线路差动保护保护配置和基本原理分析
母线差动保护、断路器失灵保护原理

交流电流断线检查: 1) 差流大于CT 断线闭锁定值IDX ,延时5 秒发CT 断线报
警信号。 2) 当发生CT 断线,随后电流回路恢复正常,须按屏上复
归按钮复归报警信号,母差保护才能恢复运行。
谢谢
母线差动保护、断路器失灵保 护原理
母线保护装置简介
水电站内500KV保护分别有两套装置,一套为 南瑞,一套为南自;
南瑞母线保护装置:
RCS—915GD 型微机母线保护装置,主要适 用于一个半断路器主接线方式;
母线上允许所接的线路与元件数最多为9 个 ;
RCS—915GD型微机母线保护装置设有母线差 动保护和断路器失灵保护功能。
南瑞母线差动保护原理
母线差动保护:
比率差动元件 a) 常规比率差动元件 动作判据为: 其中:K 为比率制动系数,固定取0.5; I j 为第j 个连接
元件的电流; I cdzd为差动保护启动电流定值。)
南瑞母线差动保护原理
CT 饱和检测元件: 为防止母线保护在母线近端发生区外故障时CT 严重饱
和的情况下发生误动,本装置根据CT 饱和波形特点设置了 两个CT 饱和检测元件,用以判别差动电流是否由区外故障 CT 饱和引起,如果是则闭锁差动保护出口,否则开放保护 出口。
l 母线差动保护 √ l 母联(分段)断路器失灵和盲区保护 l 断路器失灵保护 √ l 复合电压闭锁功能 l 运行方式识别功能 l CT断线告警及闭锁功能 l 母联(分段)充电过流保护(选配) l 母联(分段)非全相保护(选配)
南瑞母线差动保护原理
母线差动保护:
1)启动元件 a)电流工频变化量元件,当制动电流工频变化量大于门坎(由浮动门坎
和固定门坎构成)时电流工频变化量元件动作,其判据为: △si >△SIT +0.5IN 其中:△si 为制动电流工频变化量瞬时值;0.5IN 为固定门坎;△SIT
高压电动机差动保护原理及注意事项

高压电动机差动保护原理及注意事项差动保护是大型高压电气设备广泛采用的一种保护方式,2000KW以上的高压电动机一般采用差动保护,或2000kW(含2000kW)以下、具有六个引出线的重要电动机,当电流速断保护不能满足灵敏度的要求时,也装设纵差保护作为机间短路的主保护。
差动保护基于被保护设备的短路故障而设,快速反应于设备内部短路故障。
对被保护范围区外故障引起区内电流变化的、电动机启动瞬间的暂态峰值差流、首尾端CT不平衡电流等容易引起保护误判的电流,对于不同的差动保护原理,有不同的消除这些电流的措施。
差动保护的基本原理为检测电动机始末端的电流,比较始端电流和末端电流的相位和幅值的原理而构成的,正常情况下二者的差流为0,即流入电动机的电流等于流出电动机的电流。
当电动机内部发生短路故障时,二者之间产生差流,启动保护功能,出口跳电动机的断路器。
微机保护一般采用分相比差流方式。
图1 电动机差动保护单线原理接线图为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。
两组电流互感器之间,即为纵差保护的保护区。
电流互感器二次侧按循环电流法接线。
设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。
继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。
图1所示为电动机纵差保护单线原理接线图。
在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。
如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s的延时动作于跳闸。
如果是微机保护装置,则只需将CT二次分别接入保护装置即可,但要注意极性端。
差动保护培训课件

差动保护培训课件差动保护培训课件差动保护是电力系统中一项重要的保护措施,它可以有效地检测和保护电力系统中的故障,确保电力系统的安全稳定运行。
在电力系统中,各种故障可能会导致电流异常增大或异常减小,而差动保护的作用就是通过比较系统中的电流差异来判断是否存在故障,并及时采取保护动作,以避免故障扩大和对电力设备造成损坏。
差动保护的基本原理是根据电流的差异来判断系统中是否存在故障。
在差动保护系统中,通常会有一组差动保护继电器,它们通过接收来自电流互感器的电流信号,并进行比较和判断。
当系统中的电流差异超过设定的阈值时,差动保护继电器会发出保护信号,触发相应的保护动作。
差动保护的可靠性和准确性对电力系统的安全运行至关重要。
为了确保差动保护的有效性,需要进行相关的培训和学习。
差动保护培训课件就是为了满足这一需求而开发的教学材料。
差动保护培训课件通常包括以下内容:1. 差动保护的基本原理:介绍差动保护的基本原理和工作方式,包括电流互感器的使用、差动保护继电器的工作原理等。
2. 差动保护的类型和应用:介绍差动保护的不同类型和应用场景,包括线路差动保护、变压器差动保护、发电机差动保护等。
3. 差动保护的配置和设置:介绍差动保护系统的配置和设置方法,包括选择合适的互感器、设置保护阈值等。
4. 差动保护的故障分析和处理:介绍差动保护系统中常见的故障类型和处理方法,包括故障诊断、保护动作延时等。
5. 差动保护的维护和检修:介绍差动保护系统的维护和检修方法,包括定期检查、设备更换等。
通过差动保护培训课件的学习,人们可以了解差动保护的基本原理和工作方式,掌握差动保护的配置和设置方法,提高对差动保护系统的故障分析和处理能力,以及差动保护系统的维护和检修技能。
差动保护培训课件的开发和使用,不仅可以提高电力系统工作人员的技术水平和工作效率,还可以提高电力系统的运行安全性和可靠性。
通过培训和学习,人们可以更好地理解差动保护的重要性,掌握差动保护的操作技巧,提高对电力系统的保护能力,确保电力系统的安全稳定运行。
电动机差动保护原理

电动机差动保护原理
电动机差动保护是一种保护电动机的措施,其原理是通过比较电动机的不同相电流,来检测是否存在故障。
差动保护通常包括两个主要部分:差动电流互感器和差动保护装置。
互感器位于电动机的供电线路中,用于检测电动机的相电流。
它通过感应电流的变化,将电流信号转化为电压信号。
互感器通常由多个线圈组成,其中一部分连接在供电线路的进线侧,另一部分连接在出线侧。
当电动机正常运行时,进线侧和出线侧的电流应该相等,因此互感器的输出电压应该接近零。
差动保护装置比较互感器的输出电压,如果发现有较大的差异,就会发出故障信号,并采取适当的措施来切断供电。
差异可能是由于电动机内部的故障或线路短路引起的。
差动保护装置通常包括了灵敏性调节装置,用于调整差动保护的动作灵敏度。
差动保护可靠性较高,可以有效地保护电动机不受损坏。
然而,差动保护也有一些限制。
例如,在启动电动机或者母线电压发生偏差时,差动保护可能会误动作。
因此,在设计和配置差动保护装置时,需要考虑这些因素,并进行相应的调整和保护配置。
总之,电动机差动保护通过比较电动机的不同相电流来检测故障,并采取措施来切断电源,以保护电动机的安全运行。
线路差动原理

线路差动原理
差动保护是一种常见的电力系统保护方式,通过对线路上的电流进行比较,以检测和判定故障发生的位置,从而实现对电力系统的保护。
差动保护原理基于电流的差值,通常应用于发电机、变压器和输电线路等高压电气设备中。
差动保护系统包括一对互相对称的电流互感器,在正常运行时,这对电流互感器输出的电流应相等。
当系统中发生故障时,导致相应位置的电流变化,从而引发差动保护系统的动作。
差动保护系统中的电流互感器将被保护电路线路上的电流转换为相应的电压信号。
这些电压信号经过变换、滤波和放大等处理后,输入到差动保护继电器中。
差动保护继电器通过比较输入的电压信号,判定是否存在电流差异。
当存在差异时,差动保护继电器将产生动作信号,触发保护动作装置,从而切断故障电路,保护被保护设备。
差动保护的触发条件主要有两种情况,即零序电流和非零序电流的差异。
对于三相对称故障,通常会产生零序电流,而对于非对称故障,将会产生非零序电流。
差动保护系统通过检测这些电流的差异,实现对不同类型故障的判断和保护。
差动保护系统具有快速响应、高可靠性和全方位保护等特点,是电力系统中重要的保护方式之一。
然而,差动保护系统也存在一些问题,例如对互感器特性的要求较高,对系统的耦合影
响较大等。
因此,在实际应用中,需要综合考虑差动保护系统的特点和限制,确保其应用效果和可靠性。
线路差动保护保护配置和基本原理.

2M速率与64K速率的区别
• 功率=功率谱密度×带宽,带宽越宽,噪声功率 越大,2M速率接收灵敏度较低,因此传输距离较 短
实现差动保护的几个关键问题
通讯系统的时钟问题
误码与滑码 准确、迅速、不失真地传输信号是继电保护 装置对通讯系统的最高要求,除误码率水平要保 持在一个适当的水平外,对通讯系统的时钟也要 有合理的设计,这样才能避免滑码的产生。 滑码实际上是发送时钟与接收时钟不同步产 生的。
线路保护及通通信
云南电力研究院
2017年10月 功果桥
王荣泰
email:happywrt@
云南电力研究院
2017年10月 昆明
保护用光纤通道的构成
一、保护用光纤通道的连接形式 二、保护与通道的接口 三、2M速率与64K速率的区别
保护用光纤通道的构成 一、保护用光纤通道的连接形式 保护用光纤通道按连接形式可分为专用通道和 复用通道,专用通道指光纤保护装置单独占用光 缆的两根纤芯,而复用通道指保护信息按G.703同 向接口形式,以64Kbit/s的速率复接到PCM交换机 ,和其它信息复用后一起传输,或单独以2M/s的 速率复接到SDH的E1口,传送保护数据。
专用光纤的连接形式
保护机房
光缆的一根纤芯 光缆
保护机房
RCS-931
RCS-931
复接PCM机的连接方式
保护 机房 通信 机房
SDH网 PCM 交换机 PCM 交换机
通信 机房
保护 机房
RCS -931
MUX -64B
MUX -64B
RCS -931
保护用光纤通道的构成 二、保护与通道的接口 专用通道:保护的尾纤与光缆的保护专用 芯直接融接或通过光纤分配屏连接(方便旁代 线路)。 复用通道:保护的尾纤直接与各种接口装 置连接,通过接口装置转换为电信号与PCM机 或E1接口连接,与PCM连接使用屏蔽双绞线, 与E1接口采用同轴RCS -901
变电站110kV线路差动保护动作分析

变电站110kV线路差动保护动作分析摘要:通过对110kV某L枢纽变电站故障前的运行方式、背景及事故经过的介绍,对其二进线L、H变电站两侧的线路保护录波图形及动作进行了分析,用临时1#变压器替代原1#变压器转运行投至110kVII母手动合闸时,产生不平衡电流中的直流分量较大,导致L变电站二进线的L侧线路保护CSC-163A零序差动保护动作。
关键词:110kV;不平衡电流;零序差动保护;变电站1故障前系统的运行方式110kV线路在我国电网中占有较大的比例,确保110kV线路的运行安全非常重要。
110kV保护装置目前主要配置微机型继电保护装置,其运行可靠,自动化程度高。
为了确保保护装置能够正确动作,需要在定检工作中对其保护的选择性、速动性、灵敏性、可靠性进行调试;本文主要对110KV线路差保护动作进行了详细的阐述。
110KV某L枢纽变电站一次系统为3条电源进线、双母双分段接线方式,运行方式如下,一进线带110KVI母、1#主变和2#变压器,1#主变带10KVI、IV母;二进线带110KVII、IV母,110KVII母带临时1#变压器,110KVIV母带2#主变及10kVII母;三进线带110KVIII母,110KVIII母带3#主变、3#变压器及10kVIII母;3条进线均由220kV某H变电站送电。
2故障前的背景由于现场原因,1#变压器和3#变压器低压侧后备保护装置中的复压过流保护动作,事故跳闸。
由于生产需要,急需将1#、3#变压器送电。
在送电前,对1#、3#变压器进行了相关电气检测试验。
检测报告结果显示,3#变压器直流电阻测定为:AB两相为6.385mΩ;BC两相为6.391mΩ;CA两相为6.375mΩ;测试结果满足要求。
而1#变压器直流电阻测定为:AB两相为8.678mΩ;BC两相为5.847mΩ;CA两相为7.825mΩ;平衡度测试结果等于38%,远远超标,且其油色谱分析显示气体中的含烃量也远远超标。
线路的差动保护课件

பைடு நூலகம்
差动保护的应用场景
差动保护广泛应用于电力系统的变压器、发电机、母线等 关键设备的保护。
在变压器中,差动保护用于检测和隔离变压器绕组和引线 的短路故障。在发电机中,差动保护用于检测和隔离定子 绕组和转子绕组的短路故障。在母线中,差动保护用于检 测和隔离母线及其连接设备的短路故障。
模拟线路故障情况,测试线路差动保护装置 的故障检测和隔离能力。
现场测试
在电力系统中,对实际运行的线路差动保护 装置进行测试,验证其功能和性能。
耐压测试
对线路差动保护装置进行高电压测试,验证 其在高电压下的性能和稳定性。
线路差动保护的验证过程
功能验证
验证线路差动保护装置的基本功能,如故障 检测、隔离等是否正常。
某500kV超高压输电线路的差动保护测试
经过严格的功能和性能验证,该线路差动保护装置在超高压输电线路中表现出良好的性能和稳定性。
05
线路差动保护的发展趋 势与展望
线路差动保护技术的未来发展方向
数字化发展
利用数字信号处理技术提 高差动保护的可靠性和灵 敏度。
智能化发展
结合人工智能和大数据技 术,实现差动保护的智能 诊断和预警。
缺点
差动保护装置也存在一些缺点。例如,它容易受到电流互感器饱和和涌流的影响,导致误动作或拒动作。此外, 对于小电流接地系统,差动保护装置的应用也受到限制。
线路差动保护的关键技术
01
电流互感器选择
选择合适的电流互感器是差动保护的关键之一。电流互感器应具有高精
度、低饱和、低误差等特点,以保证差动保护的可靠性和准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线路外部短路
• 动作电流:
MI M
N I N
I I I 0 I CD I M N K K
• 制动电流:
I I I 2I I R I M N K K K
I K
• 因为 I CD I R 继电器不动。 • 凡是穿越性的电流不产生 动作电流,只产生制动电 流。
采样同步 电流差动保护在算法上要求参加比较的各端电 流量必须同步采样或采样同步化处理得到,这是 实现差动保护的关键所在。目前常见的同步方法 主要有三类: 1.基于数据通道的同步方法 2.基于参考向量的同步方法 3.基于GPS的同步方法
采样同步 基于数据通道的同步方法主要有: 1. 采样时刻调整法 2. 采样数据修正法 3. 时钟校正法 其共同特点是均假定两个方向通道传输延时相等 ,若接收与发送的路由不同或通道切换造成两个 方向通道传输延时不相等时,均会导致保护测量 的延时与实际不符,影响差动保护的正确动作。
0.75
I cdqd
I R
• 动作电流与制动电流对 应的工作点位于比率制 动特性曲线上方,继电 器动作。
线路内部短路 • 动作电流:
I I I CD I M N K
M I M
I N N
I K
• 制动电流:
I I I R M N
• 因为 I CD I R 继电器动作。 • 凡是在线路内部有流出的 电流,都成为动作电流。
各种接口设备 常用的接口设备有: MUX-64B:用于64Kbit/S传输速率的光纤差动保 护装置与PCM机复接 MUX-2M:用于2Mbit/S传输速率的光纤差动保护 装置与SDH设备的E1接口复接 FOX40F/ FOX41A :用于纵联距离或方向保护设 备利用光纤通道传输信号,还能与以上两种设备 与通讯设备实现复接
2M速率与64K速率的区别
• 功率=功率谱密度×带宽,带宽越宽,噪声功率 越大,2M速率接收灵敏度较低,因此传输距离较 短
实现差动保护的几个关键问题
通讯系统的时钟问题
误码与滑码 准确、迅速、不失真地传输信号是继电保护 装置对通讯系统的最高要求,除误码率水平要保 持在一个适当的水平外,对通讯系统的时钟也要 有合理的设计,这样才能避免滑码的产生。 滑码实际上是发送时钟与接收时钟不同步产 生的。
差动投入条件 什么情况下发对侧差动允许信号? 1. 装置起动且有差流 2. 有TWJ开入且有差流 3. 低电压且有差流(不能有PTDX)
M
IM
IN
N
• 以母线流向被保护线路 方向为正方向。 • 动作电流(差动电流)为:
I I CD I M N
ICD
• 制动电流为:
I I R I M N
线路保护及通通信
云南电力研究院
2018年10月 功果桥
王荣泰
email:happywrt@
云南电力研究院
2018年10月 昆明
保护用光纤通道的构成
一、保护用光纤通道的连接形式 二、保护与通道的接口 三、2M速率与64K速率的区别
保护用光纤通道的构成 一、保护用光纤通道的连接形式 保护用光纤通道按连接形式可分为专用通道和 复用通道,专用通道指光纤保护装置单独占用光 缆的两根纤芯,而复用通道指保护信息按G.703同 向接口形式,以64Kbit/s的速率复接到PCM交换机 ,和其它信息复用后一起传输,或单独以2M/s的 速率复接到SDH的E1口,传送保护数据。
专用光纤的连接形式
保护机房
光缆的一根纤芯 光缆
保护机房
RCS-931
RCS-931
复接PCM机的连接方式
保护 机房 通信 机房
SDH网 PCM 交换机 PCM 交换机
通信 机房
保护 机房
RCS -931
MUX -64B
MUX -64B
RCS -931
保护用光纤通道的构成 二、保护与通道的接口 专用通道:保护的尾纤与光缆的保护专用 芯直接融接或通过光纤分配屏连接(方便旁代 线路)。 复用通道:保护的尾纤直接与各种接口装 置连接,通过接口装置转换为电信号与PCM机 或E1接口连接,与PCM连接使用屏蔽双绞线, 与E1接口采用同轴电缆连接。
差动投入条件
对侧差动允许信号
满足差流方程
差动压板投入 CT断线 分相差动投入标志 零序差动投入标志 启动
电压开放标志
差动投入条件 对侧差动允许信号 电流差动保护必须收到对侧的差动允许信号才 能动作,这是防止TA断线的措施。TA断线时,断 线侧的起动元件和差动继电器可能动作,但对侧 的起动元件不会动作,不会向本侧发差动允许信 号,从而保证纵联差动保护不会误动。
M I M
I N NIC来自⑴ 电容电流的影响 电容电流是从线路内部流出的 电流,因此它构成动作电流。 由于负荷电流是穿越性的电流, 它只产生制动电流。所以在空 载或轻载下电容电流最容易造 成保护误动。 解决方法: ① 用起动电流定值躲本线路 电容电流。 ②起动电流定值躲不了电容电 流时,进行电容电流补偿。
采样同步特点
• 通道双向延时相等是采样同步的前提; • 一侧“主机方式” 为1,另一侧必须为0,且“主机方式 ”设置同系统方式无关; • 两侧装置采样同步与外接电气量无关,只要两侧装置通 信正常,即能 保证采样同步; • 只有在装置上电或失步后,才需要测通道延时,测定延 时后,装置不再需要传输时间信息; • 从机时刻调整采样间隔,保证两侧装置采样时刻在允许 的误差范围内;装置实时监测采样时刻误差,若超出范 围,需退出差动保护,重新进行同步过程。
保护机房
保护机房
RCS -901
FOX40F
FOX40F
RCS -901
RCS901
FOX-40F
MUX64B
通信机房
PCM 交换机
保护机房
RCS901
FOX-40F
MUX64B
PCM 交换机
保护用光纤通道的构成 三、2M速率与64K速率的区别
1. 2M速率省去两侧PCM交换机设备,通信链路上减少了 中间环节,减少了传输时延。 2. 2M速率增加了传输带宽,可以传输更多保护信息。 –同后备保护一样,差动保护也采用24点计算,动作速度快 且安全稳定 –由于在传输采样值的同时也传输了相量值,通道误码时稳 态量差动不受数据窗的影响,动作速度几乎不受影响