海浪谱公式总结.

合集下载

海洋要素计算与预报(海浪3)

海洋要素计算与预报(海浪3)

4

( 0 )2 exp 2 2 2 0
0.076~ x 0.22
~ x gx / U 2 ~ U / g
0 0
JONSWAP谱相对于风区的成长
文氏谱(1994)
~ 无因次化
0
j 1
S ( )0 ~ ~ S ( ) m0
H1/10 1 N10
H ,
i i 1
N10
T1/10
1 N10
T ,
i i 1
N10
N10 N / 10
H1/100
1 N100
N100 i 1
H ,
i
T1/100
1 N100
N100 i 1
T ,
i
N100 N / 100
H1% H i ,
H 4% H i ,
1 H F ( H ) exp
其中
2.126, 8.42

假定波动能量集中于谱重心频率附近(Longuet-Higgins,1975) :

S ( )d
0
S ( )d
0
m1 m0
(t ) Re an expi(n t n )
n

(t ) Re ei exp(i t )
ei an exp{ i[(n )t n ]}
1
12 22 32 42 f (1 , 2 , 3 , 4 ) exp exp 2 (2 ) 0 2 2 0 22
其中
r
0

海浪谱公式总结

海浪谱公式总结

exp
1.03
1 TH1/
3
4
S
400.5
Hs T2
H1/ 3
2
1
5
exp1605
1
T H1/ 3
4
式中:Hs为有效波高,表示波列中波高最大的1/3波浪的平均波高; TH1/3为有效波周期,表示波列中波高最大的1/3波浪周期的平均值。
金品质•高追求 我们让你更放心!
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
m0
S
d
0
0
A
5
exp
B
4
d
A 4B
因 W /3
4
m0
1/ 2
m0
2 W /3 16
所以:B
4A
2 W /3
由于P M谱中A 0.0081g 2
0.78,
B
4A
2 W /3
3.12
2
4
W /3
代入后得ITTC谱:
S
0.78
5
exp
3.12
2
4
W /3
式中:ζw/3为三一平均波高(不是波幅)。 金品质•高追求 我们让你更放心!
典型谱画图
%1.Neumann谱 C=3.05;U=11.5;g=9.8; w=0.3:0.01:4; S1neum=C*pi/4./w.^6.*exp(-2*g^2/U^2./w.^2); plot(w,S1neum,'b-'),hold on
%2.P-M谱 a=0.0081; b=0.74; g=9.8; U=11.5; w=0.3:0.01:4; S2pm=a*g^2./(w.^5).*exp(-b*(g/U./w).^4); plot(w,S2pm,'r-'),hold on

第五章海浪——精选推荐

第五章海浪——精选推荐

第五章海浪第五章海浪海浪的类型海浪要素海浪..是发⽣在海洋中的⼀种波动现象,⼜称波浪海浪要素:周期:T= λ/c频率.. f=1/T波陡δ:δ=波⾼/波长深⽔中δ≯1/7,波峰线:通过波峰且垂直于波浪传播⽅向波向线:垂直于波峰线⼆.海浪运动机理深⽔:⽔质点以近似于圆形的轨道作圆周运动运动半径:随着⽔深的增加⽽减⼩h=λ/2时;r↓→4% r0(r0=a)浅⽔:(h<λ/20)运动波及海底。

三.海浪的分类1.按海⽔深度分深度深: 表⾯波(深⽔波):h↑→r↓深度浅: 长波(浅⽔波h<λ/20)运动波及海底。

2.按周期分3.按⽣成原因分:.......风浪、潮波、海啸4.按受⼒情况分:⾃由波:涌浪受迫波:潮波5.按波形前进与否分:进⾏波;驻波。

6.按边界条件分①微⼩振幅波H/λ很⼩,H可忽略所有运动⽅程式都是线性的。

②有限振幅波:H不可忽略a.斯托克斯波有“质量运移”b.孤⽴波H/λ<1/10; 运动集中在波峰附近c.摆线波7.内波§5—2 海浪的形成⼀.海浪形成假说(1)形成⽑细波(2)风以法向压⼒形式给波浪传递能量(3)空⽓⼩涡流加强了⽔质点的运动(4) 波长较短的波由风取得能量转给波长较长的波⼆、海浪的消衰1.分⼦粘滞性消耗的能量2.涡动消耗能量3.空⽓的阻⼒4.海底摩擦5.波浪破碎三.海浪的状态1.海浪三要素风速:⼤于0风时:状态相同的风作⽤的时间风区:状态相同的风作⽤的海区风⼤不⼀定浪⼤.......2.定常状态风区⼀定,海浪达最⼤;风区增加,海浪⾼度增加;风区是限制因素。

3.过渡状态风区⼀定,海浪未达最⼤;时间增加,海浪⾼度增加;风时是限制因素。

4.海浪的充分成长状态能量收⽀平衡;海浪达最⼤;风区、时间增加,海浪⾼度不增加。

5.判断海浪状态的标准a.最⼩风时成长⾄最⼤海浪所需的时间;未达最⼩风时:过渡状态b.最⼩风区成长⾄最⼤海浪所需的风区。

达最⼩风时,未达最⼩风区:定常状态最⼩风时、风区均满⾜:充分成长状态四. 涌浪离开风区的海浪称为涌浪1.涌浪的特点:(1)波长⼩的浪衰减快(2)传播中涌浪的周期和波长都在增加原因:选择消衰作⽤,使周期⼩的波消衰得快.(3)波长⽐波⾼⼤40~100倍;先头涌可达1000倍以上有时是台风来临的征兆(4)传播距离远:可达10000公⾥以上2. 涌浪传播速度:Cg =λπ23.涌浪波⾼消衰原因(1) 粘滞性消耗:空⽓的阻⼒和海⽔的涡动粘滞性消耗(2)离散:各个波的波速不同⽽引起;(3)⾓散:侧向散开五. 观测到的⼤洋中的最⼤海浪北太平洋:波⾼34m,周期14.8s,波速为28.3m/s印度洋:观测到24.9m的波⾼;及波长超过350m的风暴波⼤西洋:观测到波长824m,周期为23s的⼤浪,其波速达35.8m/s。

海浪方向谱估计方法

海浪方向谱估计方法

海浪方向谱估计方法海浪谱(功率谱和方向谱)是随机海浪的一个重要统计性质,它不仅包含着海浪的二阶信息,而且还直接给出海浪组成波能量相对于频率和方向的分布,这正是海洋工程和航海领域等特别关心的。

谱方法已经成为研究海浪及其有关问题的有力工具,如何确定海浪谱(功率谱和方向谱)也成为海浪研究的中心问题之一。

海浪方向谱是二维海浪谱,可以描述海浪能量相对于频率和方向的分布,以及海浪空间的一些统计特征。

尽管海浪方向谱的研究要比海浪频谱困难的多,但由于海洋研究诸多领域(海气相互作用、上层海洋动力学、海浪预报、海洋遥感、海洋工程等)的迫切学要,近30年来人们通过各种手段来努力获取它。

获取海浪方向谱信息主要又两种方式:直接测量方式和遥感方式。

1直接测量方式又叫现场测量方式,主要有定点测量方法和阵列法两种。

定点测量方法常见的有PUV传感器法和方向波浮筒法。

测试仪器包括垂荡/纵摇/横摇浮筒、位移浮筒、速度跟踪浮筒、流速压力传感器矩阵(Allender1989)等。

早期的PUV传感器包括电磁速度传感器和压力传感器,在使用中要特别注意平均水深的变化,要精确设定压力传感器和速度传感器的高度。

高度不同会对波浪谱的谱型带来一定的影响。

近年来,由于声学传感器可以进行远程测量,远离传感器本身的噪声,而且它的测速精度更高,因此正逐渐取代电磁传感器。

如SZS2-1坐底式声学波流测量仪,该仪器自水底向上垂直测量水体的流速度剖面和波浪高度、反演波浪方向谱及波浪特征值。

系统集流速剖面与波浪方向谱、能谱以及波浪特征参数测量于一体,可长期连续测量,实时地以图形方式显示流速剖面、各层流速、流向,二维、三维波向谱图和各种辅助传感器的数据。

数据以文件形式存储并可通过RS-232口实时送出,使用起来非常方便。

阵列法阵列测波仪可以较好地测量波浪信息,但安装困难,分析复杂。

国家海洋局的林明森完成了海浪方向谱的阵列式波浪仪系统的波浪特征值、方向谱的计算软件及数据无线传输的软件研制。

波浪理论及其计算原理

波浪理论及其计算原理

第七章波浪理论及其计算原理在自然界中,常可以观察到水面上各式各样的波动,这就是常讲的波浪运动。

波浪是海洋中最常见的现象之一,是岸滩演变、海港和海岸工程最重要的动力因素和作用力。

引起海洋波动的原因很多,诸如风、大气压力变化、天体的引力、海洋中不同水层的密度差和海底的地震等。

大多数波浪是海面受风吹动引起的,习惯上把这种波浪称为“风浪”或“海浪”。

风浪的大小取决于风速、风时和风区的太小。

迄今海面上观测到的最大风浪高达34m。

海浪造成海洋结构的疲劳破坏,也影响船舶的航行和停泊的安全。

波浪的动力作用也常引起近岸浅水地带的水底泥沙运动,致使岸滩崩塌,建筑物前水底发生淘刷,港口和航道发生淤积,水深减小,影响船舶的通航和停泊。

为了海洋结构物、驾驶船舶和船舶停靠码头的安全,必须对波浪理论有所了解。

当风平息后或风浪移动到风区以外时,受惯性力和重力的作用,水面继续保持波动,这时的波动属于自由波,这种波浪称为“涌浪”或“余波”。

涌浪在深水传播过程中,由于水体内部的摩擦作用和波面与空气的摩擦等会损失掉一部分能量,主要能量则是在进人浅水区后受底部摩阻作用以及破碎时紊动作用所消耗掉。

为了研究波浪的特性,对所生成的波浪或传播中的波浪加以分类是十分必要的。

一般讲,平衡水面因受外力干扰而变成不平衡状态,但表面张力、重力等作用力则使不平衡状态又趋于平衡,但由于惯性的作用,这种平衡始终难以达到,于是,水体的自由表面出现周期性的有规律的起伏波动,而波动部位的水质点则作周期性的往复振荡运动,这就是波浪的特性。

波浪可按所受外界的干扰不同进行分类。

由风力引起的波浪叫风成波。

由太阳、月亮以及其它天体引力引起的波浪叫潮汐波。

由水底地震引起的波浪叫地震水波由船舶航行引起的波浪叫船行波。

其中对海洋结构安全影响最大的是风成波。

风成波是在水表面上的波动,也称表面波。

风是产生波动的外界因素,而波动的内在因素是重力。

因此,从受力来看,风成波称为重力波。

视波浪的形式及运动的情况,波浪有各种类型。

海浪谱公式总结

海浪谱公式总结

出,适合像北海那样风程被限定是海域,有两种表示形式。
a.由风速和风程表示的谱公式
p g S exp 1.25 5
2

4
p exp 2 2 p

b.由波高和波浪周期表示的谱公式
0.159 Tp 1 2 exp 2 2
1948 S 319 .34 4 5 3.3 4 Tp Tp

2


W /3
式中:Tp为谱峰周期,波谱峰值对应的周期。
1.Neumann谱
由半经验的方法,假定海浪的某些外观特征反映其内部结构,由 观测到的波高和周期间的关系推导出来。于50年代首先提出。
2 1 2g S C exp 2 2 6 4 U
式中:U为海面上7.5米高处的风速;常数C=3.05m/s2
2.P-M谱
11.方向谱
长峰不规则波是假定海浪沿单一方向传播的;实际海浪除了沿 主方向传播外,还向其他方向扩散,称为短峰不规则波;短峰不规则 波可以看成传播方向不同的长峰不规则波叠加而成。描述海浪沿不同 方向组成的波谱,称为方向谱。
S , S D,
式中:S(ω)为长峰不规则波的海浪谱;θ为组成波与主浪向的夹角。
D(ω,θ)的一般形式为:
D, kn cosn
n=2, k2=2/π; n=4, k4=8/3π;
(|θ|≤π)
国际船舶结构协会会议(ISSC)建议用一下两种n值
典型谱画图
%1.Neumann谱 C=3.05;U=11.5;g=9.8; w=0.3:0.01:4; S1neum=C*pi/4./w.^6.*exp(-2*g^2/U^2./w.^2); plot(w,S1neum,'b-'),hold on %2.P-M谱 a=0.0081; b=0.74; g=9.8; U=11.5; w=0.3:0.01:4; S2pm=a*g^2./(w.^5).*exp(-b*(g/U./w).^4); plot(w,S2pm,'r-'),hold on %3.ITTC谱 h=2.8; w=0.3:0.01:4; S3ittc=0.78./(w.^5).*exp(-3.12/(h^2)./(w.^4)); plot(w,S3ittc,'g-'),hold on %4.双参数海浪谱 h=2.8; w=0.3:0.01:4; B=3.12/(h^2)./(w.^4); T1=5.127./(B.^0.25); S4=173*h^2./(T1.^4)./(w.^5).*exp(-691./(T1.^4)./(w.^4)); plot(w,S4,'m-')

第四章 海浪观测

第四章 海浪观测

100
( 4 )频率直方图
以模比系数为纵坐标,平均频率为横坐标, 以模比系数为纵坐标,平均频率为横坐标,绘 制波高平均频率直方图(见图.1)。 )。图上各个 制波高平均频率直方图(见图 )。图上各个 矩形的面积正是各组的区间频率, 矩形的面积正是各组的区间频率,其面积之和 为1.0。当组距趋于无限小时,直方图趋于曲线, 。当组距趋于无限小时,直方图趋于曲线, 该曲线与纵轴包围的面积就是 1.0,此时横坐标 , 转化为频率密度,而曲线即频率密度曲线。 转化为频率密度,而曲线即频率密度曲线。该 曲线的特点是“中间大、两头小” 曲线的特点是“中间大、两头小”,即平均值 附近的波高出现机会最多。 附近的波高出现机会最多。
压力测波仪
美国Inter Ocean公司的S4ADW型系列产品
五、波浪玫瑰图
表示某海区各向各级波浪出现频率基多大小的图. 表示某海区各向各级波浪出现频率基多大小的图 绘制方法同风玫瑰图类似
波向 N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW ╳ C ∑ 观测总 数
0.8~1.0 m m p /% 4 0.14 9 0.33 4 0.14 2 1 0.07 0.04
1.1~1.2 m m p /% 4 0.14 6 0.22 2 0.07
1.3~1.5 m m p /% 6 0.22
1
0.04
7 20 6
0.25 0.72 0.22
3 4
0.11 0.14
1 4 4
H /m 1.3 3.2 5.3 3.3 1.5 1.2 1.9 1.5 3.1 1.8 1.4 1.8 1.8 1.5 4.3 4.8 4.1 3.9 2.9 0.7

船舶控制原理:Chp4 海浪、海风及海流

船舶控制原理:Chp4 海浪、海风及海流
Page 55
注意: 具有各态历经性的随机过程必定是平稳随机过程, 但平稳随机过程不一定是各态历经的。在海浪、船舶运动中 所遇到的随机运动, 一般均能满足各态历经条件。
Page 56
✓超越概率
波浪幅值的超越概率
在分析研究海浪和船舶运动控制问题时,常要用到波 浪或船舶运动幅值随机变量A超过某一定值A1概率,称为 A>A1的超越概率。对于概率密度为雷利分布的情况,如 果以X代表幅值随机变量,x1为某一定幅值,则X>x1的超 越概率以P(X>x1)表示,并给出如下:
xcos+ysin
a cos(k1x k2y t)
20
➢水面下的波浪
波浪也存在于水下,根据流体力学的知识,波浪 随水深变化
ae-kz cos(k t)
波幅随水深呈指数率下降,上式表示的波面为次 波面,当水深较大时,该处的水的质点波动较水 表面处的小。
当z>λ/2,该处的水基本上没有波动了。
9
海浪海要浪要素素
海海浪浪是是海海水水运运动动形形式式之之一一,,它它的的产产生生是是外外力力、、重力与 重力与海水表面张力共同作用的结果。 海水表面张力共同作用的结果。
10
波峰:波浪剖面高于静水面的部份,其最高点称为波峰顶。
波谷:波浪剖面低于静水面的部份,其最低点称为波谷底。 波峰线:垂直波浪传播方向上各波峰顶的连线。 波向线:与波峰线正交的线,即波浪传播方向。 波高:相邻波峰顶和波谷底之间的垂直距离,通常以H表示,单 位以米(m)计。在我国台湾海峡曾记录到波高达15m的巨浪。 波长:两相邻波峰顶(或波谷底)之间的水平距离,通常以L表示, 单位以米(m)计。海浪的波长可达上百米,而潮波的波长则可达 数公里。 周期:波浪起伏一次所需的时间,或相邻两波峰顶通过空间固 定点所经历的时间间隔,通常以了表示,单位以秒(s)计。在我 国沿海波浪周期一般为4~8s,曾记录到周期为20s的长浪。 波陡:波高与波长之比,通常以δ表示,即δ=H/L。海洋上常 见的波陡范围在1/10~1/30之间。波陡的倒数称为波坦。 波速:波形移动的速度,通常以C表示,它等于波长除以周期, 即C=L/T,单位以米/秒(m/s)计。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
皮尔逊和莫斯克维奇根据在北大西洋一定点上测得的大量数据,于1964
年提出。适用于充分成长的海浪。
4 ag g S 5 exp U 式中:a=0.0081; β=0.74; 2
g为重力加速度; U为离海面19.5m处的风速。
8.斯科特谱
斯科特(Scott,1965)对于充分发展的海浪建议用下列谱公式:
1/ 2 2 2 p S 0.214H s exp 0 . 065 0 . 26 p
式中:-0.26<ω-ωp<1.65, Hs为有效波高;ωp为谱峰频率。 此谱和北大西洋以及印度西海岸实测谱符合得很好。
b.由波高和波浪周期表示的谱公式
0.159 Tp 1 2 exp 2 2
1948 S 319 .34 4 5 3.3 4 Tp Tp

2


W /3
式中:Tp为谱峰周期,波谱峰值对应的周期。
0 0
A B exp d 4 5 4B A
因 W / 3 4m0 所以:B
1/ 2
m0

2
W /3
16
4A

2
W /3
由于P M谱中A 0.0081 g 2 0.78, B 代入后得ITTC谱:
4A

2
W /3
P一M谱为经验谱,依据的资料比较充分,分析方法合理,使用也方便。
目前采用都的大多数标准波谱主要是基于P-M谱的形式建立的。但是它仅包 含一个参数U,不足以表征复杂的海浪情况。
3. ITTC谱
国际拖曳水池会议(ITTC, 1972)对P-M谱进行了修改,得到ITTC谱。
基于P M谱有: m0 S d
1.Neumann谱
由半经验的方法,假定海浪的某些外观特征反映其内部结构,由 观测到的波高和周期间的关系推导出来。于50年代首先提出。
2 1 2g S C exp 2 2 6 4 U
式中:U为海面上7.5米高处的风速;常数C=3.05m/s2
2.P-M谱
2
5.ISSC谱
国际船舶结构会议ISSC1964推荐下列谱公式,且常 称之为ISSC谱。
Hs S f 0.11 T 2 0.1
2
1 1 exp 0.44 5 T f f 0.1

4

6.JONSWAP谱
该谱由“北海海浪联合计划”测量分析得到,在60年代末期提
出,适合像北海那样风程被限定是海域,有两种表示形式。
a.由风速和风程表示的谱公式
p g S exp 1.25 5
2

4
p exp 2 2 p

式中:α为无因次常数,可取α=0.0076(gx/U ) x为风区长度(风程);U为平均风速;
2 -0.22
;
ωp为谱峰频率,可取 ωp=22(g/U)(gx/U ) γ为谱峰提升因子,平均值为3.3;
2 -0.33
;
σ为峰形参数,当ω≤ωp时,可取 σ=0.07;当ω>ωp时,取σ=0.09.
6.JONSWAP谱
9.六参数谱
奥启和汉伯尔(Ochi,Hubble, 1976)提出了一个六参数谱公式, 它把整个谱分成低频部分和高频部分两个组成部分,每一部分分别用 三个参数—有效波高Hs、谱峰频ωp和形状参数λ表示。
4 j 1 4 mj 4 2 H sj 4 j 1 mj 1 4 S exp 4 j 1 4 j j 4
7.Bretschneider谱
布氏于1959年由无因次波高和无因次波长的联合分布函数导出二参数 谱,适用于成长阶段或者充分成长的风浪。后经日本光易恒(Mitsuyasu)改进 如下:
H S f 0.257 2 s T H1 / 3 H S 400.5 2 s T H1 / 3 1 1 5 exp 1.03 TH f 1/ 3 T

A
m1 0.30638A / B 3 / 4 T1 2m0 / m1 5.127/ B1 / 4或B 691/ T1 B W / 3 173 W /3 A 4 Bm 0 4 4 T1 代入后得到双参数海浪 谱:
2 2 4
691 173 W /3 S exp 4 4 4 5 T1 T 1
2
H1 / 3

4

4 1 1 5 exp1605 TH1 / 3 平均波高;
TH1/3为有效波周期,表示波列中波高最大的1/3波浪周期的平均值。

3.12

2
W /3
4
S
0.78
5
3.12 exp 2 4 W /3

式中:ζw/3为三一平均波高(不是波幅)。
4.双参数海浪谱
1978年第15届ITTC采用了双参数谱,双参数谱改进了ITTC谱,对成 长中的海浪也适用。
基于ITTC谱有: 1 A 3 B exp d 1 4 3/ 4 0 0 5 3B 4 3 式中:为函数, 1 0.91906 ,因此有: 4 m1 S d
相关文档
最新文档