六旋翼无人机系统

合集下载

六旋翼飞行器飞行原理

六旋翼飞行器飞行原理

六旋翼飞行器飞行原理
六旋翼飞行器是一种具有六个旋翼的无人机,它通过旋转六个螺旋桨产生的升力来实现飞行。

这种飞行器的飞行原理可以简单地归纳为"旋翼产生升力,控制旋翼转速来实现飞行方向的调整"。

六旋翼飞行器中的每个旋翼都通过电动机驱动,使其快速旋转。

旋翼的旋转产生了气流,这种气流对着旋翼产生的螺旋桨叶片施加了一个向上的力,也就是升力。

通过控制旋翼的转速,可以控制升力的大小,从而实现飞行器的升降。

六旋翼飞行器通过调整旋翼的旋转速度来实现飞行方向的调整。

当飞行器需要向前飞行时,它会增加前方的旋翼转速,使得飞行器倾斜向前,而向后飞行则相反。

通过控制旋翼转速的差异,可以实现飞行器的转向、左右平移等操作。

六旋翼飞行器还配备了多个传感器和控制系统,以保证飞行器的稳定性和安全性。

例如,陀螺仪可以感知飞行器的姿态,从而调整旋翼转速来保持平衡;加速度计可以感知飞行器的加速度,从而调整旋翼转速来保持稳定。

这些传感器和控制系统的配合使得飞行器能够在空中保持平稳飞行。

六旋翼飞行器的飞行原理是依靠旋翼产生的升力和控制旋翼转速来实现飞行方向的调整。

通过精确控制旋翼的转速和调整飞行器的姿态,六旋翼飞行器能够实现高度灵活的飞行,并广泛应用于航拍、
搜救等领域。

六旋翼无人机飞行原理

六旋翼无人机飞行原理

六旋翼无人机飞行原理
六旋翼无人机是一种采用六个电动马达和旋翼组成的飞行器。

六旋翼无人机的飞行原理是通过电动马达带动旋翼高速旋转,产生上推力,从而使无人机升空并实现平稳飞行。

六旋翼无人机采用的是旋翼的飞行方式。

旋翼是一种产生升力的设备,它的旋转使空气产生向下的压力,从而使飞机升空。

六旋翼无人机采用的是六个旋翼,比四旋翼多两个旋翼,能够更好地保持平衡,并具有更好的机动性能和稳定性能。

六旋翼无人机采用的是电动马达产生动力。

电动马达是通过电能转化成机械能,带动旋翼旋转产生上推力。

六旋翼无人机的电动马达需要具有高功率和高效率,能够产生足够的推力以支持无人机的飞行。

六旋翼无人机还采用了先进的控制系统。

控制系统可以通过无线电通讯,实现对无人机的遥控和自主控制。

遥控器可以通过无线电信号,控制无人机的上下、前后、左右和旋转方向。

自主控制则是通过内置的传感器和计算机,实现对无人机的自主飞行和导航。

六旋翼无人机还具有良好的稳定性能。

六旋翼无人机采用的是六个旋翼,比四旋翼多两个旋翼,能够更好地保持平衡,并具有更好的机动性能和稳定性能。

此外,六旋翼无人机还采用了先进的控制系统,能够实现对无人机的精确控制和稳定飞行。

六旋翼无人机的飞行原理是通过电动马达带动旋翼高速旋转,产生上推力,从而使无人机升空并实现平稳飞行。

它采用了先进的控制系统,能够实现对无人机的遥控和自主控制,并具有良好的稳定性能。

未来,六旋翼无人机将会被广泛应用于物流配送、农业植保、环境监测和消防救援等领域,成为未来无人机市场的重要组成部分。

六旋翼无人机飞行控制系统设计

六旋翼无人机飞行控制系统设计

六旋翼无人机飞行控制系统设计
旋翼机以其灵活的机动性,低廉的成本,简单可靠的机械结构、出色的悬停特性在商业和军事领域发挥着重要作用。

未来,旋翼机将在快递、测绘、抢险救灾、公安、消防以及农业领域扮演越来越重要的角色,与此同时对旋翼机的稳定性和可靠性也提出更高的要求。

相比四旋翼,六旋翼在保证可靠性的同时能提供更好的鲁棒性,甚至可以在单个电机停机的情况下实现稳定降落。

六旋翼无人机本质上是一个不稳定的系统,因此六旋翼无人机上搭载的飞控系统的性能,很大程度决定着六旋翼无人机的稳定性。

本文针对六旋翼无人机,设计了一款飞控系统,实现了六旋翼无人机的稳定飞行。

主要做了以下几个方面的工作:首先针对六旋翼无人机进行数学建模。

根据叶素理论,对六旋翼无人机所用的定矩螺旋桨进行建模。

介绍六旋翼无人机所用的电机类型及工作原理,并对电机进行建模。

之后结合螺旋桨模型以及电机模型,对六旋翼无人机系统进行整体建模,搭建仿真模型,并在后文中进行了仿真和实验验证。

然后,在上述基础上设计了飞行控制器的底层硬件电路系统,利用MEMS传感器采集飞机的各个状态信息,根据各个传感器的特性进行数据融合,从而计算出旋翼机的各个状态。

根据旋翼机结构以及计算出的旋翼机状态,给出PID控制律,算出修正量,发送给电机进行动力修正,从而实现飞行器的稳定飞行。

最后,在硬件环境中实现上述内容,进行实验验证内外环PID参数对六旋翼飞行器稳定性的影响。

分别针对俯仰通道,偏航通道,横滚通道进行测试实验以及飞行实验,试验结果显示六旋翼飞行器表现出了很好的稳定性和可靠性。

无人机六旋翼设计

无人机六旋翼设计

摘要六旋翼无人机是一种具有可垂直起降能力的小型无人飞行器,它通过上下共轴放置的三组共六个电机提供升力,通过改变旋翼转速来调整姿态,通过调整姿态进一步实现位置控制,具有悬停性能优异、移动灵活、机械结构紧凑、零部件可靠性高等优点。

论文首先对六旋翼无人飞行器的调姿原理进行了介绍,分析了其飞行姿态的调整方式。

并建立了六旋翼无人机的数学模型,根据实际情况对其数学模型进行了必要的简化。

接着,论文完成了对于六旋翼无人机控制系统硬件平台的组建,组建了高精度的传感器系统,并完成了飞行控制器硬件的设计与实现,完成了硬件调试工作以及驱动的编写工作。

然后,论文建立了六旋翼无人机的完整控制系统,其中包含位置控制部分、高度控制部分以及姿态控制部分,建立了一套完整的对姿态传感器进行机械防震与数字滤波的方法;提出了一种新颖的气压计、超声波传感器和加速度计的融合方法,通过实验验证了滤波效果;提出了一种优化的拉力分配方法使得控制系统的可靠性得到增强。

接着,论文设计实现了飞行控制软件的主要功能,从技术层面上对于实时性与可靠性进行了大幅的提升。

最后,论文通过悬停试验验证了姿态控制器的控制精度;通过抗干扰能力试验验证了姿态控制器的稳定性;通过信号跟踪试验验证了姿态控制器的跟踪性能;通过高度控制实验验证了高度控制器的控制性能;通过视频跟踪实验验证了六旋翼无人机整体控制架构的合理性与有效性。

关键词:六旋翼无人机;PID;多环路控制;数据融合VI哈尔滨工业大学本科毕业设计(论文)AbstractHex-rotor is one kind of small unmanned aerial vehicles (SUAV) which have theability of vertical take-off and landing (VTOL). It gets thrust by controlling six rotorswith propellers which are divided into 3 groups of coax ial rotors. Its attitude is controlledby regulating the spinning speed of the rotors which in turn makes its positioncontrollable .The hex-rotor has multiple advantages such as the ability of vertical take-off and landing, good mobility and high reliability. Therefore, thehex-rotor has broadapplication prospects and enormous value of research.Firstly, the flying principle was divided into four main modes of motion and analyzedseparately. The dynamic model of the hex-rotor SUAV was deduced with some necessarysimplifications.Then, the control system hardware was built using high-precision sensors.The workof debugging the hardware and programming th e drivers was also done.In the following, the main control scheme was proposed which composed of threemain controllers: position controller, height controller and attitude controller. A completesolution to reduce the noise in the g yroscope and accelerometer caused by vibration wasproposed including mechanical anti-vibration method and a digital filter called alpha-betafilter. A new method of fusing the data f rom ultrasonic sensor, barometer andaccelerometer was prop osed in the paper. Experiment was conducted to prove theeffectiveness of the fusion method. An optimized thrust distribution method was alsointroduced to maintain the robustness of the system. Some technology was alsointroduced to keep the real-time performance and reliability of the control software.Finally, some flight experiments were introduced to prove theperformance of thecontroller: hovering test for the controller accuracy,anti-interference for controllerstability, signal-tracking experiment for controller tracking capability and vision-basedtarget tracking for the overall system performance.Keywords: Hex-rotor, PID, Multi-loop, Data-fusion哈尔滨工业大学本科毕业设计(论文)目录摘要 (VI)Abstract (VII)第1章绪论 (1)1.1 论文研究的目的与意义 ...................................................................... .. (1)1.2 国内外研究现状 ...................................................................... .. (2)1.2.1 四旋翼无人机的研究现状 .................................................................... (3)1.2.2 六旋翼无人机的研究现状 .................................................................... (4)1.2.3 六旋翼控制理论研究现状 .................................................................... (6)1.3 本文主要研究内容 ...................................................................... . (6)第2章六旋翼无人机数学模型的建立 (8)2.1 六旋翼无人机飞行机理分析 ...................................................................... (8)2.1.1 坐标系定义 .................................................................... (8)2.1.2 四种基本运动 .................................................................... (9)2.2 六旋翼无人机机体结构设计 ...................................................................... . (10)2.2.1 机架选型 .................................................................... (10)2.2.2 动力系统设计 .................................................................... (11)2.3 运动方程的推导 ...................................................................... (11)2.4 本章小结 ...................................................................... (16)第3章六旋翼无人机硬件设计 (17)3.1 总体方案 ...................................................................... (17)3.1.1 无线通讯链路 .................................................................... .. (17)3.1.2 传感器系统 .................................................................... (18)3.1.3 执行器与数据保存 .................................................................... (18)3.2 传感器系统 ...................................................................... .. (19)3.2.1 姿态传感器 .................................................................... (19)3.2.2 高度传感器 .................................................................... (19)3.2.3 位置传感器 .................................................................... (20)3.3 飞行控制硬件设计 ...................................................................... .. (20)3.3.1 主控制器选型 .................................................................... .. (20)3.3.2 电源、通讯接口设计 .................................................................... .. (21)3.3.3 数据存储设计 .................................................................... .. (21)VIII3.4 第 4 章4.1 4.2 哈尔滨工业大学本科毕业设计(论文)本章小结 (22)六旋翼无人机控制算法设计.................................. 23 总体控制结构 ................................................................. (23)姿态控制 ................................................................. (24)4.2.1 4.2.2 4.2.3 姿态传感器的减震与滤波 (24)姿态控制器结构 ............................................................. (28)转速分配策略 ............................................................. (28)4.3 高度控制 ................................................................. (31)4.3.1 4.3.2 4.3.3 超声传感器的滤波 (31)高度传感器与加速度计的融合算法 (34)高度控制器结构 ............................................................. (37)4.4 4.5 第 5 章5.1 位置控制 (37)本章小结 ................................................................. (38)六旋翼无人机飞控软件设计与飞行试验........................ 39 飞控软件设计 ................................................................. (39)5.1.1 5.1.2 5.1.3 飞控软件功能设计 (39)飞控软件总体架构 ............................................................. (40)实时性与可靠性设计 ............................................................. (40)5.2 飞行试验 ................................................................. (41)5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 悬停测试 (42)抗干扰能力测试 (43)信号跟踪实验 ............................................................. (43)高度控制实验 ............................................................. (44)视觉跟踪实验 ............................................................. (45)5.3 本章小结 ................................................................. (45)结 论.......................................................... 47 参考文献.......................................................... 48 哈尔滨工业大学本科毕业设计(论文)原创性声明 ....................... 51 致 谢.......................................................... 52 附 录 (53)IX第1章 绪 论1.1 论文研究的目的与意义近年来,在民用领域,无人机技术在救灾、航拍、农业、侦查等各个领域内取 得了广泛的关注与研究。

六旋翼飞行器飞行原理

六旋翼飞行器飞行原理

六旋翼飞行器飞行原理
六旋翼飞行器是一种多旋翼飞行器,由六个对称排列的螺旋桨提供升力和推力,以实现飞行的原理。

六旋翼飞行器的飞行原理可以简单地分为升力和姿态控制两个方面。

六旋翼飞行器通过螺旋桨产生的升力来支撑自身的重量,实现飞行。

螺旋桨通过高速旋转产生气流,使得飞行器在空气中产生上升力。

六个螺旋桨排列成六边形的形状,可以提供稳定的升力,使飞行器能够悬停在空中,或者在空中保持稳定的飞行。

六旋翼飞行器通过调节各个螺旋桨的转速和推力,以及调整螺旋桨的角度,来实现姿态控制。

通过改变螺旋桨的转速和推力,可以使飞行器向前飞行、向后飞行、向左飞行或向右飞行。

同时,通过调整螺旋桨的角度,可以使飞行器上升、下降、旋转或者倾斜。

通过这些方式的组合,飞行器可以在空中实现各种姿态的调整和运动。

六旋翼飞行器的飞行原理源于空气动力学的基本原理,即通过产生气流来产生升力,并通过调整气流的方向和力量来实现姿态控制。

六旋翼飞行器利用这些原理,通过精密的电子控制系统来调节螺旋桨的转速和角度,从而实现稳定的飞行和精确的姿态控制。

六旋翼飞行器的飞行原理不仅具有科技的魅力,还带给人们无限的想象空间。

它可以应用于各种领域,如航拍摄影、物流配送、搜救救援等。

通过六旋翼飞行器,我们可以将视野拓宽到无限远的天空,
感受飞行的快感和自由的美好。

让我们一起期待六旋翼飞行器带来的更多惊喜和便利吧!。

六旋翼控制

六旋翼控制
控制科学与工程专业选修课
无人机控制系统
六旋翼无人机控制
哈尔滨工业大学 空间控制与惯性技术研究中心
伊国兴
六旋翼无人机控制假设
假定飞行器机体具有足够的机械强 度,视为绝对刚体,不考虑机体变 形所产生的影响; 假定飞行器的机体质量与机体转动 惯量不变,保持为一常量; 假定旋翼亦为绝对刚体,忽略旋翼 运动时候所产生的摆动与扭转; M1 忽略上下旋翼之间的气动干扰且假 M2 定机体为左右对称的结构,不存在 机体质量偏置,两个旋翼在相同转 速下提供相同的升力。
z
M1 M5 M6 M2
x
M3 M4 y
六旋翼飞行器的主要运动
左飞、右飞
增大3、4号旋翼的转速并减小5、6号 旋翼的转速,可以在x轴上产生一个 正力矩,该力矩会导致机体的横滚 角 为正,即机体向右倾斜。这会导 致旋翼所产生的总拉力在y轴上有一 个负分量,该分力拉动机体向右飞 行。 减小3、4号旋翼的转速并增大5、6号 旋翼的转速,可以在x轴上产生一个 负力矩,该力矩会导致机体的横滚 角 为负,即机体向左倾斜。这会导 致旋翼所产生的总拉力在y轴上有一 个正分量,该分力拉动机体向左飞 行。
u f 1 2 3 4 5 6
x1 , x2 , x3 , x4 , x5 , x6 x7 z, x8 z, x9 x, x10 x, x11 y, x12 y
运动方程
x2 J J j l y z r ( ) x4 x6 u f x4 u2 Jx Jx Jx x4 J Jx j l ( z ) x2 x6 r u f x2 u3 Jy Jy Jy x6 Jx J y C ( ) x2 x4 u4 Jz Jz x f ( x, u ) x8 1 1 2 g u cos x cos x D x 1 3 1 z 8 m m x10 1 1 2 u1 (sin x3 cos x5 cos x1 sin x5 sin x1 ) Dx x10 m m x12 1 1 2 u1 (sin x3 sin x5 cos x1 cos x5 sin x1 ) Dy x12 m m

华测P500V六旋翼无人机介绍-1

华测P500V六旋翼无人机介绍-1

华测P500V六旋翼无人机介绍产品简介华测P500V六旋翼无人机系统的机体和云台完全采用特殊的专业碳纤维材料制造,拥有更轻的重量和更高的强度,可折叠式支臂设计更方便运输。

华测P500V六旋翼无人机,可用于林业深林防火、中小面积航测、执行侦察、监视、搜索、协调指挥、通讯、空投等多种空中任务。

产品特点华测P500V六旋翼无人机系统引入了2.0B CAN总线系统,AAHRS(姿态、高度及航向参考系统)集成了加速度计、陀螺仪、磁力计、气压计、湿度计、温度计等多种高精度传感器和卓越的控制算法设计,飞行器的操控因而变得非常简单,即使操作者毫无遥控飞行的经验,也能够在很短的时间内学会安全地操控飞行。

华测P500V六旋翼无人机系统可以通过遥控器人工操控飞行,也可以借助独一无二的GPS Vigapoint系统执行自动驾驶飞行和拍摄任务。

基于模块化的设计理念,华测P500V六旋翼无人机可以灵活地更换机载任务设备以适应不同的作战任务要求。

从高分辨率的数码相机、高清视频摄像机、微光夜视摄像机到军用级的红外热成像摄像机。

基于华测P500V六旋翼无人机更大的载重,除图像和视频设备之外,还可以搭载根据用户需要定制的更多种任务设备,如空气采样设备,空中投放设备等,从而完成更多样化的任务。

华测P500V六旋翼无人机拥有优秀的安全设计,任何时候只要停止遥控器操作,飞行器就会自动悬停在空中。

如果遥控器信号中断时间超过30秒或者电池电量过低,飞行器就会自动缓慢迫降到地面或按照预定方案自动应对。

遥控信号受到干扰时,飞行器可以自动按原路返航。

飞控系统可以完整记录所有飞行相关数据信息,用于准确诊断飞行器故障判断飞行器事故原因。

华测P500V六旋翼无人机的动力系统拥有业内最强的野外环境适应性,可以在最高5级风下正常工作。

经过专业机构的严格高压电磁环境测试,华测P500V六旋翼无人机被确认在高压电磁环境下具有良好的抗干扰性和安全性,通过专业机构的EMC电磁环境兼容认证.技术参数一体化地面站华测P500V 六旋翼无人机地面站将电脑系统、通讯系统、视频系统、整合为一体,产品具有良好的便携性和环境适应性。

六旋翼物流无人机造型设计方案

六旋翼物流无人机造型设计方案

六旋翼物流无人机造型设计方案
六旋翼物流无人机的设计方案可以考虑以下几个方面:
1. 六旋翼结构:可以采用具有良好稳定性和操控性的六旋翼结构,以确保无人机在各种气象条件下都能平稳飞行。

2. 机身材质:选择轻量化的材质,如碳纤维复合材料,以提高无人机的载重能力和飞行效率。

3. 机身外观设计:可以采用流线型外观设计,减少飞行时的空气阻力,提高飞行速度和稳定性。

4. 机身尺寸:根据物流需求,设计合适尺寸的无人机,以容纳不同大小的货物。

5. 抗风能力:考虑到物流无人机需要在各种复杂气象条件下飞行,设计方案应考虑提高无人机的抗风能力,以保证飞行的稳定性和安全性。

6. 动力系统:选择高效的电动动力系统,以提供足够的动力和长飞行时间。

7. 载重系统:设计合理的载重系统,包括承载货物的舱室、固定装置和安全锁定装置,以保证货物在飞行过程中的安全性。

8. 操控系统:配置先进的操控系统,包括自动驾驶和遥控操控功能,以确保无人机可以安全地飞行和交付货物。

总之,六旋翼物流无人机的设计方案应兼顾飞行性能、载重能力、稳定性和安全性,以满足物流需求并提高无人机的工作效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

接收

射频带宽 1.25MHz
接收灵敏度
-94dBm
-92dBm @ 6/7/8MHz
解调方式COFDM
接收天线全向天线
无线视频接收系统
产品特性
图像输出:一路模拟PAL/NTSC自适应,Full D1画质,720×576像素
语音输出:一路立体声,左右两个声道
接收门限: -105dBm(10-6 BER @2 MHz信道宽度);
-104dBm(10-6 BER @4MHz信道宽度)
供电电源: AC220V,功耗小于8W
单位名称:深圳市*科技有限公司文档编号20160631
文档文名称:★★★★★★★★
★★文档密级
★★★★

文档制订陈先生
分享资料,共同进度文档审核周小姐
分享资料,共同进度文档审核周小姐单位名称:深圳市*科技有限公司文档编号20160631
文档文名称:★★★★★★★★
★★文档密级
★★★★

文档制订陈先生
分享资料,共同进度文档审核周小姐
结束
单位名称:深圳市*科技有限公司文档编号20160631
文档文名称:★★★★★★★★
★★文档密级
★★★★

文档制订陈先生
分享资料,共同进度文档审核周小姐单位名称:深圳市*科技有限公司文档编号20160631文档文名称:★★★★★★★★
★★文档密级
★★★★
★。

相关文档
最新文档