汽车转向机构设计方案
汽车电动助力转向机构的设计讲解

汽车电动助⼒转向机构的设计讲解汽车电动助⼒转向机构的设计引⾔在汽车的发展历程中,转向系统经历了四个发展阶段:从最初的机械式转向系统(Manual Steering,简称MS)发展为液压助⼒转向系统(Hydraulic Power Steering,简称HPS),然后⼜出现了电控液压助⼒转向系统(Electro Hydraulic Power Steering,简称EHPS)和电动助⼒转向系统(Electric Power Steering,简称EPS)。
装配机械式转向系统的汽车,在泊车和低速⾏驶时驾驶员操纵负担过于沉重,为了解决这个问题,美国GM公司在20世纪50年代率先在轿车上采⽤了液压助⼒转向系统[1]。
但是,液压助⼒转向系统⽆法兼顾车辆低速时的转向轻便性和⾼速时的转向稳定性,因此在1983年⽇本koyo公司推出了具备车速感应功能的电控液压助⼒转向系统。
这种新型的转向系统可以随着车速的升⾼提供逐渐减⼩的转向助⼒,但是结构复杂、造价较⾼,⽽且⽆法克服液压系统⾃⾝所具有的许多缺点,是⼀种介于液压助⼒转向和电动助⼒转向之间的过渡产品。
到了1988年,⽇本Suzuki公司⾸先在⼩型轿车Cervo上配备了Koyo公司研发的转向柱助⼒式电动助⼒转向系统;1990年,⽇本Honda 公司也在运动型轿车NSX上采⽤了⾃主研发的齿条助⼒式电动助⼒转向系统,从此揭开了电动助⼒转向在汽车上应⽤的历史。
第1章概述1.1电动助⼒转向的优点与传统的转向系统相⽐,电动助⼒转向系统最⼤的特点就是极⾼的可控制性,即通过适当的控制逻辑,调整电机的助⼒特性,以达到改善操纵稳定性和驾驶舒适性的⽬的。
作为今后汽车转向系统的发展⽅向,必将取代现有的机械转向系统、液压助⼒转向系统和电控制液压助⼒转向系统[2]。
相⽐传统液压动⼒转向系统,电动助⼒转向系统具有以下优点:(1)只在转向时电机才提供助⼒,可以显著降低燃油消耗传统的液压助⼒转向系统有发动机带动转向油泵,不管转向或者不转向都要消耗发动机部分动⼒。
汽车转向机构设计

汽车转向机构设计汽车转向机构是汽车的核心驱动部件之一,它负责将驾驶员的操纵输入转化为车辆的转向动作。
在汽车设计中,转向机构的设计非常重要,直接关系到汽车的操控性、稳定性和安全性。
本文将从转向机构的基本原理、类型和设计要点等方面对汽车转向机构进行详细介绍。
一、转向机构的基本原理汽车转向机构的基本原理是通过驾驶员对方向盘的操纵,传递给转向机构并将其转化为车辆的转向动作。
转向机构一般由转向盘、转向柱、转向齿条、齿轮等部件组成。
驾驶员通过转向盘对转向机构施加力矩,使转向盘旋转,转向柱通过螺旋副将转向力矩传递给转向齿条,在转向齿条的作用下,通过机械传动使车轮发生转向。
二、转向机构的类型1.摩擦销转向机构:该机构通过摩擦销将驾驶员的操纵力传递给转向机构。
摩擦销转向机构简单、结构紧凑,但摩擦力不稳定,对转向贴合性要求较高。
2.齿轮齿条转向机构:该机构采用齿轮与齿条的咬合来传递转向动作,具有稳定性好、转向平稳的特点。
齿轮齿条转向机构常见的是德国式转向机构和柏格式转向机构。
3.斜齿杆转向机构:该机构采用斜齿杆与齿轮咬合,通过斜齿杆的线性移动产生转向动作。
斜齿杆转向机构结构简单、重量小,但有时会存在斜齿杆的进退现象,影响操控性。
4.电动转向机构:该机构通过电动助力来实现转向动作,大大减轻驾驶员的操纵力。
电动转向机构响应速度快,操控性好,但需要电源支持,如果电路故障会影响转向功能。
三、转向机构的设计要点1.正确确定转向机构的传动比:传动比是转向机构设计中最重要的参数之一,决定了转向动作传递的快慢程度。
传动比过小会导致转向盘转动角度大,驾驶员力度大,操控性差;传动比过大会导致方向盘转动角度小,导致转向不灵敏,容易发生意外。
因此,在设计转向机构时要根据车辆的类型和使用情况来确定适合的传动比。
2.考虑转向机构的结构强度:转向机构在车辆操控过程中承受着巨大的力矩和冲击,其结构必须具备足够的强度和刚性,以确保操控的安全性。
在设计转向机构时,需要考虑材料的选择,合理设置加强筋或加强板等结构来加强模块的强度。
汽车转向梯形机构最佳方案的设计

K 0 —主动转臂两球头销中心的距离 Η与 Ε—任意位置专线梯形的底角 Η0 与 Ε0—中间位置转向梯形的底角 Α—内轮转角 Β—外轮转角 ΒL —理论外轮转角 ΒS—实际外轮转角 ∆—转向偏差
3 最佳方案的设计
最佳方案的设计用两步完成, 第一步: 用计算机 采用优选法确定最优区间。 第二步: 用计算机采用 公式法在最优区间内确定最佳方案。 如果只用公式 法, 计算太繁琐, 时间化费太长, 有的复杂问题要花 几十个小时, 才能出结果, 所以要用优选法确定最优 区间。 如果只采用优选法, 在变量多时有漏点的缺 点。优选法的结果并不是峰值、顶点。为了进一步提
x
3 i
x
y
2 i
i
i=
1至n
使实际特征线的斜率与理论特征线的斜率相差
最小,
即: ∆k= K (实) - K (理)
在偏差 ∆k 给定一个计算精度, 即可利用计算机 进行优化, 求出转向梯形机构各杠杆的尺寸和相应
的底角的数值系列, 从中选出最优杆件尺寸和底角
区间。
(汽车行业)汽车转向梯形机构设计

(汽车行业)汽车转向梯形机构设计汽车转向梯形机构是汽车行业中非常重要的部件之一。
它将驾驶员的转向操作转换成前轮方向的运动,使车辆能够按照驾驶员的意愿进行转向。
因此,汽车转向梯形机构的设计非常重要,不仅需要考虑其机械结构的合理性,还需要考虑其动态特性和安全性能。
汽车转向梯形机构的设计要解决的一个重要问题是机构的传动比和传动精度问题。
传动比指的是驾驶员转动方向盘所能使车辆前轮转向的程度,而传动精度则是指机构传动过程中的误差大小。
通常情况下,传动比需要保证较大的转角与较小的转动力之间的关系,以提供足够的转向力,并使驾驶员的操作更为轻松顺畅。
传动精度则需要尽可能小,以确保转向的准确性和稳定性。
汽车转向梯形机构的设计需要考虑多个部件的合理组合和配置。
其中最主要的部件包括转向节、拉杆、摇臂、拉杆座等。
转向节是转向梯形机构的核心部件,它连接前轮和拉杆,并将前轮转向运动传递到拉杆上。
拉杆是连接前轮和转向节的杆状部件,摇臂则是连接转向节和转向柱的中间件。
拉杆座则是固定拉杆和转向柱的底座。
在设计汽车转向梯形机构时,还需要考虑到动态特性和安全性能。
动态特性主要指机构的响应速度、稳定性以及阻尼。
为了保证机构的响应速度和稳定性,一般需要提高机构的阻尼系数。
同时,还需要考虑防震和抗干扰能力,以确保机构在恶劣路况和异常干扰情况下能够正常运行。
安全性能则是汽车转向梯形机构最重要的考虑因素之一。
机构在运行过程中需要抵御较大的转向力和扭矩。
此外,在车辆发生碰撞时,转向梯形机构也需要能够提供足够的承载能力,以避免驾驶员和车辆受到过大的损伤。
在实际应用中,汽车转向梯形机构的设计需要满足多种使用条件和环境要求。
例如,机构必须在各种温度、湿度和油渍等环境下都能够正常工作,同时还要满足标准化和规范化的要求,以确保产品的质量和可靠性。
总之,汽车转向梯形机构的设计是汽车工程中至关重要的部分。
要实现合理的设计,需要考虑多种因素和要求,包括传动比、传动精度、机构的动态特性、安全性能、使用条件和环境要求等。
车辆转向系统设计方案

车辆转向系统设计方案一、背景车辆转向系统是车辆中非常重要的一个部分,其主要功能是控制车辆的转向。
在车辆通过方向盘操纵转向机构,通过各种传动装置将驾驶员操作的力量传递给车轮,使车辆向左或向右转向。
在不同的路况下,车辆转向系统能够自动调节车轮的转向角度以提高整车的稳定性和控制性。
因此,一个高效可靠的车辆转向系统对于车辆的安全性和性能至关重要。
二、设计目标该车辆转向系统设计方案的主要目标包括:1.保证车辆的安全性;2.提高车辆的稳定性;3.降低转向系统的功耗;4.提高转向系统的运行效率和精度;5.降低转向系统的成本。
三、设计方案1. 转向机构转向机构是车辆转向系统的核心部分,它由转向齿轮、转向轴、转向机箱、万向节和转向倾角传感器等组成。
转向齿轮:应选用高强度合金钢,以确保其结构稳定性和寿命。
转向轴:应采用双向轴承来减少转向时的瑕疵,提高转向机构的稳定性。
转向机箱:应采用高强度铝合金或钢材来提高整个转向系统的刚度和耐用性。
万向节:应选用高精度的万向节,以确保转向系统的精度和可靠性。
转向倾角传感器:采用高精度的倾角传感器,利用MEMS技术制造,精度高达0.1度。
2. 液压转向系统液压转向系统主要是由液压泵、液压缸和液压阀组成。
其作用是将转向机构产生的转矩转化为液压功,从而使车轮偏转。
液压泵:选用低磨损的高压液压泵,降低转向系统的功耗。
液压缸:选用行程大的液压缸,以确保转向系统的升降速度。
液压阀:选用高精度的液压阀,通过构建先进的控制策略,可以实现液压转向系统的高效控制。
3. 电动转向系统电动转向系统主要是由电动泵、电动缸、电动阀和控制器组成。
其作用是利用电力产生转矩,从而使车轮偏转。
电动泵:选用高效稳定的电动泵,以降低整个电动转向系统的功耗。
电动缸:选用高速、高效、低摩擦的电动缸,以提高电动转向系统的灵敏度和精度。
电动阀:选用高速、高精度的电动阀,通过控制最小精度,实现高效的控制策略。
控制器:选用高速、高精度、低功耗的控制器,以实现电动转向系统的高效控制和排错功能。
轿车转向系设计课程设计

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载轿车转向系设计课程设计地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容轿车转向系设计此次设计的是与非独立悬架相匹配的整体式两轮转向机构。
利用相关汽车设计和连杆机构运动学的知识,首先对给定的汽车总体参数进行分析,在此基础上,对转向器、转向系统进行选择,接着对转向器和转向传动机构(主要是转向梯形)进行设计,再对动力转向机构进行设计。
转向器在设计中选用的是循环球式齿条齿扇转向器,转向梯形的设计选用的是整体式转向梯形,通过对转向内轮实际达到的最大偏转角时与转向外轮理想最大偏转角度的差值的检验和对其最小传动角的检验,来判定转向梯形的设计是否符合基本要求。
一、整车参数1、汽车总体参数的确定本设计中给定参数为:二、转向系设计概述汽车转向系统是用来改变汽车行驶方向的专设机构的总称。
汽车转向系统的功用是保证汽车能按驾驶员的意愿进行直线或转向行驶。
对转向系提出的要求有:1) 汽车转向行驶时,全部车轮绕瞬时转向中心转动;2) 操纵轻便,方向盘手作用力小于200N;3) 转向系角传动比15~20;正效率高于60%,逆效率高于50%;4) 转向灵敏;5) 转向器与转向传动装置有间隙调整机构;6) 配备驾驶员防伤害装置;三、机械式转向器方案分析机械转向器是将司机对转向盘的转动变为转向摇臂的摆动(或齿条沿转向车轴轴向的移动),并按一定的角转动比和力转动比进行传递的机构。
机械转向器与动力系统相结合,构成动力转向系统。
高级轿车和重型载货汽车为了使转向轻便,多采用这种动力转向系统。
采用液力式动力转向时,由于液体的阻尼作用,吸收了路面上的冲击载荷,故可采用可逆程度大、正效率又高的转向器结构。
机械原理课程设计-----汽车前轮转向机构

最优方案设计
3.传动连接杆
传动连接杆为直角构件,连接传动主杆和这轮系统,将主杆动力传输至车轮转向系统同时约束车轮转动的方向和角度
最优方案设计
4.车轮系统
车轮系统由车轮和转向连杆两部分组成,转轴固定于底板之上,同时与传动连接杆相组合,通过配合连接杆的运动实现两侧车轮系统绕底板固定轴平行转动,保证了转向的精确
方案三:基本结构是一对相互啮合的小齿轮和齿条。 转向轴带动小齿轮旋转时齿条便做直线运动。齿条作为传动主杆,其两端与传动连接杆组合将动力传输给车轮转向系统,并通过连接杆件间的配合协作来控制车轮转向的方向和不同的角度。
方案四:通过转动方向盘,带动方向盘直连的杆件转动,通过直连的末端电控单元检测转动角度和车速等数据,通过蜗轮蜗杆辅助转向。再通过两段万向节的杆件机构传动到底盘上的蜗轮蜗杆,带动四杆机构(双摇杆机构)使车辆转向
感谢观看
延时符
四、最优设计方案
最优方案设计
三维建模
最优方案设计
1.动力齿轮
动力齿轮按照方向盘的不同转动方向而转动,同时与动力主杆上的齿键相咬合推动主杆平行移动
最优方案设计
2.传动主杆
传动主杆为带有齿的平直杆件,通过与齿轮的咬合接收传动齿轮传输的动力平行移动,并根据齿轮转动方向不同改变移动方向,两端与传动连接杆组合,将动力传输至后续结构
三、设计方案展示
方案一:利用螺纹咬合的传动原理,将方向盘的旋转传动为杆件的横向移动,从而带动转向梯形结构转动,使得两侧车轮得以向相同角度,相同方向转动带动车体转向
方案二:汽车前轮转向机构运用平面四杆机构,该转向机构为等腰梯形双摇杆机构,铰链四杆机构左右对称,保证左右轮转弯时有相同特性,通过摇杆的转动带动车轮的等角度转动。
汽车转向梯形机构设计

汽车转向梯形机构设计及matlab/simMechanics 仿真汽车转向梯形机构设计及matlab/simMechanics 仿真Trapezoidal steering mechanism design matlab simMechanics Simulation 一、汽车转向梯形机构设计1.设计模型与要求:已知汽车梯形转向机构如下图所示。
该车车型为沃尔沃,转向节跨距M 为1305mm ,前轮距D 为1535mm ,轴距L 为2640mm 。
该车最小的转弯半径R 为5300mm ,并且具有良好的传力性能。
2.结构概述与条件分析根据题目条件,转向节跨距M ,前轮距D ,轴距L 均已知,则设计梯形转向机构只需要确定连架杆a ,连杆b 和轮与连架杆之间的夹角0α即可。
由于aM b 2cos 0-=α 根据最小转弯半径R=11000,以及公式:)(21sin max M D R L--=α求出m ax α=30.61313.两侧转向轮偏转角之间的理想关系式为了避免在汽车转向时产生的路面对汽车行驶的附加阻力和轮胎过快磨损,要求车轮作纯滚动。
显然只有在车轮轴线交于O 点才能实现。
此时的α和β满足以下关系式:LM +=βαcot cot 为此要精心地确定转向梯形机构的参数。
实际设计中,所有汽车的转向梯形都只能设计得再一定的车轮偏转角范围内,使两侧车轮偏转角的关系大体上接近于理想关系。
4.转向传动机构的优化设计4.1 传动机构连架杆与车轮轴线夹角0α的确定根据经验公式:︒±=5)34arctan(0ML α 带入数据得 0α=67.4161︒~77.4161︒,初步设计取的是72︒。
4.2 理论曲线与实际曲线焦点位置的确定以及连架杆a 的确定根据经验得交点一般发生在0.8m ax α~0.95m ax α=24.49°~29.0824°之间,实验中取α=26︒。
此时实际理论ββ==)tan tan arctan(ααM L L -=32.728°,带入实际公式,则可以确定连架杆a 值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车转向机构设计方案1.1 课程设计目的和任务机械原理课程设计能够培养机械类专业学生创新能力,是学生综合运用机械原理课程所学理论知识和技能解决实际问题,获得工程技术训练的必不可少的实践性教学环节。
机械原理课程设计教学所要达到的目的是:1、培养学生理论联系实际的设计思想,训练学生综合运用机械原理课程的理论知识,并结合生产实际来分析和解决工程问题的能力。
2、通过制定设计方案、合理选择机构的类型、正确地对机构的运动和受力进行分析和计算,让学生对机构设计有一个较完整的概念。
3、训练学生收集和运用设计资料以及计算、制图和数据处理及误差分析的能力,并在此基础上利用计算机基础理论知识,初步掌握编制计算机程序并在计算机上计算来解决机构设计问题的基本技能。
机械原理课程设计教学的任务是:机械原理课程设计通常选择一般用途的机构为题目,根据已知机械的工作要求,对机构进行选型与组合,设计出几种机构方案,并对其加以比较和确定,然后对所选定方案中的机构进行运动和动力分析,确定出最优的机构参数,绘制机构运动性能曲线。
11.2 课程设计内容和基本要求机械原理课程设计是在机械原理课程完成后集中进行的教学环节,它是在教师指导下由学生独立完成的。
每个学生都应明确课程设计的任务和要求,拟定设计计划,保证设计进度、设计质量,按时完成课程。
在设计过程中,提倡独立思考、深入钻研,主动地、创造性地进行设计工作。
要求设计态度严肃认真、一丝不苟,反对不求甚解,这样才能确保课程设计达到教学基本要求,并在设计思想、方法和技能等方面得到良好的训练和提高。
1)机械原理课程设计步骤(1)机构运动方案设计。
即根据给定的原始数据和工艺要求,构思并选定机构方案;(2)设计上述各机构。
根据选定的方案采用各机构,如凸轮机构、连杆机构、齿轮机构、间歇运动机构及其组合机构等,即具体机构的尺度综合,求出机构的主要尺寸;(3)根据上面求得的尺寸,按比例画出全部机构的运动简图及运动循环图;(4)据此对上述机构进行运动分析,并进行基于ADAM软件的机构建模与运动仿真。
即绘制机构的运动线图,或进一步进行运动和动力分析;( 5 )编写设计说明书。
2)设计说明书编写要求课程设计说明书是学生证明自己设计正确合理并供有关人员参考的文件,它是课程设计的重要组成部分。
收集整理课程设计报告工作关系到课程设计的成败,通过这项工作,能提高学生的技术概括能力和表达能力。
编写说明书也是科技工作者必须掌握的基本技能之一。
因此,学生在校期间就应加强这方面的训练。
课程设计说明书应在课程设计过程中逐步形成,课程设计结束时,再作必要的补充和整理。
而设计说明书的内容视设计任务而定,大致包括:( 1)设计题目(包括设计条件和要求)。
(2)机构运动简图或设计方案的确定。
( 3)全部原始数据。
(4)完成设计所用方法及其原理的简要说明。
(5)建立设计所需的数学模型并列出必要的计算公式、计算过程及说明,写出设计计算结果。
(6)绘出计算机程序框图,写出自编的程序。
或将基于ADAM软件的机构建模与仿真方法过程描述出来。
(7)用表格列出计算结果并画出主要曲线图。
(8)对设计结果进行分析讨论,写出课程设计的收获和体会。
( 9 )列出主要参考文献资料。
3)设计说明书的格式要求:( 1)说明书一般用A4 纸打印,要求步骤清楚、叙述简明、文句通顺、书写端正。
(2)对每一自成单元的内容,都应有大小标题,使其醒目突出,建议加上目录。
(3)通过课程设计说明书的编写,学生应该学会整理设计数据、绘制图表和简图,用工程术语表达设计成果的方法。
(4)对所用公式和数据,应标明来源——参考资料的编号和页次。
(5)说明书应加上封面,并与图纸一起装订成册。
1.3机构简介用来改变或保持汽车行驶或倒退方向的一系列装置称为汽车转向系统(Steeri ng System)汽车转向系统的功能就是按照驾驶员的意愿控制汽车的行驶方向。
汽车转向系统对汽车的行驶安全至关重要,因此汽车转向系统的零件都称为保安件。
汽车转向系统按照转向能源的不同费为机械转向系和动力转向系。
不同的转向器有着不同的特点应用于不同的汽车上,其中小轿车上常用的是齿轮齿条式的转向器。
在本课程设计中,我们设计了一种机械转向系统。
一般的机械转向系统包括转向操纵机构、转向传动机构和转向器组成。
从控制系统上看,机械转向系统是开环控制,需要驾驶员的反馈来完成转向过程的闭环控制。
方向盘万向节转向操纵机构汽车的转向操纵机构特别是机械转向系统的转向机构一般是由方向盘和其附属的转向传动轴实现的,转向操纵机构能将转向需求转化为机械扭矩输出到转向传动机构。
转向器转向器是完成由旋转运动到直线运动(或近似直线运动)的一组齿轮机构,同时也是转向系中的减速传动装置。
目前较常用的有齿轮齿条式、循环球曲柄指销式、蜗杆曲柄指销式、循环球-齿条齿扇式、蜗杆滚轮式等。
我们本次设计采用了齿轮齿条式转向器。
转向传动机构转向传动机构的功用是将转向器输出的力和运动传到转向桥两侧的转向节,使两侧转向轮偏转,且使二转向轮偏转角按一定关系变化,以保证汽车转向时车轮与地面的相对滑动尽可能小。
1.4参考数据汽车在转向的过程中,如果方向盘保持在一个位置,那么汽车应当围绕同一个圆心做一个圆周运动,车上点(包含出轮轴但不包含车轮上运动的点)的运动轨迹应该是一组同心圆。
而当汽车的四个车轮分别与其所在的轨迹圆相切时汽车所受的阻力最小。
如图所示,在两轮转向系统中,两个后轮是共法线的,如果能调整两个前轮使其法线的交点正好在后轮的法线上,则汽车转弯时的阻力最小。
为了研究方便我们假定:前轮旋转中心距:1400mm前后轮轴距:2500mm1.5设计要求通过转向器结构的机械原理把扭矩放大并改变方向,把转动变为摆动。
转向时,内转向轮的偏转角B —定大于外转向轮的偏转角a ,车轮为刚体假设条件下,内外两转向轮偏转角满足COt a = cot B +B/L.B----两侧主销轴线与地面交点之间的距离L----汽车轴距I----------------------------- L -----------------汽车转向示意图二、设计方案比较2. 1方案设计一图1分析:大锥齿轮4带动不完全锥齿轮与连杆的固定件7中的连杆摆动,连杆带动右梯形臂摆动,从而使右车轮发生转向。
右梯形臂带动转向横拉杆3移动,从而带动左梯形臂的摆动,进而使左车轮发生转向。
、丫一、、/_r\ —该方案优点:①寿命长,工作平稳。
②能保证恒定的传动比。
该方案缺点:①需要驾驶员很大的力才能使车轮发生转向。
②结构复杂,不紧凑。
③逆效率高,容易对驾驶员造成危险。
④传动动力小。
2. 2方案设计二分析:方向盘6转动带动转向轴5以及齿轮4,经过齿轮齿条副4转变为横向运动; 通过转向横拉杆3带动摇杆2,致使车轮1产生倾角,使车辆形式方向转变。
优缺点:优点: 1.结构简单、紧凑;2.3.缺点:体积小,质量轻;制造成本低。
1.会产生反冲,严重时会打手,对驾驶员造成伤害;2. 3.没有辅助加力机构,转动时需要很大的驱动力,对驾驶员要求较高设计过于简单,不具有实际利用价值2. 3方案设计三图3分析:首先方向盘转动,通过齿轮齿条转向器把转矩放大并带动转向直拉杆移动,转向直拉杆带动转向节臂。
然后转向节臂带动左梯形臂,左梯形臂带动左轮实现转动,同时转向节臂又带动转向横拉杆,通过右梯形臂实现右轮的转动。
该方案的优点:本方案采用齿轮齿条转向器,具有结构简单、成本低、质量轻、效率高、转向轻便,使用寿命长等优点。
机构中的转向梯形机构可以使汽车在转向过程中所有的车轮都是纯滚动或有极小的滑移,提高轮胎使用寿命,保证汽车操纵的轻便性和稳定性。
2.4最终设计方案:方案三虚拟样机实体建模与仿真UG的机样建模l l-H-THi WORK Ctmera NtW_CAME HAS?四.虚拟样机仿真结果分析我们对方向盘(j009 ),通过4个STEP函数{STEP(TIME,0,0,2,0)+STEP(TIME,2,0,4,-2.09)+STEP(TIME,6,0,8,4.19)+STEP(TIME, 10,0,12,-2.09)} 相加,使方向盘实现以下运动:0-2s :静止;2-4s :逆时针转动120度;4-6s :静止;6-8s :顺时针转动240度;8-10S :静止;10-12S :逆时针转动120度;12-15S :静止;另外为方便研究,我们规定j009为方向盘,j004和j005分别为左右轮。
4.1运动学仿真4.1.1运动学仿真-转向盘位移仿真曲线逆时针转动过程中,左轮在0-8.3999度之间转动,右轮在0-7.938度之间转动,顺时针转动过程中两车轮的转动范围也不相同,满足COt a = COt B +B/L,这与理论分析结果相同。
4.1.3运动学仿真-转向盘速度仿真曲线4.1.4运动学仿真-轮胎速度仿真曲线j009为方向盘,j004和j005分别为左轮和右轮,左右轮胎的速度曲线在所加动力的情况下平滑,并无突变。
4.1.5运动学仿真-转向盘加速度仿真曲线4.1.6运动学仿真-轮胎加速度仿真曲线JSD-LTj009为方向盘,j004和j005分别为左轮和右轮,左右轮胎的加速度曲线在转向盘所加动力的情况下平滑,并无突变。
运动学分析:综上所述,经过运动学分析,仿真分析的结果和理论分析的结果相同。
4.2动力学仿真421动力学仿真-转向盘力的仿真曲线L-ZXP0.000 I i I I4.2.2动力学仿真-轮胎力的仿真曲线_______________________________________________0…000 2.000 4-000 6.000 8 OOO 10.000 12.000 14.000 16.000-50000,000-100000.000-150000.00©-200000.000Timej009为方向盘,j004和j005分别为左轮和右轮,左右轮胎的受力曲线在转向盘所加动力的情况下平滑,并无突变。
动力学分析:综上所述,根据对方向盘所是施加的位移,速度,加速度及力,并对左右方向盘进行的运动分析以及动力学分析,都与理论分析结果是一致的。
五、课程设计总结5.1 机械原理课程设计总结这次课程设计,由于理论知识的不足,再加上平时没有什么设计经验,一开始的时候有些手忙脚乱,不知从何入手。
在老师的谆谆教导和同组成员的仔细讨论下,使我们找到了目标和方向。
首先我们确定了三个方案,并逐一讨论,确定下三个方案后,我们马上用CAXA B出了它的运动简图,然后我们在队长叶凌峰的带领下我们队第三个方案进行了细致的分析,并确定一下参数以及一些零件的参数范围,通过查阅大量资料以及同组成员的细心分析后,我们用pro/E画出了所有11个零件,并装配好,之后我们用UG进行运动仿真。