旅游大数据挖掘与分析平台方案
旅游大数据平台方案说明

旅游大数据平台方案说明1. 方案概述:旅游大数据平台是一个集数据采集、存储、分析和应用于一体的系统,旨在通过对海量旅游数据的挖掘和分析,为旅游行业提供决策支持、市场预测和用户行为分析等服务。
2. 数据采集:通过各种渠道和方式采集旅游相关的数据,包括但不限于用户行为数据、交通数据、酒店数据、景点数据等。
采集方式可以包括爬虫、API接口、第三方数据购买等。
3. 数据存储:将采集到的数据进行结构化和非结构化的存储,以便后续的数据分析和应用。
可以使用关系型数据库、分布式文件系统等进行数据存储。
4. 数据分析:通过数据挖掘、机器学习和统计分析等方法,对存储的旅游数据进行分析和挖掘。
可以从中发现用户行为规律、市场趋势、产品推荐等信息。
5. 数据应用:将分析得到的数据应用于旅游行业的决策和市场推广中。
可以通过数据可视化的方式呈现分析结果,为决策者提供直观的数据支持。
6. 系统架构:旅游大数据平台的系统架构可以采用分布式计算和存储的方式,以满足大规模数据处理和高并发访问的需求。
可以采用Hadoop、Spark等大数据处理框架,以及分布式数据库和缓存系统。
7. 隐私保护:在数据采集和应用过程中,需要对用户的隐私进行保护。
可以采用数据脱敏、加密和权限控制等方式,确保用户的个人信息不被泄露。
8. 数据安全:对于旅游大数据平台而言,数据安全是非常重要的。
需要采取各种措施,如数据备份、灾备方案、访问控制等,确保数据的安全性和可用性。
9. 可扩展性:旅游大数据平台需要具备良好的可扩展性,以应对日益增长的数据量和用户访问量。
可以通过水平扩展和垂直扩展等方式,提高系统的性能和容量。
10. 业务集成:旅游大数据平台可以与其他旅游业务系统进行集成,以实现数据的共享和交互。
可以通过API接口、数据同步等方式,实现与其他系统的数据交换。
总结:旅游大数据平台是一个综合性的系统,通过对旅游数据的采集、存储、分析和应用,为旅游行业提供决策支持和市场预测等服务。
旅游大数据平台方案

旅游大数据平台方案一、引言随着旅游业的蓬勃发展,旅游数据的规模和复杂性不断增加。
为了更好地理解和利用这些数据,建立一个旅游大数据平台是至关重要的。
本文将介绍一个旅游大数据平台的方案,包括平台的目标、功能、架构和技术实现等方面的内容。
二、平台目标旅游大数据平台的目标是通过收集、整合和分析旅游数据,为旅游从业者和决策者提供有价值的信息和洞察力,以促进旅游业的发展和提升旅游体验。
具体目标包括:1. 收集和整合多源旅游数据,包括用户行为数据、交通数据、酒店数据、景点数据等。
2. 提供数据分析和可视化工具,帮助用户快速理解和探索旅游数据。
3. 提供智能推荐和个性化服务,为用户提供更好的旅游体验。
4. 支持旅游决策和市场调研,为旅游从业者提供决策支持和市场洞察。
三、平台功能旅游大数据平台将提供以下功能:1. 数据收集和整合:平台将从各种数据源收集旅游数据,并进行标准化和整合,以确保数据的一致性和可用性。
2. 数据存储和管理:平台将使用分布式存储和大数据处理技术,对大规模旅游数据进行存储和管理,以支持高效的数据查询和分析。
3. 数据分析和挖掘:平台将提供各种数据分析和挖掘算法,以发现数据中的模式和趋势,并生成有价值的洞察。
4. 数据可视化:平台将提供各种可视化工具,将数据以图表、地图等形式展示,帮助用户更直观地理解和分析数据。
5. 智能推荐和个性化服务:平台将基于用户的偏好和历史数据,提供智能化的旅游推荐和个性化服务,以提升用户的旅游体验。
6. 决策支持和市场洞察:平台将提供各种决策支持和市场洞察工具,帮助旅游从业者做出更明智的决策和了解市场状况。
四、平台架构旅游大数据平台的架构包括以下几个关键组件:1. 数据采集组件:负责从各种数据源收集旅游数据,并进行预处理和清洗,以确保数据的质量和一致性。
2. 数据存储和管理组件:使用分布式存储和大数据处理技术,将旅游数据存储在可扩展的存储系统中,并提供高效的数据查询和管理功能。
在线旅游平台的大数据挖掘与分析研究

在线旅游平台的大数据挖掘与分析研究在当今数字化时代,互联网的快速发展为在线旅游平台带来了前所未有的机遇。
大数据挖掘与分析应运而生,成为在线旅游平台提升服务质量、优化用户体验的重要手段。
本文将对在线旅游平台的大数据挖掘与分析进行深入研究,探讨其在业务决策、市场营销和个性化推荐方面的应用。
首先,大数据挖掘与分析在在线旅游平台的业务决策中起到了关键作用。
通过对海量用户数据的搜集和分析,平台能够获取用户需求、消费习惯等关键信息,为平台运营商提供有效的决策依据。
例如,通过分析用户搜索记录和购买行为,平台可以得知用户对不同目的地的偏好,从而根据需求调整线路安排、推出热门旅游产品。
此外,大数据挖掘还可以帮助平台发现用户的潜在购买动机,如喜好度假、探险或文化体验,为平台提供有针对性的市场营销策略,提高销售转化率。
其次,大数据挖掘与分析在在线旅游平台的市场营销中发挥着重要作用。
通过对用户行为数据的分析,平台可以实时追踪用户的活动轨迹,根据用户的浏览、预订和评价等数据为用户推荐个性化的旅游产品。
这不仅可以提高用户的满意度和忠诚度,还会促进平台的盈利能力。
例如,当用户在平台上搜索某个目的地的信息时,平台可以根据用户的位置、时间和偏好推送相关的旅游产品和优惠活动,吸引用户的关注和兴趣,提高转化率。
同时,通过对用户评价和反馈的挖掘与分析,平台可以及时发现并解决用户的问题和需求,提升服务质量和口碑。
最后,大数据挖掘与分析还广泛应用于在线旅游平台的个性化推荐领域。
通过对用户的历史行为数据进行挖掘,平台可以了解用户的偏好、口味以及出行习惯等信息,为用户提供个性化的旅游产品推荐。
例如,平台可以根据用户的浏览记录和购买行为,推荐感兴趣的目的地、酒店和景点,提高用户的满意度和预订率。
同时,利用大数据挖掘与分析技术,平台还可以实时调整个性化推荐策略,根据用户的实时行为和环境情境进行精准推送,提高推荐的准确性和效果。
然而,大数据挖掘与分析在在线旅游平台中的应用也面临一些挑战。
旅游大数据平台方案

旅游研究院大数据挖掘与分析科研平台建设方案二匕旦—- 冃禺1.1数据挖掘和大数据分析行业背景和发展趋势移动互联网、电子商务以及社交媒体的快速发展使得企业需要面临的数据量成指数增长。
根据IDC《数字宇宙》(Digital Universe)研究报告显示,2020年全球新建和复制的信息量已经超过40ZB,是2015年的12倍;而中国的数据量则会在2020年超过8ZB,比2013年增长22倍。
数据量的飞速增长带来了大数据技术和服务市场的繁荣发展。
IDC亚太区(不含日本)最新关于大数据和分析(BDA)领域的市场研究表明,大数据技术和服务市场规模将会从2012年的5. 48亿美元增加到2017年的23. 8亿美元,未来5年的复合增长率达到34. 1%O该市场涵盖了存储、服务器、网络、软件以及服务市场。
数据量的增长是一种非线性的增长速度。
据IDC分析报道,最近一年来,亚太区出现了越来越广泛的大数据和分析领域的应用案例。
在中国,从互联网企业,到电信、金融、政府这样的传统行业,都开始釆用各种大数据和分析技术,开始了自己的大数据实践之旅;应用场景也在逐渐拓展,从结构化数据的分析,发展到半结构化、非结构化数据的分析,尤其是社交媒体信息分析受到用户的更多关注。
用户们开始评估以Hadoop>数据库一体机以及内存计算技术为代表的大数据相关新型技术。
最新调研结果显示,提高竞争优势,降低成本以及吸引新的客户是中国用户对大数据项U最期望的三大回报。
訂前现有的大数据项U主要集中在业务流程优化以及提高客户满意度方面的应用。
IDC发现很多用户希望大数据能够为企业带来业务创新,并且开始使用高级分析的解决方案以管理复杂的数据环境。
过去一年中用户对社交数据的收集和分析应用的关注度增加明显。
未来,地理位置信息分析将会增长迅速,这也会推动用户对大数据安全和隐私管理的关注。
在亚太区,澳大利亚和新加坡的用户对大数据的相关投资主要在咨询服务方面,更关注如何根据新的最佳实践需求设计和实施方案。
旅游大数据分析及解决方案

旅游大数据分析及解决方案引言旅游行业是当前全球范围内发展最快的行业之一。
随着互联网的普及和技术的发展,旅游行业不仅增加了消费者的选择和便利性,也给行业内的企业带来了巨大的机遇和挑战。
旅游大数据分析成为了解决这些挑战的关键。
一、旅游大数据的来源旅游大数据主要来源于以下几个方面:1. 搜索引擎和社交媒体数据:通过搜索引擎和社交媒体平台,收集用户的搜索和评论数据,了解用户的需求和偏好。
2. 酒店、航空等企业数据:酒店、航空公司等企业通过预订系统和会员管理系统,收集并存储了大量用户的个人信息和行为数据。
3. 交通运输数据:通过交通运输部门收集的数据,可以分析不同地区的游客数量和旅游交通情况,预测旅游热点和拥堵区域。
4. 旅游景区数据:景区通过门票销售、导览系统等收集的数据,可以了解游客的到访时间、停留时间、参观路线等信息。
二、旅游大数据分析的关键技术旅游大数据分析需要运用多种技术和工具进行数据清洗、数据挖掘和数据可视化等操作,以发现有价值的信息和规律。
1. 数据清洗:由于来源多样化和数据质量不一致的原因,需要进行数据清洗,去除重复数据、缺失值和异常值,确保数据的准确性。
2. 数据挖掘:通过运用机器学习和统计学方法,对大数据进行挖掘,发现隐藏在大数据中的模式和关联规则。
3. 数据可视化:通过图表、地图等可视化方式,将数据转化为直观、易懂的形式,以帮助用户更好地理解和分析数据。
4. 建模和预测:通过使用数据挖掘技术,可以建立旅游行业相关的模型,对未来的旅游趋势、客流量等进行预测。
三、旅游大数据分析的应用1. 旅游推荐系统旅游推荐系统可以根据用户的偏好和历史行为,为用户提供个性化的旅游推荐和建议。
通过分析用户的搜索和点击行为,系统可以了解用户的兴趣和喜好,推荐适合用户的旅游线路、酒店和景点。
2. 旅游市场分析通过对大数据的分析,可以了解旅游市场的规模、发展趋势和竞争态势。
可以分析不同城市的旅游收入、游客数量等指标,为政府和企业制定旅游业发展战略提供依据。
旅游大数据平台方案

旅游大数据平台方案
旅游大数据平台方案是指利用大数据技术和分析方法,对旅游领域的各类数据进行采集、存储、处理和分析,以提供旅游相关决策支持和服务。
以下是一个旅游大数据平台的基本方案:
1. 数据采集:通过各类数据源(例如旅游网站、社交媒体、酒店预订系统等)采集旅游相关数据,包括用户行为数据、酒店、景点、交通等信息。
2. 数据存储:建立数据仓库或数据湖,将采集到的数据进行存储和管理,保证数据的可靠性、安全性和可扩展性。
3. 数据清洗和整合:对采集到的原始数据进行清洗、去重、格式转换等处理,将不同数据源的数据整合成统一的数据模型。
4. 数据分析:利用大数据分析技术,对清洗和整合后的数据进行各类分析,包括用户行为分析、旅游趋势分析、景点热度分析等,以提供决策支持和洞察。
5. 数据可视化:将分析结果以可视化的方式展示,例如制作图表、地图、仪表盘等,使用户可以直观地理解和利用分析结果。
6. 智能推荐:基于用户行为数据和旅游相关信息,利用机器学习和推荐算法,为用户提供个性化的旅游推荐,包括酒店、景点、交通等。
7. 数据安全和隐私保护:建立严格的数据安全和隐私保护机制,确保用户数据的安全和合法使用。
8. 开放接口和数据共享:提供开放接口,与其他旅游服务提供商或相关机构进行数据共享,以促进旅游行业的合作和创新。
以上是一个基本的旅游大数据平台方案,具体实施还需要根据实际需求和资源情况进行调整和扩展。
旅游大数据挖掘与分析平台方案

旅游研究院大数据挖掘与分析科研平台建设方案目录一.背景 (3)1.1数据挖掘和大数据分析行业背景和发展趋势 (3)1.2旅游行业开展大数据分析及应用的意义 (4)1.3数据挖掘与大数据分析科研平台建设的必要性 (4)二.数据挖掘与大数据分析科研平台总体规划 (5)2.1科研平台规划 (5)2.2科研平台功能规划 (6)三.数据挖掘与大数据分析科研平台建设方案 (7)3.1大数据科研平台设备架构 (7)3.1.1主节点和备份主节点 (7)3.1.2管理节点 (7)3.1.3接口节点 (8)3.1.4计算节点 (8)3.2大数据科研平台底层架构 (8)3.2.1分布式持久化数据存储——HDFS (9)3.2.2分布式实时数据库——HBase (9)3.2.3分布式资源调度管理——YARN (9)3.2.4交互式SQL引擎——Hive (9)3.2.5内存计算——Spark (10)3.3科研平台的功能 (10)3.3.1科研项目管理 (10)3.3.2平台内置数据集 (10)3.3.3科研数据上传 (11)3.3.4集成算法组件 (11)3.3.5科研平台可视化功能 (12)四.平台数据集清单 (13)五.定制数据服务 (13)六.科研平台算法清单 (13)七.科研平台设备清单 (19)一. 背景1.1 数据挖掘和大数据分析行业背景和发展趋势移动互联网、电子商务以及社交媒体的快速发展使得企业需要面临的数据量成指数增长。
根据 IDC 《数字宇宙》(Digital Universe)研究报告显示,2020 年全球新建和复制的信息量已经超过 40ZB,是2015年的12倍;而中国的数据量则会在2020年超过8ZB,比2015年增长22倍。
数据量的飞速增长带来了大数据技术和服务市场的繁荣发展。
IDC亚太区(不含日本)最新关于大数据和分析(BDA)领域的市场研究表明,大数据技术和服务市场规模将会从2012年的5.48亿美元增加到2017年的23.8亿美元,未来5年的复合增长率达到34.1%。
旅游大数据分析及解决方案(4篇)

旅游大数据分析及解决方案百分点银行大数据应用解决方案银行大数据时代面临的挑战1、银行离客户越来越远。
在互联网交易链条中,银行所占比重越来越低,这使得银行越来越难以知道客户的消费行为;互联网金融的出现,在未来可能会超过以银行为中心的间接融资和以交易所为中心的直接融资模式,这会使得银行逐渐被边缘化。
本质上是因为银行对于客户的了解程度,相对越来越弱。
2、客户不断流失难以挽回。
市场竞争越来越激烈,银行意识到客户满意度的重要性,并将提升服务作为工作目标。
在具体的操作过程中,银行___产品特点,从服务质量、客户感知进行调查,试图找到解决办法。
但是客户满意度却一直停留在原有水平。
客户流失率也在不断上升。
本质上是因为银行服务同质化。
3、客户维系成本不断攀升。
随着互联网金融各类“宝宝”们冲击银行存款,抬升融资成本,银行越来越难以找到低价优质的资金,客户维系成本也不断攀升。
银行客户维系陷入“理财收益高,客户多,收益下降,客户跑”的怪圈。
本质上是由于银行无法对客户需求进行及时响应,只能通过价格这一唯一工具进行营销。
百分点银行大数据解决方案百分点基于六年来专注于大数据的应用实践,为银行业提供端到端的整体解决方案,帮助银行实现海量多源异构数据的采集、整合,并运用大数据文本分析和数据挖掘技术,深入挖掘客户特征、需求,从而为银行向客户提供差异化服务和个性化产品、产品创新等提供数据支撑。
整体解决方案如下:银行业大数据应用1、用户实时行为分析互联网金融及第三方支付的出现,让银行用户流失严重,同时也更加不了解用户的需求。
通过在银行___、app上部署采集访问用户实时行为的代码,让银行可了解用户在网上的行为特征、需求,拉近银行和用户的距离,从而为更精细化的服务提供数据依据。
实时行为包括:渠道分析:渠道来源、渠道活跃、渠道流量质量客户留存分析:留存用户(率)事件和转化分析客户体验度量:使用时长、地区分析、终端分析。
访问原因探查:访问时间、访问频次、停留时长、访问路径2、个性化服务和资讯推荐根据客户使用银行产品和服务的历史信息及在银行___/app上留下的实时信息,利用大数据文本分析和挖掘技术,分析客户的长期、短期偏好和需求,预测当下和潜在偏好和需求,为客户推荐个性化服务或资讯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旅游研究院大数据挖掘与分析科研平台建设方案目录一.背景 (3)1.1数据挖掘和大数据分析行业背景和发展趋势 (3)1.2旅游行业开展大数据分析及应用的意义 (4)1.3数据挖掘与大数据分析科研平台建设的必要性 (4)二.数据挖掘与大数据分析科研平台总体规划 (5)2.1科研平台规划 (5)2.2科研平台功能规划 (6)三.数据挖掘与大数据分析科研平台建设方案 (7)3.1大数据科研平台设备架构 (7)3.1.1主节点和备份主节点 (7)3.1.2管理节点 (7)3.1.3接口节点 (8)3.1.4计算节点 (8)3.2大数据科研平台底层架构 (8)3.2.1分布式持久化数据存储——HDFS (9)3.2.2分布式实时数据库——HBase (9)3.2.3分布式资源调度管理——YARN (9)3.2.4交互式SQL引擎——Hive (9)3.2.5内存计算——Spark (10)3.3科研平台的功能 (10)3.3.1科研项目管理 (10)3.3.2平台内置数据集 (10)3.3.3科研数据上传 (11)3.3.4集成算法组件 (11)3.3.5科研平台可视化功能 (12)四.平台数据集清单 (13)五.定制数据服务 (13)六.科研平台算法清单 (13)七.科研平台设备清单 (19)一. 背景1.1 数据挖掘和大数据分析行业背景和发展趋势移动互联网、电子商务以及社交媒体的快速发展使得企业需要面临的数据量成指数增长。
根据 IDC 《数字宇宙》(Digital Universe)研究报告显示,2020 年全球新建和复制的信息量已经超过 40ZB,是2015年的12倍;而中国的数据量则会在2020年超过8ZB,比2015年增长22倍。
数据量的飞速增长带来了大数据技术和服务市场的繁荣发展。
IDC亚太区(不含日本)最新关于大数据和分析(BDA)领域的市场研究表明,大数据技术和服务市场规模将会从2012年的5.48亿美元增加到2017年的23.8亿美元,未来5年的复合增长率达到34.1%。
该市场涵盖了存储、服务器、网络、软件以及服务市场。
数据量的增长是一种非线性的增长速度。
据IDC分析报道,最近一年来,亚太区出现了越来越广泛的大数据和分析领域的应用案例。
在中国,从互联网企业,到电信、金融、政府这样的传统行业,都开始采用各种大数据和分析技术,开始了自己的大数据实践之旅;应用场景也在逐渐拓展,从结构化数据的分析,发展到半结构化、非结构化数据的分析,尤其是社交媒体信息分析受到用户的更多关注。
用户们开始评估以Hadoop、数据库一体机以及内存计算技术为代表的大数据相关新型技术。
最新调研结果显示,提高竞争优势,降低成本以及吸引新的客户是中国用户对大数据项目最期望的三大回报。
目前现有的大数据项目主要集中在业务流程优化以及提高客户满意度方面的应用。
IDC发现很多用户希望大数据能够为企业带来业务创新,并且开始使用高级分析的解决方案以管理复杂的数据环境。
过去一年中用户对社交数据的收集和分析应用的关注度增加明显。
未来,地理位置信息分析将会增长迅速,这也会推动用户对大数据安全和隐私管理的关注。
在亚太区,澳大利亚和新加坡的用户对大数据的相关投资主要在咨询服务方面,更关注如何根据新的最佳实践需求设计和实施方案。
中国和印度在大数据领域的硬件投资则非常明显,更倾向于数据中心相关的基础架构的投资。
在传统的数据分析与商业数据挖掘中,人们通常遵循二八原则。
也就是任务20%的用户提供了80%的价值,因此利用优势资源用户对于少数用户的服务。
随着互联网的发展,越来越多的低价值用户进入到商业体系中,这部分用户成为商业企业竞争的目标。
比如电商行业,大量顾客都是传统意义上的低价值客户,数据表明对于这部分用户价值的挖掘可以改变二八原则,甚至可达到价值的几乎均匀分布。
并且由于计算技术的发展,对于大数据的分析也成为了可能。
1.2 旅游行业开展大数据分析及应用的意义旅游行业有行业广、规模大、移动性强的特点,因此更加依赖大数据。
当前,旅游业也在“新常态”下迎来了升级的挑战和变革的机遇,新常态对于一般的经济部门是经济速度放慢、人均GDP增速减小,很多传统行业在调整结构,但新常态对旅游行业却是速度加快的。
旅游大数据的解决之道,在于整合国内多途径的大数据源,形成旅游大数据生态,为国内旅游业提供大数据解决方案,促进旅游业的转型升级。
1.3 数据挖掘与大数据分析科研平台建设的必要性数据挖掘与大数据分析是以计算机基础为基础,以挖掘算法为核心,紧密面向行业应用的一门综合性学科。
其主要技术涉及概率论与数理统计、数据挖掘、算法与数据结构、计算机网络、并行计算等多个专业方向,因此该学科对于科研平台具有较高的专业要求。
科研平台不仅要提供基础的编程环境,还要提供大数据的运算环境以及用于科学研究的实战大数据案例。
这些素材的准备均需完整的科研平台作为支撑。
目前,在我国高校的专业设置上与数据挖掘与大数据分析相关的学科专业包括:计算机科学与技术、信息管理与信息系统、统计学、经济、金融、贸易、生物信息、旅游以及公共卫生等。
这些专业的在使用科研平台时的侧重点各不相同,使用人员层次水平也不相同,对算法的使用也不相同,因此,需要建设一个便利、操作简易、算法全面、可视化的大数据科研平台是非常有必要的。
二. 数据挖掘与大数据分析科研平台总体规划图1.总体架构图系统整体由千兆核心交换机作为核心节点,并以两个千兆接入交换机作为科研与实验环境的交换节点。
科研环境由我司开发的商业Hadoop集群为基础,上层集成便于操作的大数据科研应用系统,集成10TB大数据案例集及可拖拽的数据算法和可视化算法。
2.2 科研平台功能规划本科研平台针对数据挖掘有大数据分析研究内容,兼顾科研与教学的需求,既能满足科研工作中对大数据分析高性能平台要求也具有教学实验平台简单易用的特点。
1)大数据资源规划内置商业级数据资源,按常见科研分类规划数据资源,可以直接用于科学研究,具有数据资源授权管控功能。
2)大数据分析功能规划建设以商业版Hadoop为核心的大数据分析平台,系统提供MapReduce以及Spark等大数据挖掘功能。
系统具有完整的管理调度功能。
3)硬件资源功能规划系统具有24个Intel Xeon E5 CPU计算能力,提供超过40TB的存储能力以及1T以上的内存,可满足1000任务共时计算内能,方便扩充。
三. 数据挖掘与大数据分析科研平台建设方案3.1 大数据科研平台设备架构图3.设备架构3.1.1 主节点和备份主节点主节点负责整个分布式大数据平台的运行。
主节点始终在内存中保存整个文件系统的目录结构,每个目录有哪些文件,每个文件有哪些分块及每个分块保存在哪个计算上,用于处理读写请求。
同时,主节点还负责将作业分解成子任务,并将这些子任务分配到各个计算节点上。
备份主节点在主节点发生故障时承担主节点的各种任务,使得分布式大数据平台仍然能够正常运行。
3.1.2 管理节点管理节点用于管理整个分布式大数据平台,可进行节点安装、配置、服务配置等,提供网页窗口界面提高了系统配置的可见度,而且降低了集群参数设置的复杂度。
3.1.3 接口节点终端用户通过接口节点连接和使用分布式大数据平台,提交任务并获得结果,并可以用其他数据分析工具做进一步处理,与外界进行数据交互(如连接关系型数据库)。
3.1.4 计算节点分布式大数据平台包含了多个计算节点。
计算节点是系统中真正存储数据和做数据运算的节点。
每个计算节点周期性地和主节点通信,还时不时和客户端代码以及其他计算节点通信。
计算节点还维护一个开放的socket服务器,让客户端代码和其他计算节点通过它可以读写数据,这个服务器还会汇报给主节点。
3.2 大数据科研平台底层架构大数据科研平台低层架构以我司自主研发的商业版Hadoop为基础架构,包含和大数据分析、数据挖掘、机器学习等功能模块,并以HDFS以及Hbase作为存储基础。
图2. 软件架构3.2.1 分布式持久化数据存储——HDFSHadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件上的分布式文件系统。
它和现有的分布式文件系统有很多共同点。
但同时,它和其他的分布式文件系统的区别也是很明显的。
HDFS是一个高度容错性的系统,适合部署在廉价的机器上。
HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。
HDFS放宽了一部分POSIX约束,来实现流式读取文件系统数据的目的。
3.2.2 分布式实时数据库——HBaseHBase是一个分布式的、面向列的开源数据库,该技术来源于Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。
就像Bigtable利用了Google文件系统(所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于BigTable的能力。
HBase是Apache的Hadoop项目的子项目。
HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。
另一个不同的是HBase基于列的而不是基于行的模式。
3.2.3 分布式资源调度管理——YARNYarn是Hadoop2.0的MapReduce 框架。
YARN分层结构的本质是ResourceManager。
这个实体控制整个集群并管理应用程序向基础计算资源的分配。
ResourceManager 将各个资源部分(计算、内存、带宽等)精心安排给基础NodeManager(YARN 的每节点代理)。
ResourceManager 还与ApplicationMaster 一起分配资源,与NodeManager 一起启动和监视它们的基础应用程序。
在此上下文中,ApplicationMaster 承担了以前的TaskTracker 的一些角色,ResourceManager 承担了JobTracker 的角色。
3.2.4 交互式SQL引擎——HiveHive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行。
其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
3.2.5 内存计算——SparkSpark是UC Berkeley AMP实验室所开源的类Hadoop MapReduce的通用的并行计算框架。
Spark拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce算法。