 网 络拓 扑 结构对 网络 上的 动力 学行 为产 生不 同的 影响 。以 疾病 或病 毒在 网络 上的 传 播为例 ,在 规则 网络 和随 机网 络上 的研 究表 明, 疾病 的传 染强 度存 在一 个 阈值。 只有 当传 染强 度大 于这 个阈 值时 ,疾 病才 能在 网络 中长 期存 在. 但是对于 无标度网 络,并 不存在这 样的阈值 ,只要 传染病发 生,就将 长 期存 在。 类似 的, 不同 的网 络结 构对 随机错 误的 鲁棒 性和 对蓄 意攻 击的 脆 弱性 、网 络上 的级 联效 应、 网络 上的 同步、 网络 上的 交通 动力 学等 都产 生 不同 的影响. 正确理解 网络结 构和网络 上的动力 学行为 之间的关 系,对于 网 络上 的疾 病传 播控 制、 网络 的安 全设 计具有 重要 的理 论意 义和 现实 的指 导 7意义 。 对于 复杂 网络 中的病 毒及 流言 传播 问题, 我们 主要 关注网 络上 的传 播 动力 学 问题, 对于 传染 病的 流行 问题 ,计 算机 病毒 在计 算机 网络 上的 蔓延 问题 以及 谣言 在社 会网 中的 扩散 等都 可以看 作服 从某 种规 律的 网络 传播 行 为。目前研究最为彻底,应用最为广泛的经典传染病模型是SI S模型和 SIR模型 。 现实生活中存在大量的同步现象( s ync hr on i za t i on ) ,如萤火虫发光 的 同步、 大脑 神经 元细 胞的 同步 和剧 场中 观众 鼓掌 频率 的同 步等 。早 期对 同步 的研 究主 要是 基于 规则 网络 或随 机网络 。近 来, 一些 学者 基于 复杂 网 络结 构 研究不 同的 网络 结构 如小 世界 网络 、无 标度 网络 对同 步的 影响 。研 究表 明 。与规 则网 络相 比, 小世 界网 络和 无标 度更 容易 发生 同步 。这 一现 象被 解 释为由 于小 世界 网络 和无 标度 网络 的平 均最 短距 离较 小, 使得 振子 间 的信息 交流 更为 有效 。如 果在 网络 的每 个节 点上 加一 个动 力学 系统 ,让 有边 相 连的两 个节 点的 动力 学系 统之 间存 在相 互的 耦合 作用 ,就 形成 了一 个动 力 学网络 。人 们比 较关 心的 一个 问题 是网 络的 拓扑 结构 如何 影响 网络 的同 步 能力。 大量 的研 究表 明网 络的 平均 最短 距离 L是 一个 重要 因素 ,L越 小,网络的同步性能越好,Ni sh i kawa 等学者研究了同步区域有界时无标度 网络的平均最短距离D、平均度、度分布的标准差。Hong等学者在研究WS,,J , 世界 网 络的特 征量 对网 络同 步稳 定性 的影 响时 ,发 现最 大介 数越 小, 网络 的同步能力越好,这个结论与Ni shi ka wa的结论一致。还有人做了网络的度 度相 关 性对同 步的 影响 ,发 现节 点之 间异 类混 的网 络更 容易 同步 ,即 度大 的节点 与度小的节点 连接将增强 网络的同步能 力。 =、复杂网络中的囊毒以曩魔膏传播 ( 一) SI S模型 对于 像感冒 、淋病 这类治 愈后患 者也没 有办法 获得免 疫能力 的疾病 。 往往采用SI S模型。在SI S模型中,人群被划分为两类:第一类是易感人群 ( s) :他们不会感染他人,但有可能被传染:第二类是染病人群( I ) :他们 已经 患病 ,具 有传 染性 。假 设单 位时 间内每 个染 病个 体独 立传 染一 个易 感 个体的概率为B,用i ,s 分别标记群体中易染人群和染病人群所占的比 例,且患者被治愈后自动恢复为易感状态的几率为y。因此,对于SI S模 型,疾病 传播可以用下 列微分 程组 描述:
复杂动力网络结构的同步稳定性研究

结 论 与耦 合结 构矩 阵 的 特 征 值 分 析 相 一 致 .
关键 词 : 杂 动 力 网络 ; 步稳 定性 ; 世 界 网络 模 型 复 同 小 中图分类号 : 2 1 0 6 文献标识码 : A 文章 编 号 : 0 76 7 ( 0 70 —0 70 1 0 —5 3 2 0 ) 10 3 —4
同步 是一种 非 常普遍 而重 要 的非线 性现 象 , 多 实 际 网络往 往 都表 现 出很 强 的 同步倾 向性 , I - 许 如 n tn t e e 上不 同的路 由器 最终 会 以同 步的方 式发 送路 由信 息. 期关 于 网络 同步 的研究 工作 大 多集 中在具 早
有 规则 拓 扑 形 状 的 网 络 结 构 上 , 中 两 个 典 型 的 例 子 是 耦 合 映 象 格 子 ( ML [ 和 细 胞 神 经 网络 其 C )2
( NN)3 研 究这 些具 有简 单结 构 的网络 , C [. ] 人们 将研究 重 点放 在 非线 性 动力 学 所产 生 的 复杂行 为 上 , 忽 略 了网络结 构 的复杂性 对 网络行 为 的影 响. 而 , 然 由于 复杂 网络小 世 界 和无 标 度 特性 的发 现 , 研究 人 员 开始关 注 网络的 拓扑结 构 与 网络 同步行 为之 间的关 系 . 们相 继 研究 了连续 系统 的 复杂 网络 的 同步 稳 人
Vo . 5, . 1 2 No 1
M a .. 0 r 2 07
复杂 动 力 网络 结 构 的 同步 稳 定 性 研 究
复杂网络动力学分析

复杂网络动力学分析一、引言复杂网络动力学分析是一种用于研究复杂网络结构和网络动力学特征的分析方法。
随着信息技术的发展和应用场景的不断扩大,复杂网络动力学分析逐渐成为网络科学领域的热门研究方向。
本文将从基础概念、网络结构分析、网络动力学分析等方面进行探讨,旨在深入了解复杂网络动力学分析的相关知识。
二、基础概念1. 复杂网络复杂网络是指由大量节点和相互连接的边构成的网络,具有随机性、动态性、节点异构性和拓扑结构复杂性等特点。
常见的复杂网络包括社交网络、生物网络、交通网络、互联网等。
2. 节点度节点度是指节点在网络中的相邻节点数,与节点相连的边数称为节点的度。
节点度越大,代表节点在网络中的重要程度越高。
3. 小世界效应小世界效应是指在大规模的随机网络中,任意两个节点之间的距离很短,具有“六度分隔理论”的特点。
即任意两个节点之间的距离最多只需要经过六个中间节点。
4. 群体聚类系数群体聚类系数是指网络中任意一个节点的邻居节点之间存在联系的概率。
群体聚类系数越高,代表网络中存在更多的紧密联系的节点群体。
三、网络结构分析1. 度分布度分布描述网络中各个节点的度数分布情况,可以用横坐标表示节点的度,纵坐标表示该度出现的节点数目。
通过度分布可以发现网络的度分布是否呈现幂律分布的特点。
2. 网络中心性网络中心性是指节点在复杂网络中的重要性程度,包括介数中心性、接近中心性和度中心性等。
介数中心性表示一个节点与其他节点之间的最短路径数目之和,接近中心性表示一个节点到其他节点的平均路径长度,度中心性表示节点的度。
3. 网络聚类系数网络聚类系数是指复杂网络中群体聚集性的量化指标,反映了网络中节点间联系的紧密程度。
常见的网络聚类系数包括全局聚类系数和局部聚类系数,全局聚类系数是指网络中所有节点的聚类系数均值,局部聚类系数是指每个节点的聚类系数均值。
4. 强连通分量强连通分量是指在有向图中,所有节点之间均可相互到达的最大节点集合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i j j i otherwise
(6)
其中ki是第i个节点的度,Λi是与节点i相连的节点 的集合。耦合矩阵G包含了网络结构的全部信息。
几种规则网络的邻接矩阵
0 1 2 1 1 2 1 0 G1 0 1 2 0 1 0 1 2
复杂网络同步的稳定性分析
Pecora和Carroll 的主稳定性函数(master stability function )方法 汪小帆和陈关荣的结论 Chen等人的结合主稳定性函数与Gershgö rin 圆盘理 论(Gershgö rin disk theory) 方法
Pecora和Carroll 的主稳定性函数方法
根据约丹规范型(Jordan canonical forms)理论,上式
的稳定性是由G的特征值γ决定的,设其对应的特征 向量为e,并且令u=z· e,将e右乘上式,得到
u DF(s) DH(s) u
(9)
这样原来要讨论的m×N维空间的稳定性问题 被简化到m×m维空间,并且通常情况下m<<N。 以上是利用连续系统进行讨论,离散系统可给 出类似(9)式的结论。
复杂网络上动力系统同步 的研究进展
报告人:赵明 2005.5.
多种多样的同步现象
夏日夜晚青蛙的齐鸣、萤火虫的同步发 光; 心肌细胞和大脑神经网络的同步; 剧场中观众鼓掌频率的逐渐同步; ……
同步的基本概念
两个或多个动力学系统,除了自身的 演化外其间还有相互作用(耦合),这种作 用既可以是单向的,也可以是双向的。当 满足一定条件时,在耦合的作用下,这些 系统的状态输出就会逐渐趋同进而完全相 等,称为同步(精确同步)。广义的同步还 包括相同步和频率同步等等。
差信号z1表示系统状态变量与同步流形的距离, 如果随时间的演化,差信号趋近于零,就说明系 统的同步状态是稳定的。反之,同步状态失稳。
描述同步稳定性的另一种方法
李雅普诺夫指数是用来描述系统稳定与否的数 学量,它的符号描述了系统的稳定性:若为负, 系统稳定;为正,不稳定。 我们也可以用它来研究同步系统的稳定性问 题:计算差信号方程(3)的李雅普诺夫指数(此时 若其值为负,则同步状态稳定。
完全网络
在耦合的作用下,经过一段时间的演化,使得 x1 = x2 = … =xN = s ,网络就进入了同步状态。 当然并不是所有的网络在任意耦合强度或耦合方 式下都能实现同步。
报告的内容:
1.复杂网络同步的稳定性分析 ; 2.复杂网络上动力学系统同步的特点 ; 3.网络的几何特征量对同步稳定性的影响 ; 4.提高网络同步能力的一种方法 。
我们可以利用(9)式计算单个系统的李雅普诺夫 指数(Lyapunov exponents),设这些指数分别为
1 max 2 m
注意到由于 N G 0 ,γ=0总是G的一个特征值, j 1 ij 相应的特征向量是(1 1 … 1)T,它对应同步流形模 式。其它N-1个特征向量所张成的子空间横截于同 步流形,如果所有这些横截李雅普诺夫指数都小于 零,系统稳定。设σγ=α+iβ并代入(9)中, (10) u DF(s) ( i )DH(s) u 计算最大李雅普诺夫指数λmax随α和β的变化关系, 这就是Pecora和Carroll定义的主稳定性函数。
同步概念的数学表述
1 F(x1 ) (H(x 2 ) H(x1 )) x
(1)
2 F(x 2 ) (H(x1 ) H(x 2 )) x (2) 当这两个系统同步时满足: x1=x2 =s。设差信 号 z1 = x1 - s,对系统(1)在同步流形s附近做 线性化,得到 1 DF(s)z1 DH(s)(z 2 z1 ) z (3)
复杂网络同步的定义
如果在网络的每个节点上加上一个动力学系统, 这个动力学系统既可以是极限环也可以是混沌的; 如果两个节点之间有边相连,就表示其间存在相互 的耦合作用,就形成了一个动力学网络。 具体地,设网络有N个节点,第i个节点在n时 刻的m维状态变量为xi(n) ,单个节点(不存在耦合作 用)所满足的状态方程是:xi(n+1)= F(xi(n+1))。设: H:Rm → Rm是每个节点状态变量的函数,用于对其 它节点进行耦合。
首先对动力学网络的同步流形进行线性稳定 性分析。已知连续系统的状态方程
i F(x i ) j Gij H (x j ) x
在同步状态s附近对其进行线性化,得到
z i DF(s)z i j Gij DH (s)z j
(7)
其中DF(∙)和DH(∙)分别是函数F和H的m×m阶雅可 比(Jacobian)矩阵。利用m×N阶矩阵z=(z1, z2 , …, zN )重写(7)式,得 (8) z DF(s)z DH(s) z GT
1 1 N 1 1 1 1 0 0 G2 1 0 1 0 1 0 0 1
最近邻耦合网络
星型网络
1 1 1 N 1 1 N 1 1 1 G3 1 1 N 1 1 1 1 1 N 1
这样,在存在耦合作用下第i个节点所满足的状态 方程是:
x i (n 1) F(x i (n)) j Gij H (x j (n))
(4)
(5)
对于连续系统
i F(x i ) j Gij H (x j ) x
其中σ是耦合强度,Gij表示耦合矩阵G的矩阵元。
耦合矩阵定义如下:
复杂网络上的动力学:
研究网络结构和动力系统之间的相互影响,相 互作用。同步是其中的一个重要的现象。
Pecora和Carroll 给出的同步的基本假设:
(1)所有的耦合振子都是完全相同的,
(2)从每个振子提取的用于耦合其它振子的函数也是 完全相同的, (3)同步流形是不变流形, (4)节点的耦合方式使在同步流形附近可以线性化。