eppendorfresearch移液器使用手册说明书

合集下载

Eppendorf移液器分册

Eppendorf移液器分册

Eppendorf 成立于1945年2009年,可整支高温高压灭菌的Research plus 手动移液器上市2010年,高精度人性化操作的Xplorer 电动移液器上市1958年,全球第一个气体活塞式移液器专利Eppendorf致力于发展生物科技,不断改善实验室环境提高产品质量,满足人性化需求我们希望把质量可靠的产品、先进的服务理念19852003年,PhysioCare概念移液器上市,有效防止RSI(手部重复劳损)2004年在中国进行直销2003年成立Eppendorf中国代表处移液产品选择指南性 能工作原理自动识别分液管量程范围液体移取液体分装电动马达应 用常规液体操作自动分液吸取上清滴定倍比稀释高温高压灭菌操作易挥发液体强腐蚀液体密度与水有差别的液体气体活塞0.5 µl - 10 ml(单道)0.5 µl - 1,200 µl(多道)●-●●●●---下半支---气体活塞0.1 µl - 2,500 µl●---●----整支---气体活塞0.1 µl - 10 ml(单道)0.5 µl - 300 µl(多道)●---●----下半支---气体活塞0.1 µl - 10 ml(单道)0.5 µl - 300 µl(多道)●---●●----整支--Research移液器Reference移液器Xplorer电动移液器Research plus移液器N E W N E W45外置活塞1 µl - 50 ml●●●-●-----●●●外置活塞1 µl - 50 ml●●●●●●----●●●外置活塞1 µl - 50 ml●●●●●●●●●-●●●内置活塞0.5 - 100 ml●-●-●----●●●●内置活塞0.01 - 999.9 ml●-●●●--●--●●●Multipette plus 手动分液器Multipette stream电动分液器Multipette Xstream电动分液器Varispenser plus 瓶口分液器Top Buret 数字滴定仪●获得2009年全球Reddot红点工业设计大奖* 不包含5 ml和10 ml Research plus移液器● 按钮用力小于一支圆珠笔密度调节窗口- 适用不同密度液体Perfect Piston TM系统的高科技材质重量轻- 耐高温、抗腐蚀、坚固耐用- 可整支高温高压灭菌和紫外消毒位置设计合理,便于移液 体积旋钮- 设定体积时转动圈数少独立活塞式设计,每个通道可单独拆卸- 灵活性高- 节省维修成本弹性吸嘴- 伸缩式吸嘴与吸头更匹配订货信息:Eppendorf Research® plus单道可调量程移液器8* EN ISO 8655 Eppendorf订货信息:Eppendorf Research ® plus 固定量程移液器9订货信息:Eppendorf Research ® plus 多道移液器* EN ISO 8655Eppendorf全新 Research plus pack 移液器套装● 套餐:- 3支Eppendorf Research ® plus 移液器 - 适配吸头样品- 1支礼品笔!订货信息:Eppendorf Research ® plus Pack 移液器套装可在/support 网址下载SOP 标准操作手册诠释移液概念的新标准Research®移液器●双按钮操作●下半支可高温高压灭菌●TÜV 认证:人性化,使用友好●耐化学腐蚀●操作更省力●单手操作● 4 位数字体积显示●密封圈免维护10* EN ISO 8655 EppendorfEppendorf Research®订货信息Eppendorf移液器配件下半支可高温高压灭菌●旋转式移液器支架溶液槽诠释移液概念的新标准11订货信息:Eppendorf Research ®可调量程移液器*EN ISO 8655EppendorfepResearch ®3 超值三支套装● 套餐:- 3 支Eppendorf Research ® 移液器 - 3盒适配吸头,吸头盒可重复使用- 3支移液器托架,1支礼品笔!订货信息:Eppendorf Research ®移液器套装可在/support 网址下载SOP 标准操作手册12epReference®3超值三支套装● 套餐:- 3 支Eppendorf Reference®移液器- 3盒适配吸头,吸头盒可重复使用;- 3支移液器托架,1支礼品笔!可在/support网址下载SOP标准操作手册订货信息:Eppendorf Reference®移液器套装适用于病原微生物等危险性样品操作* EN ISO 8655 的不准确度和不精确度的参数仅在使用 Eppendorf 原装吸头的情况下有效。

移液枪的使用(图文详解)

移液枪的使用(图文详解)

移液枪的使用1.样品准备1.1 样品提前从冰箱拿出室温放置,使温度与室温平衡。

✧液体温度>吸头的移取的液体体积会偏大✧液体温度<吸头的移取的液体体积会偏小1.2 若溶剂瓶中液体太少,请到入EP管(微量离心管)中,方便吸取。

2. 设定体积✧大体积→小体积逆时针✧小体积→大体积顺时针超过设定刻度,再回调。

保证最佳的精确度。

3. 装枪头✧ 将移液枪端垂直插入吸头,左右微微转动,上紧即可4. 吸液4.1 垂直吸液,枪头尖端需浸入液面2-4mm 以下。

4.2 枪头预润湿(3次)✧ 吸头内壁会吸附一层液体,使表面吸附达到饱和,然后再吸入样液,最后打 出液体的体积会很精确。

✧ 一般液体,正向吸液(一档 → 二档)。

✧ 粘稠液体和易挥发液体,反相吸液(二档 → 一档 )。

4.3 慢吸慢放,控制好弹簧的伸缩速度。

✧ 吸液速度太快会产生反冲和气泡,导致移液体积不准确。

4.4 将移液枪提离液面,停约一秒钟。

✧ 观察是否有液滴缓慢 的流出。

若有流出,说明有漏气现象。

✧ 原因:枪头未上紧;移液枪内部气密性不好。

正向吸液 反向吸液4.5 外壁残留✧用滤纸蘸檫移液嘴外面附著的液滴5. 放液1)将吸嘴口贴到容器内壁并保持10-40°倾斜。

2)平稳地把按钮压到一档,停约一秒钟后压到二档,排出剩余液体。

排放致密或粘稠液体时,压到一档后,多等一两秒钟,再压到二档。

3)4)松开按钮。

5)按弹射器除去移液嘴。

6. 使用完毕✧调至最大量程移液枪长时间不用时建议将刻度调至最大量程,让弹簧恢复原形,延长移液枪的使用寿命。

6. 注意事项✧移液枪不得移取有腐蚀性的溶液,如强酸、强碱等。

✧如有液体进入枪体,应及时擦干。

✧移液枪应轻拿轻放。

✧定期对移液枪进行校准。

比色皿的使用:拿取比色皿时应用两个指头捏住毛面,不能接触透光面;比色皿外壁的液体可先用滤纸吸干,再用镜头纸或软绸布擦拭。

文案编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。

Eppendor f移液枪使用说明

Eppendor f移液枪使用说明

Eppendorf移液枪使用说明操作步骤:1.移液枪的选择:根据实验的需要,选择合试量程的枪。

以满足一次既能吸取所需的体积为准,减少多次操作所造成的误差。

在能满足要求的情况下,尽量选择量程较小的枪。

2.量程的调节:将移液器横置,水平放至自己的眼前,通过调节轮慢慢地将容量值调至预想值,从而避免视觉误差所造成的影响。

在容量设定时,还有一个需要特别注意的地方。

当我们从大值调整到小值时,刚好就行;但从小值调整到大值时,就需要调超三分之一圈后再返回。

3.枪头(吸液嘴)的装配:将移液枪(器)垂直插入枪头中,稍微用力左右微微转动即可使其紧密结合。

如果是多道(如8道或12道)移液枪,则可以将移液枪的第一道对准第一个枪头,然后倾斜地插入,往前后方向摇动即可卡紧。

枪头卡紧的标志是略为超过O型环,并可以看到连接部分形成清晰的密封圈。

4.预洗吸头:在我们安装了新的吸头或增大了容量值以后,应该把需要转移的液体吸取、排放两到三次,这样做是为了让吸头内壁形成一道同质液膜,确保移液工作的精度和准度,使整个移液过程具有极高的重现性。

其次,机溶剂和高挥发液体,会在白套筒室内形成负压,从而产生漏液的情况,这时就需要我们预洗四到六次,让白套筒室内的气体达到饱和,负压就会自动消失。

5.吸液:先将移液器排放按钮按至第一停点,再将吸头垂直浸入液面,浸入的深度为:P2、P10小于或等于1毫米,P20、P100、P200小于或等于2毫米,P1000小于或等于3毫米,P5ML、P10ML小于或等于4毫米(浸入过深的话,液压会对吸液的精确度产生一定的影响,当然,具体的浸入深度还应根据盛放液体的容器大小灵活掌握),平稳松开按钮,切记不能过快。

移液之前,要保证移液器、枪头和液体处于相同温度。

吸取液体时,移液器保持竖直状态。

用大拇指将按钮按下至第一停点,然后慢慢松开按钮回原点。

6.放液:放液时,吸头紧贴容器壁,先将排放按钮按至第一停点,略作停顿以后,再按至第二停点,最后松开按钮。

空气缓冲移液器过滤嘴说明书

空气缓冲移液器过滤嘴说明书

IntroductionDuring pipetting using an air-cushion pipette, there is potential risk of aerosols formation within the pipette system. This presents a concern since it leads tocontamination of the pipette and cross-contamination between samples. Filter tips are commonly used as a solution to address this issue.Another source of contamination, unforeseen and oftenneglected, is the ingress of the sample liquid into the pipette due to improper handling or accidental over-pipettingresulted from incorrect tip size used or wrongly set volume. The occurrence of such risk calls for the need of a filter tip that additionally provides protection against contamination by the sample liquid, apart from guarding against aerosols contamination. This can be realized by having a filterwhich seals upon contact with liquid, forming a barrier that prevents the liquid from penetrating through the filter and contaminating the pipette (Figure 1). Filter tips behaving in this way are generally known as “self-sealing” filter tips.ep Dualfilter T.I.P .S.®SealMax –Determination of sample recovery rate in case of over-pipetting of waterLu Foong Teng 1, Detlef Hempfling 21Eppendorf Asia Pacific Headquarters, Kuala Lumpur, Malaysia 2Eppendorf Instrumente GmbH, Hamburg, GermanyAbstractIn case of accidental over-pipetting, self-sealing filter tips provide additional protection against contamination by forming a sealed barrier upon contact with the sample liquid, preventing it from passing through the filter. The ability to recover the sample as much as possible there-after is questionable. An investigation was carried out to determine the sample recovery rate of self-sealing filter tips following over-pipetting of water. Results show thatnearly complete sample recovery is achievable using ep Dualfilter T.I.P.S. SealMax with regard to water. It has the highest recovery rate and reproducibility irrespective of the filter tip size when compared with two othermanufacturers of self-sealing filter tips. Similar recovery rates may be expected when working with other aqueous solutions having physical properties like water.Fig. 1: Both (a) and (b) show pipetting of 300 µL sample using a 100 µL filter tip size. (a) A standard non self-sealing filter tip does not effectively prevent liquid from penetrating through the filter in case of excessive over-pipetting. The example shown here is the ep Dualfilter T.I.P.S. (b) ep Dualfilter T.I.P.S. SealMax forms a reliable barrier against liquid should accidental over-pipetting occur.(a) ep Dualfilter T.I.P.S. (b) ep Dualfilter T.I.P.S. SealMaxMaterials and MethodsAll sizes of ep Dualfilter T.I.P.S. SealMax were tested for sample recovery rate following over-pipetting of water.10 µL and 200 µL self-sealing filter tips from manufacturer G and A were tested alongside for comparison.The pipette–tip combination stated in Table 1 was used to simulate the situation of over-pipetting. Electronic pipette (Eppendorf Xplorer®) was used to exclude all manual influences on the pipetting process. Exceptions are for testing 10 μL and 20 μL filter tip size where the electronic pipette with nominal volume 20 μL is not available. Hence, a manual pipette (Eppendorf Research® plus) was used instead, as indicated in Table 1.Distilled water was used as test liquid. All test conditions were in accordance with Eppendorf SOP [1] while the test procedure was modified to accommodate the aim of this investigation.The weighing vessel with added test liquid was placedon an analytical balance and tared to zero. Referring to Table 1, test liquid was aspirated into the pipette tip upon which over-pipetting occurred. The reading on the balance was recorded as Value 1, which corresponds to the actual amount of liquid aspirated. Then, the balance was tared to zero again. Test liquid was recovered by dispensing back into the weighing vessel using the pipette. The reading on the balance was recorded as Value 2, which correspondsto the amount of liquid recovered. The waiting time period between aspiration and dispensing was kept at 10 seconds. Sample recovery rate was determined as follows:For each manufacturer and each test filter tip size, sample recovery rate measurement was repeated ten times using a new tip for each measurement. The average percentage of sample recovery and standard deviation were calculated.Table 1: Overview of pipette-tip combination tested to simulate the situation of over-pipettingWith regard to the preceding purpose, the filter has to seal effectively against the incoming liquid. The self-sealing filter may then allow release of the sample for recovery. The ability to enable recovery of sample as much as possible presents a tough challenge. Sample loss is especially critical in situations where there is limited availability of sample amount, preparation of sample is difficult and time-consuming or when working with expensive reagents.The investigation described herein aims to determine the amount of sample liquid that can be recovered from ep Dualfilter T.I.P.S. SealMax following over-pipetting. In this investigation, distilled water was used as the representative sample liquid. The sample recovery rate is also compared with that of two other manufacturers of self-sealing filter tips.Filter tip size Pipette at nominal volume Pipette type10 µL 20 µL with reverse pipetting Manual20 µL 20 µL with reverse pipetting Manual100 µL 300 µL with forward pipetting Electronic200 µL300 µL with reverse pipetting Electronic300 µL300 µL with reverse pipetting Electronic1 000 µL 1 200 µL with reverse pipetting ElectronicResults and DiscussionThe sample recovery rate of all tip sizes of the ep Dualfilter T.I.P.S. SealMax following over-pipetting of water was determined (Figure 2). It is clearly shown that ep Dualfilter T.I.P.S. SealMax enables nearly all of the sample water(> 95%) to be recovered even when the sample liquid comes into contact with the filter, which causes the filter to seal and prevent the liquid from passing through. Maximum sample recovery can be achieved by simply dispensing the sample out of the tip using the pipette. No cumbersome additional work steps, for example cutting the tip, are required. The standard deviation between individual tips of the same size, as represented by the error bar, was also very small. This indicates the high reproducibility of the sample water recovery rate from tip to tip. Both the recovery rate and its reproducibility were consistent across all the different tip sizes of ep Dualfilter T.I.P.S. SealMax.In order to assess the sample recovery rate performanceof ep Dualfilter T.I.P.S. SealMax, 10 μL and 200 μL tip sizes were compared with that of two other manufacturers ofself-sealing filter tips (Figure 3).Filter tips from manufacturer G and A demonstrated lower sample recovery rate than ep Dualfilter T.I.P.S. SealMax with regard to water. This was particularly pronounced for the small tip size 10 µL with a difference of 37% lower for manufacturer G and 47% lower for manufacturer A. For 200 µL filter tip, the difference was smaller, which was 19% and 11% lower for manufacturer G and A respectively. Looking at each manufacturer G and A individually, there was considerable difference in the recovery rate between 10 µL and 200 µL filter tips. Such finding suggests dependency of the recovery rate on the filter tip size. However, for ep Dualfilter T.I.P.S. SealMax, the recovery rateremained high and consistent regardless of the filter tip size.Exceptionally large standard deviations were found for both 10 µL and 200 µL filter tips from manufacturer G and 10 µL filter tip from manufacturer A. The sample recovery rate varied substantially from one tip to the other, thus implicating lower reliability of these tips in this aspect.Presumably, two possible factors contributing to lower recovery rate and reproducibility (with regard to water) may be derived based on the results obtained and observation made during this investigation.(i) Sample can be lost due to absorption by the filter material. A hydrophobic filter will greatly minimize the influence of this factor, as for ep Dualfilter T.I.P.S. SealMax. (ii) The possibility that the sample properties or behavior is altered after coming into contact with the self-sealing filter cannot be ruled out. This phenomenon was observed for filter tips from one of the two other manufacturers tested. The sample liquid became slightly viscous and had tendency of foam formation. During recovery, some liquid was retained as droplets or bubbles on the internal tip wall (Figure 4). Figure 2: Sample recovery rate of ep Dualfilter T.I.P.S. SealMax following over-pipetting of water. Values presented are average percentage of sample recovery calculated from 10 individual measurements. The error bar represents standard deviation. Figure 3:Comparison of sample water recovery rate between different manufacturers of self-sealing filter tips. Values presented are average percentage of sample recovery calculated from10 individual measurements. The error bar represents standard deviation.Figure 4: Sample liquid became slightlyviscous and had tendency of foamformation after coming into contact withthe filter (filter tip from one of the twoother manufacturers tested).This observation was made during theinvestigation, in which distilled water(colorless) was used as test liquid. Forvisualization, the picture shows testusing distilled water with added red dye.10 μL 20 μL 100 μL 200 μL 300 μL 1000 μLAPPLICATION NOTE I No. 273 I Page 4ConclusionIn addition to providing dual protection against aerosols and biomolecules, ep Dualfilter T.I.P.S. SealMax builds a reliable protection against liquid in case of accidental over-pipetting. It also enables recovery of nearly all of the sample liquid, with respect to water, even after coming into contact with the filter. In the context of this investigation, the highreliability of the filter tip in terms of sample recovery rate and its reproducibility when it comes to pipetting water (and other purely aqueous solutions) is shown. The use of ep Dualfilter T.I.P.S. SealMax ensures reliable protection against contamination as well as minimal interruption to workflow despite unpredictable pipetting mistake.References[1] Eppendorf SOP – Standard Operating Procedure for Pipettes. /SOPThe aforementioned results and discussion refer to the sample liquid of water. Similar recovery rates may beexpected when working with other aqueous solutions having physical properties like water. It has to be pointed out that with other liquid types, the sample recovery rate following over-pipetting can be different, depending on thecomposition of the liquid as well as its concentration. These are not within the scope of the investigation described here./consumablesEppendorf , the Eppendorf logo, Eppendorf Xplorer , Eppendorf Research and epDualfilter T.I.P.S. are registered trademarks of the Eppendorf AG, Germany.All rights reserved, including graphics and images. Copyright© 2013 by Eppendorf AG.Your local distributor: /contact Eppendorf AG · 22331 Hamburg · Germanyeppendorf @ · Ordering information ProductColor code Order no. ep Dualfilter T.I.P .S.® SealMax, Racks, PCR clean / 10 x 96 tips dark gray 0030 077.806μL L, 46mm light gray 0030 077.814μL, 53mm yellow 0030 077.822μL, 55mm yellow 0030 077.83020 – 300 μL, 55mm orange 0030 077.84950 – 1,000 μL, 76mmblue0030 077.857。

Eppendorf Xplorer 电子移液器 — 多种调节功能概要说明书

Eppendorf Xplorer 电子移液器 — 多种调节功能概要说明书

Piston-stroke pipettes with an air cushion are subject to the effects of temperature, air pressure and air humidity. Such effects are kept to a minimum by constructive measures which are designed to ensure that dispensingaccuracy is not significantly affected. Liquids whose physical properties differ significantly from those of water, or temperature differences between the pipette, the pipette tip and the dispensed liquid may also lead to incorrect dispensing volumes. These factors make it necessary to be able to readjust the devices for different physical conditions. Thanks to its numerous adjustment possibilities the new electronic pipette Xplorer from Eppendorf allows for easy compensation of such physical effects.The electronic Eppendorf Xplorer® pipette – Versatile adjustmentUserguideKornelia Ewald, Eppendorf AG, Hamburg, GermanySince piston-stroke pipettes are mainly used for pipetting of aqueous solutions, they are adjusted with distilled water as a test medium. Depending on the density of theparticular liquid the air volume over the liquid expands in different ways. Consequently, other liquid volumes may, under certain circumstances, be aspirated into the tip when dispensing non-aqueous solutions. Liquids with ahigh vapor pressure, such as organic solvents, can also not be dispensed with the level of accuracy specified for distilled water. The air pressure, which is dependent on the height of the location above sea level, is a further factor to be considered during dispensing operations with air cushion pipettes.Solutions whose physical data is very different from water with regard to their density, viscosity, surface tension and/ or vapor pressure may lead to incorrect dispensing volumes. This makes it necessary to readjust piston-stroke pipettes with an air cushion to account for this. If the density of an aqueous solution changes by approximately 10 %, for example, because of the salt concentration, the volume will change by approximately 0.2 %. This statement does only apply if other relevant properties of the liquid do not change at the same time.Another reason for changing the factory settings canbe, for example, the altitude of the location at which the pipette is used. If the pipette is used at an extremely high altitude, it must be adjusted to the ambient air pressure. At 1000 meters above sea level, the volume error of a 100 µL pipette is about -0.3 %. In addition, when using pipette tips that significantly differ from standard tips in their geometry, changing the adjustment can also improve dispensing accuracy.In contrast to performing calibration which involves determining the measured random (precision) and systematic (accuracy) errors from the nominal value and which does not require any alterations that will permanently change the dispensing system, performing an adjustment will change the device for all subsequent dispensing operations. Changes made to the adjustment do not affect dispensing precision. Precision can only be improved by exchanging parts. Precision is also considerably affected by handling errors.The actual volume of a pipette can be checked by weighing as follows:If the set volume corresponds to the actual volume, no correction is necessary.If there is a difference between the actual volume andthe set volume, make sure to check the following factors before readjusting a pipette:Is there any liquid dripping from the tip?Is the pipette tip fitted leak-proof?Is the tip cone undamaged?Are the piston and the cylinder leak-proof?Does the temperature of the pipetted liquid correspond to the temperature of the device and the ambient air?Is the weighing location free from drafts?Does the work method and pipetting speed permit complete aspiration and dispensing of the liquid?Has the correct value for “Density liquids at weighing temperature” been used for the calculation of the actual volume?Is the pipette volume setting correct?Is the balance sufficiently sensitive (balance resolution 0.001 mg) for very small volumes (< 10 µL)?Were original epT.I.P.S. pipette tips used with the correct volume (see technical data) as test tips?The factory setting of the Eppendorf Xplorer may onlybe changed after all of the above listed points have been thoroughly checked and the pipette volume setting is still different from the measured volume.The Eppendorf Xplorer offers several individual adjustment options which can be used as an alternative to adjusting the pipette, depending on the application.The following adjustment options are available for selection:Liquid type ethanol 75 % or glycerol 50 %When this adjustment option is selected, the factory setting is changed by an internal factor which considers the density of the ethanol or the glycerol. This means that the substance can be dispensed with greater accuracy (smaller systematic error) with the Xplorer pipette.epT.I.P.S. longThis enables the pipette to be adjusted to the different lengths of a pipette tip, such as, epT.I.P.S. 1200 µL elongated or epT.I.P.S. 10 mL L. When this adjustment option is selected, the tip geometry of the longer tip is considered in the internal volume calculation. This means that the technical data of the original tip (test tip) is reached. This function can also be used when the Xplorer pipette is not used with its test tip, e.g., when using the 300 µL epT.I.P.S. for the pipette size 5–100 µL. When using the following tips dispensing accuracy can be increased with this function:Eppendorf Xplorer 10 µL (medium gray):epT.I.P.S. long 20 µL L (light gray tray)Eppendorf Xplorer 100 µL (yellow):epT.I.P.S. 300 µL (orange tray)Eppendorf Xplorer 1000 µl (blue):epT.I.P.S. long 1250 µl L (dark green tray)Eppendorf Xplorer 1200 µL (green, 8-channels):epT.I.P.S. long 1250 µL L (dark green tray)Eppendorf Xplorer 10 mL (turquoise):epT.I.P.S. long 10 mL L Geographic altitudeThe mean air pressure of a location depends on its height above sea level. When testing a piston-stroke pipetteit is thus important to take fluctuations in pressure into account. At higher altitudes with a drop in air pressure the aspiration volume of a piston-stroke pipette is reduced. The Xplorer pipette’s stroke is corrected taking into account the air pressure at the respective altitude. This can be easily accomplished using the “Geographic altitude” adjustment function that allows the altitude to be adjusted in increments of 250 m (820 ft). The maximum altitude that can be selected is 5000 m.The adjustment options Liquid Type, epT.I.P.S. long and Geographic Altitude can be combined with each other.Another possibility of readjusting the Xplorer is to use the “Individual adjustment” function. With this option, the gradient or axis intercept is changed taking into account the exact density of the solution to be dispensed. 1-point, 2-point or 3-point adjustment are available for selection. To create the weighing results, the use of a fine balance with a high resolution is required. Dispensing volumes below 10 µL require a balance with a resolution of 0.001 mg. The arithmetic operations required for performing the correction are automatically performed by the Xplorer pipette during the 1-3-point adjustment, so that the user does not have to carry out any complicated calculations.In this example the factory piston-stroke setting is increased by a factor (Fig.1). Strictly speaking, thecorrection only applies to the testing volume, but it is used for the entire volume range. The correction is different to that for a mechanical pipette.A correction with a factor results in a smaller stroke correction for a small volume than for a large volume.In the case of a mechanical pipette the stroke can only be changed by a fixed volume (Fig. 2). This volume change applies to the entire measurement range of the mechanical pipette. The existing adjustment is changed in parallel by a fixed amount.Fig. 1: Example for the piston-stroke correction of a 1-point adjustmentmax.Piston stroke of XplorerVolume display of Xplorermin.25 %50 %75 %max.– Factory setting– –1-point adjustmentFig. 2: Example for the change of the piston stroke of a mechanical pipettePiston stroke of manual pipetteDigital volume display of manual pipettemax.min. max.– Factory setting– – Manual pipette; change by a fixed amount for all volumesFig. 3:Example for a 2-point adjustmentmax.Piston stroke of XplorerVolume display of Xplorermin. 25 % 50 % 75 % max.– Factory setting– – 2-point adjustment at 25 % and 50 %1-point adjustmentAfter you input the density, the selected volume and the corresponding weighing result, the Xplorer determines a correction factor. The factor is only valid for the selected volume and the selected work technique (speed, prewetting, wall dispensing method, etc.).2-point adjustmentAfter you input the density, two different volumes and the corresponding weighing results, the Xplorer determines a correction factor. The factor applies to the volume range between the tested volumes and only for the selected work technique. However, the factor is also used here for the entire volume range, that is, also below and above the two measuring points (Fig. 3).3-point adjustmentAfter you input the density, three different volumes and the corresponding weighing results, the Xplorer determines two correction factors. The factors are correct frommeasuring point to measuring point in the selected volume regions and only for the selected work technique. However, the respective factor is also used below and above the first or third measuring point (Fig.4).Fig. 4:Example for a 3-point adjustmentmax.Piston stroke of XplorerVolume display of Xplorermin. 25 % 50 % 75 % max.– Factory setting– – 3-point adjustment at 25 %, 50 % and 75 %Today, it is expected that pipettes should not only offer ease of use and precision. Other features, such as simple volume adjustment, have become standard requirementsfor such devices. The electronic pipette Eppendorf Xplorer meets such requirements in every respect, making it ideally suited as an instrument for daily use in the lab.In contrast to 1-point and 2-point adjustment, 3-point adjustment is more accurate. If three significantly different volumes are used for calculating the two correction factors, the corrected volume range is considerably larger and thus also more precise. However, 3-point adjustment is more time-consuming.It is necessary to carry out a gravimetric test for eachXplorer pipette whose factory setting has been changed by one of the above-mentioned adjustment options.This is the only way of ensuring that the selected adjustment meets the required measurement errors.To ensure that other users are informed of the changed adjustment, each Xplorer pipette that has been changed by the adjustment must be additionally marked by a clearly visible label indicating the type of change made.The precise work technique relating to the individual adjustment options is described in the adjustment instructions of the Eppendorf Xplorer (see Xplorer Adjustment Instructions).Factory settingsA pipette that has been readjusted can be reset to the original settings using the “Reset to Factory Settings” adjustment option at any time.e p p e n d o rf ®, E p p e n d o r f X p l o r e r ® a n d e p T .I .P .S .® a r e r eg i s t e r e d t r a d e m a r k s o f E p p e n d o r f A G . A l l r i gh t s r e s e r v e d ,i n c l u d i n g g r a p h i c s a n d i m a g e s . C o p y r i g h t © 2010 b y E p p e n d o r f A G .O r d e r N o . A U 036 W W 020/G B 2/W E B /1210/N E U HYour local distributor: /worldwideEppendorfAG·22331Hamburg·Germany·Tel:+494053801-0·Fax:+494053801-556·E-mail:***********************Eppendorf North America, Inc. · 102 Motor Parkway · Hauppauge, N.Y. 11788-5178 · USATel:+15163347500·Tollfreephone:+1800-645-3050·Fax:+15163347506·E-mail:******************Application Support Europe: Tel: +49 1803 666 789 (Preis je nach Tarif im Ausland; 9 ct/min aus dem dt. Festnetz; Mobilfunkhöchstpreis 42 ct/min)E-mail:*********************NorthAmerica:Tel:+18006453050·E-mail:**********************AsiaPacific:Tel:+60380236869·E-mail:*********************************®®。

艾本德移液枪使用说明书

艾本德移液枪使用说明书

^ 1=100µL
5 mL US-PAT.No. 5.620,660
1
Fig. 2: Combitip advanced
2
3
4 5
6
7
1 Dispensing volume with the manual dispenser at selection dial position 1 3 US patent numbers 5 Color code 7 Piston
2.2
Combitips advanced
A supply of liquid is aspirated into the Combitip advanced and then dispensed step by step. The built-in electronics automatically recognize • the Combitip advanced inserted and • the position of the volume selection dial, and the current dispensing volume appears in the display. Nine Combitips advanced with a variety of filling volumes are available for single use (see Choose Combitip on p. 7). The Combitips advanced 25 mL and 50 mL can only be used in combination with an adapter. The adapter is a wear part. For each Combitip advanced, you can use the volume selection dial to set 20 different volumes. The smallest volume can be dispensed up to a max. of 100 times and the largest volume a max. of 5 times.

Eppendorf 移液器的正确使用与保养

Eppendorf 移液器的正确使用与保养

Eppendorf 离心机的正确使用和保养
Eppendorf 离心机的正确使用和保养
操作中经常会忽视的问题 • 离心前确认转子的最大重量负载信息 • 确认离心管的性能及规格 • 爱护转子,不要划伤 • 离心机用完后,保持机盖打开状态 • 转子和转子盖必须旋紧才可以离心
Eppendorf 离心机的清洁
气垫式活塞 移液器
往复式活塞 移液器
Eppendorf 手动单道移液器

Reference型 – 单钮操作 – 整支灭菌

Research型 – 双钮操作 – 半支灭菌
Reference 移液器的构造和设计
单钮操作 锁扣式体单
Research移液器的精心改进和设计的细节部位
如何进行规范的移液操作?
规范的移液操作方法
第一步:调节刻度至合适的体积
旋转刻度调节旋钮,可精确到第四位数字
严格的精确调节方法
大体积至小体积 小体积至大体积
• 从大量程调节至小量 程,精度最佳 • 从小量程调节至大量 程,最好先调至略大 一点,再返回
规范的移液操作方法
第二步:装配吸头
• 移液器按钮的颜色提示 • 轻取吸头,左右转动
Eppendorf 移液器的正确使用与保养
Eppendorf AG 德国艾本德股份公司
l l l l l
成立于1945年,近65年的发展历史 总部位于德国汉堡,全球员工近2000名 拥有全球35万科研及临床用户 2007年全球销售额约4亿多欧元,每年12%的增长率,是少数 长年持续盈利的生物技术公司之一 设立欧洲青年科学家成就奖和神经生物学奖
l
Eppendorf 实验方案的产品配套
Instruments
离心机

eppendorf 移液器

eppendorf  移液器

3 操作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 调节量程 (只适用于 Research plus 移液器 可调量程移液器) . . . . . . . . . . . . . . . . . . . . 10 3.2 装配吸头 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 吸液 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.4 放液 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7 订购信息 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3
Eppendorf Research® plus - 操作手册
4
Eppendorf Research® plus - 操作手册
2 安全说明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Eppendorf Research® 移液器使用手册目录1. 安全警告与应用限制........................................... 错误!未定义书签。

. 移液..................................................... 错误!未定义书签。

. 养护..................................................... 错误!未定义书签。

2 技术参数..................................................... 错误!未定义书签。

Research系列,固定量程........................................ 错误!未定义书签。

Research系列,可调量程........................................ 错误!未定义书签。

Inaccuracy (Imprecision; CV) ........................ 错误!未定义书签。

Research系列,多道,可调量程(8-和12-道).................... 错误!未定义书签。

Inaccuracy (Imprecision; CV) ................................ 错误!未定义书签。

3 功能原理..................................................... 错误!未定义书签。

4. 操作.......................................................... 错误!未定义书签。

. 设定体积(不适用于固定量程移液器) ............................. 错误!未定义书签。

4. 2移液器吸嘴................................................. 错误!未定义书签。

吸液....................................................... 错误!未定义书签。

排液.......................................................... 错误!未定义书签。

特别注意...................................................... 错误!未定义书签。

5 测试/调整.................................................... 错误!未定义书签。

测试....................................................... 错误!未定义书签。

调整....................................................... 错误!未定义书签。

何时应进行调整......................................... 错误!未定义书签。

错误时的后续调整....................................... 错误!未定义书签。

对密度不同于水的液体进行移液的调整..................... 错误!未定义书签。

6、养护/消毒..................................................... 错误!未定义书签。

养护.......................................................... 错误!未定义书签。

消毒.......................................................... 错误!未定义书签。

7. 疑难解答...................................................... 错误!未定义书签。

1.安全警告与应用限制使用移液器前请参阅本操作手册。

为了保证用移液器安全无误地进行实验,请务必注意以下安全警告:1.1.移液—只有装上移液器吸嘴后才能使用移液器—只能使用配有滤芯的1-10ml移液器—当移液器吸嘴吸满液体时切勿将移液器水平放置—转移感染性、放射性和/或毒性等危险液体时,请参阅本国相关的安全警告—转移有机溶剂及侵蚀性化学物质时,请注意查对所用移液器吸嘴(PP=聚丙烯)与移液器是否适宜—转移物理性质有别于水的溶液时(如甘油),按部分所述检查排液体积—避免移液器、移液器吸嘴及所转移液体间的温差,因这可能导致排液体积的不准—转移高蒸汽压液体时亦可能发生上述情况1.2. 养护—勿使液体进入移液器—切勿使用丙酮或其他侵蚀性液体清洗移液器—仅使用原装零配件2技术参数Research系列,固定量程Research系列,可调量程Research系列,多道,可调量程(8-和12-道)技术参数仅适用于Eppendorf 的移液枪头。

根据DIN 12650和ISO 8655,对带空气排带的活塞驱动移液器的测试,需要使用具有标准湿度阱的精密天平。

测定数值:10(多道移液器型号:每道10);脱气的,双蒸水,20°C—25°C,容许±0.5°C;移液枪头预湿;贴着容器内壁排液;由于蒸发危险性,<10µl的量程测试,必须移去称重容器。

3功能原理Research系列移液器均为活塞驱动移液器,其操作基于空气排带原理。

Research系列移液器包括固定量程、连续可调、八道及十二道移液器,多道移液器量程亦为连续可调。

所有型号移液器均具有独立的退头键。

多道移液器的每一通道均有一个独立的活塞,因此可与少于8或12的吸嘴相连使用。

八道与十二道移液器的下半段可互换,二者量程相同。

图2 单道移液器和多道移液器下半段1 控制钮—第一档:液体体积计量,吸入并排出液体第二挡:吹出吸嘴内剩余液体2 调节钮—用于设定移液量,对固定移液器而言,此钮仅用于调节功能3 弹射键—弹除吸嘴4 调整开孔—对移液器进行调整时插入扳手5 弹射套筒4. 操作. 设定体积(不适用于固定量程移液器)旋转调节钮可对体积进行连续设定(图2-2)。

自顶端示窗读取显示的数字。

最好自大量程调节体积,即先将体积调节钮调过目的量程,再向下回调。

4. 2移液器吸嘴只有当移液器吸头安装到所吸液部位时移液器才能运行。

移液器控制钮的颜色与标准吸嘴盒架的颜色一致,可帮助您选择恰当的吸嘴。

当转移性质有别于水的溶液时请参考部分的建议。

向多道移液器连接吸嘴:按图2方式操作4.3吸液—自适宜的容器中吸取待吸液体(对多道移液器而言我们建议使用Tip-Tub)—与恰当的吸嘴牢固连接(参照颜色标记)—1-10ml型号:使用配有滤芯的移液器—按下控制钮至第一档—执移液器将吸嘴浸入液面下约3mm。

Research连续可调500-5000ul移液器约为5mm—使控制钮缓慢滑回原位—Research连续可调500-5000ul和1-10ml移液器移出液面前略等待3秒—缓慢提出移液器—确保吸嘴外壁无液体注意:应用Research连续可调500-5000ul和1-10ml移液器时如吸嘴移出液面过快将可能有液体溢出吸嘴,造成移液量过低。

排液—将吸嘴以一定角度抵住试管或微孔板孔的内壁—缓慢将控制钮按至第一档并等待至无液体流下—将控制钮按至第二档使吸嘴完全排空—按住控制钮将吸嘴沿内壁向上拉—慢放控制钮按压液器侧面的弹射键射出吸嘴切勿在吸嘴中有液体时平置移液器,以防液体流入移液器!特别注意为达高精准度,我们建议使用新移液器吸嘴时反复吸、排2-3次。

将吸嘴离开液面,抵在容器内壁将吸嘴完全排空(吹出)。

解释:为什么移液器吸嘴需预先湿润对液体性质进行补偿:液体(血清、去污剂)会在吸嘴内壁形成一层薄膜,因此首次排出的液体量将过少。

当移血清或高黏度液体时,吸、排液时均应多等待数秒。

5测试/调整移液器的枪身号位于控制钮上。

5.1测试Research单道移液器:体积<1ul时:建议采用分光光度计测试。

若需要,我们可以提供有关“测试小量程的精确度的分光光度计测试”手册。

体积≥1ul时:对移液器的测试可通过在指定灵敏度的分析天平上称量双蒸水重量进行。

双蒸水、称量容器、移液器和移液器吸嘴须达同一温度!计算液体体积时,用称量的双蒸水重量除以其密度(20°C时为)。

体积为1-10ul:测试时采用干燥吸嘴自一盛满水的已称容器中吸出一定体积水的方法。

体积>10ul时:用一预先湿润的吸嘴将双蒸水移入某一容器并称重。

Research多道移液器:多道移液器通常采用一预先湿润的吸嘴将双蒸水移入某一容器并称重的方法进行测试。

5.2调整5.2.1何时应进行调整Research 系列移液器在出厂前均经测试,测试条件如第2部分所述。

当对移液器准确性有疑问时,应注意以下几点:—移液器有无漏液(此为移液量过少的原因之一)—样品温度(在敞口的试管中,处于室温的水会有蒸发)—移液器温度—空气温度—是否已将ml换为ul—样品密度是否有别于水—移液速度是否过快在Eppendorf 的SOP(标准运行程序)里有这些问题的答案,若需要我公司可提供。

若这些检查不成功,则移液器调整已经被改变(例如一些部件已被替换)。

5.2.2错误时的后续调整从技术工艺角度而言这属于零点偏移。

移液器设置值的偏移在整个量程中保持恒定不变。

例如,对10-100ul移液器而言,如果100ul处的后续调整为1ul(=1%),则10ul处移液器仍应调整1ul(=10%!)a、移液器、吸嘴与水必须具有同等温度(20-25°C±0.5°C)b、调整移液器时,将移液器设定为指定移液体积c、接吸嘴,移液并重复称量该液量10次(多道移液器应对每一道分别进行),计算平均值并按以下公式转换为ul:体积=重量/液体密度(在特定温度下),得到移液器实际应显示吸入的液体体积(在20°C时水的密度为)。

d、为调整液量显示,将扳手D端水平插入移液器把手的调整开孔内(图2-4)。

(此操作时应垂直握执移液器)旋转至垂直位。

e、Research连续可调及多道移液器旋转调节钮时(不论方向为+或-),移液器活塞的位置会改变(尽管体积调节显示未变)。

旋转一圈对应以下体积:Research连续可调移液器Research多道移液器约约约10-100ul约5ul2-20ul约1ul30-300ul约10ul10-100ul约5ul20-200ul约10ul100-1000ul约50ul500-5000ul约250ul1- 10ml 约510ulResearch固定量程移液器若需减少体积,将调节钮顺时针旋转。

相关文档
最新文档