七年级数学上册正负数与数轴练习题

合集下载

七年级上册数学正负数计算题

七年级上册数学正负数计算题

七年级上册数学正负数计算题一、正负数的基本概念1. 定义- 正数:比0大的数叫正数。

正数前面常有一个符号“+”,通常可以省略不写。

例如:1、2、3等都是正数。

- 负数:比0小的数叫负数。

负数前面有一个“ - ”号,例如: - 1、 - 2、 - 3等都是负数。

- 0既不是正数也不是负数。

2. 正负数在数轴上的表示- 数轴三要素:原点、正方向、单位长度。

- 正数在原点右边,负数在原点左边。

二、正负数的计算题目及解析1. 简单的加法运算- 题目:(+3)+( - 5)- 解析:- 异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

- 先求公式,公式。

- 因为公式,所以结果取“ - ”号。

- 然后计算公式,所以公式。

2. 简单的减法运算- 题目:( - 4)-( - 7)- 解析:- 减去一个数等于加上这个数的相反数。

- 所以公式。

- 同号两数相加,取相同的符号,并把绝对值相加。

- 公式,公式。

- 结果为公式。

3. 混合运算- 题目: - 2+3 - 5+7- 解析:- 按照从左到右的顺序依次计算。

- 先计算公式,异号两数相加,公式,公式,因为公式,结果取“+”号,公式,即公式。

- 然后计算公式,异号两数相加,公式,公式,结果取“ - ”号,公式,即公式。

- 最后计算公式,异号两数相加,公式,公式,结果取“+”号,公式,所以公式。

4. 乘法运算- 题目:( - 2)×(+3)- 解析:- 两数相乘,异号得负,并把绝对值相乘。

- 公式,公式。

- 所以公式。

5. 除法运算- 题目:( - 8)÷( - 2)- 解析:- 两数相除,同号得正,并把绝对值相除。

- 公式,公式。

- 所以公式。

6. 混合乘除运算- 题目:( - 2)×(+3)÷( - 6)- 解析:- 按照从左到右的顺序计算。

- 先计算公式。

- 再计算公式,同号得正,公式,所以公式。

[精品]人教版七年级上册数学试题:1.1正数与负数作业部分含答案5份汇总

[精品]人教版七年级上册数学试题:1.1正数与负数作业部分含答案5份汇总

第一章:有理数(1.1正数和负数)(无答案)一、知识点梳理1.正数和负数的定义(1)正数:大于0的数叫正数。

(2)负数:在正数前加上符号:“-”(负号)的数叫做负数,小于0的数叫负数.注意:比0大的数是正数。

正数前面有“+”号,人们习惯将“+”号省略,在正数前面加“-”号,就是负数,负数前面必须有“-”号。

3)“0”既不是正数,也不是负数。

( 0是正数和负数的分界)2. 正数负数是表示具有相反意义的量扩充:(1)用正数和负数表示具有相反意义的量时,哪种意义为正是可以任意选择的,习惯上把升、上、零上为正 ,而相反为负;(2)具有相反意义的量一定是具体的数量;(3)具有相反意义的量中的两个量必须是同类量.不是同类量不具有对此性;(例如:上升和下降,零上和零下)(4)具有相反意义的量是成对出现的,单独的个量不能成为具有相反意义的量;考试点:用正数和负数表示具有相反意义的量时要明确“基准"。

为了计算方便,常把高于平均数,标准数或某一基准数的量规定为正,把与它们具有相反意义的量用负数表示。

二、强化训练(一)选择题(3*11=33)1.在0,-1,3,-0.1,0.08中,负数的个数是 ( )A.1B.2C.3D.42.如果零上3℃记作+3℃,那么零下3℃记作( )A.3 B.-6 C.-3℃ D.-6℃3. 下列关于“0”的叙述,不正确的是 ( )A.0是正数与负数的分界B.0比任何负数都大C.0只表示没有D.0常用来表示某种量的基准4.如果“盈利5%”记作+5%,那么-3%表示()A.亏损3%B.少赚3%C. 盈利7%D.亏损5%5.在下列各组量中,具有相反意义的是()A.收入20元与支出30元B.上升了6米和后退了7米C.卖出10斤米和盈利10元D.向东行30米和向北行30米6.在跳远测试中及格的标准是4.00米,王菲跳了4.12米,记作+0.12米,何叶跳了3.95米,记作()米.A.+0.05米B.-0.05C.+3.95 D-3.957、向东行进-30米表示的意义是()A、向东行进30米B、向东行进-30米C、向西行进30米D、向西行进-30米8、先向东走3m,然后又向东走-3m,结果是()A.向东走6m B. 向西走3m C. 向西走6m D. 回到原地9、如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A. Φ45.02B. Φ44.9C. Φ44.98D. Φ45.0110、大米包装袋上(10±0.1)kg的标识表示此袋大米重()A.(9.9-10.1)kgB.10.1kgC.9.9kgD.10kg11.下列语句中正确的有( )个.①不带“一”号的数都是正数; ②如果a是正数,那么-a一定是负数; ③不存在既不是正数,也不是负数的数; ④0℃表示没有温度.A.0B.1C.2D. 31.在同一个问题中,分别用正数与负数表示的量具有的意义。

有理数与数轴(知识解读+真题演练+课后巩固)2023-2024学年七年级数学上册(人教版)(解析版)

有理数与数轴(知识解读+真题演练+课后巩固)2023-2024学年七年级数学上册(人教版)(解析版)

z!"#$#%&!"#$%&'()*+,-./0+123445"6$&60+12-7.890:;<=344>"6$0?+**********?C-D0?EFG0344H"IJ0?K&60L'MNO+-PQRSTU0TVWXYZ 4知识点1 :正数和负数(1)概念正数:大于0的数叫做正数。

负数:在正数前面加上负号“—”的数叫做负数。

注:0既不是正数也不是负数,是正数和负数的分界线,是整数,自然数,有理数。

(不是带“—”号的数都是负数,而是在正数前加“—”的数。

) (2)意义:在同一个问题上,用正数和负数表示具有相反意义的量。

知识点2: 有理数(1)概念整 数:正整数、0、负整数统称为整数。

分 数:正分数、负分数统称分数。

(有限小数与无限循环小数都是有理数。

) 注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

(2)分类:两种⑴按正、负性质分类: ⑵按整数、分数分类:正有理数 正整数 正整数 有理数 正分数 整数 0 零 有理数 负整数 负有理数 负整数 分数 正分数 负分数 负分数z知识点3:数轴(1)概念:规定了原点、正方向、单位长度的直线叫做数轴。

三要素:原点、正方向、单位长度(2)对应关系:数轴上的点和有理数是一一对应的。

比较大小:在数轴上,右边的数总比左边的数大 。

(3)应用 求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。

(注意不带“+”“—”号)【题型 1 正数与负数】【典例1】(2023•西乡塘区二模)在﹣2,0,0.5,3四个数中,是负数的是( ) A .﹣2 B .0 C .0.5 D .3【答案】A【解答】解:在﹣2,0,0.5,3四个数中,是负数的是﹣2. 故选:A .【变式1-1】(2023•安徽模拟)数1,,0,﹣2,﹣3中正数有( )个. A .2 B .3C .4D .5【答案】A【解答】解:在:1,,0,﹣2,﹣3中, 正数有:1,,共2个. 故选:A .【变式1-2】(2022秋•防城港期末)下列各数中,是负数的是( ) A .0 B .﹣C .πD .3【答案】B【解答】解:A .0既不是正数,也不是负数,故选项不符合题意; B .﹣是负数,故选项符合题意; C .π是正数,故选项不符合题意;D.3是正数,故选项不符合题意;故选:B.【变式1-3】(2022秋•石楼县期末)下列各数:﹣2,0.8,﹣5,0,﹣3.14,8.3,﹣11,其中负数的有( )个.A.2B.3C.4D.5【答案】C【解答】解:负数有﹣2,﹣5,﹣3.14,﹣11,共4个,故选:C.【题型 2 相反意义的量表示】【典例2】(2023•船营区一模)中国是最早采用正负数表示相反意义的量并进行负数运算的国家.若气温上升7℃记作:+7℃,那么气温下降10℃可记作( )A.7℃B.10℃C.﹣10℃D.﹣7℃【答案】C【解答】解:若气温上升7℃记作:+7℃,那么气温下降10℃可记作﹣10℃.故选:C.【变式2-1】(2023•吉林一模)中国是世界上最早使用负数的国家,战国时期李悝所著的《法经》中已使用负数.如果公元前500年记作﹣500年,那么公元2023年应记作( )A.﹣2023年B.+1523年C.+2023年D.+2523年【答案】C【解答】解:∵公元前500年记作﹣500年,∴公元前为“﹣”,∴公元后为“+”,∴公元2023年就是公元后2023年,∴公元2023年应记作+2023年.故选:C.【变式2-2】(2022秋•佛山期末)下列四组量中,不具有相反意义的是( )A.海拔“上升200米”与“下降400米”B.温度计上“零上15℃”与“零下5℃”C.盈利100元与亏本25元D.长3米与重10千克【答案】D【解答】解:上升于下降具有相反意义,故A不符合题意;零上于零下具有相反意义,故B不符合题意;盈利于亏本具有相反意义,故C不符合题意;长度于质量步具有相反意义,故D符合题意;故选:D.【变式2-3】(2023•衡水二模)某日,四个城市的日平均气温如表所示:城市石家庄邢台保定张家口日平均气温/℃﹣110﹣6则日平均气温最低的是( )A.石家庄B.邢台C.保定D.张家口【答案】D【解答】解:∵﹣6<﹣1<0<1,∴日平均气温最低的城市是张家口,故选:D.【典例3】(2023•长春模拟)班级组织了一次跳远比赛,若成绩以250cm为标准,小明跳出了253cm,记做+3cm,则小亮跳出了246cm应记作( )A.+4cm B.﹣4cm C.+6cm D.﹣6cm【答案】B【解答】解:246﹣250=﹣4(cm),故选:B.【变式3-1】(2023•衡水二模)某品牌米线的包装袋上写着“300克±4%”,则下列不可能是米线的重量的是( )A.285克B.295克C.304克D.310克【答案】A【解答】解:∵300克±4%,即300×(1+4%)=312,300×(1﹣4%)=288z∴米线的重量为288~312克, 故选:A .【变式3-2】(2022秋•武陵区期末)一实验室检测A 、B 、C 、D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不是标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A .B .C .D .【答案】D【解答】解:|﹣1.2|=1.2;|﹣2.3|=2.3;|0.9|=0.9;|﹣0.8|=0.8, ∵0.8<0.9<1.2<2.3, ∴0.8最小. 故选:D【变式3-3】(2022秋•德州期末)某中学进行立定跳远测试,男生成绩合格标准定为1.85米,体育老师记录了甲、乙、丙、丁四位男生成绩如下表:(超出标准的部分记为“+”,不足标准的部分记为“﹣”),你认为立定跳远成绩最好的是( ) 学生 甲 乙 丙丁成绩/米 +0.25+0.45 ﹣0.10 ﹣0.25A .甲B .乙C .丙D .丁【答案】B【解答】解:∵﹣0.25<﹣0.10<+0.25<+0.45, ∴四位男同学成绩最好的是乙; 故选:Bz【题型 3 相反意义的应用】【典例4】(2022秋•社旗县期末)有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重 千克. (2)这8筐白菜中最重的重 千克;最轻的重 千克. (3)若白菜每千克售价2元,则出售这8筐白菜可卖多少元? 【答案】(1)24.5; (2)27;22; (3)389.【解答】解:(1)最接近标准重量的是纪录中绝对值最小的数,因而是25﹣0.5=24.5(千克), 故答案为:24.5;(2)∵记录中最大的数为2,最小的数为﹣3 ∴25+2=27(千克),25﹣3=22(千克) ∴这8筐白菜中最重的重27克;最轻的22千克,故答案为:27;22.(3)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.525×8+(﹣5.5)=194.5(千克)194.5×2=389(元),答:出售这8筐白菜可卖389元.【变式4-1】(2022秋•绥德县期末)某登山队5名队员以大本营为基地,向距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下:(单位:米)+115,﹣30,﹣45,+180,+25,﹣20,+30,+110,﹣25,+100 (1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米? (2)登山时,5名队员在行进中全程均消耗了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?【答案】(1)没有登上顶峰,他们距离顶峰60米;(2)他们共消耗了17 升氧气.【解答】解:(1)500﹣(115﹣30﹣45+180+25﹣20+30+110﹣25+100)=60(米).答:没有登上顶峰,他们距离顶峰60米;(2)115+30+45+180+25+20+30+110+25+100=680(米),因为每人每100米消耗氧气0.5升,所以680×5÷100×0.5=17(升),答:他们共消耗了17 升氧气.【变式4-2】(2022秋•枣阳市期末)某校积极开展劳动教育活动,七年级(2)班利用劳动课举行包饺子比赛,以小组为单位(共分7个小组),以包100个饺子为基准,将这7个小组所包饺子的数量(单位:个)记录如下:﹣8,+5,+3,﹣2,+3,+7,+6.(超过100个的部分记为“+”,不足100个的部分记为“﹣”)(1)包饺子数量最多的小组与数量最少的小组相差多少个?(2)本次活动该班共包饺子多少个?【答案】(1)包饺子数量最多的小组与数量最少的小组相差15个;(2)本次活动该班共包饺子714个.【解答】解:(1)由题意,得:包的最多的小组比基准多7个,包的最少的小组比基准少8个;+7﹣(﹣8)=15(个);答:包饺子数量最多的小组与数量最少的小组相差15个;(2)(﹣8+5+3﹣2+3+7+6)+7×100=714(个);答:本次活动该班共包饺子714个.【变式4-3】(2022秋•慈溪市期末)2022年足球世界杯在卡塔尔举行.某工厂设计了某款足球纪念品并进行生产,原计划每天生产10000个该款足球纪念品,但由于种种原因,实际每天的生产量与计划量相比有出入,下表是某一周的生产情况(超出记为正,不足记为负,单位:个):星期一二三四五六日与计划量的差值+43﹣35﹣50+142﹣82+21﹣29(1)根据记录的数据可知,本周生产量最多的一天比生产量最少的一天多生产多少个?(2)本周实际生产总量是否达到了计划数量?说明理由.(3)若该款足球纪念品每个生产成本25元,并按每个30元出售,则该工厂本周的生产总利润是多少元?【答案】(1)本周生产量最多的一天比生产量最少的一天多生产224个;(2)本周实际生产总量达到了计划数量,理由见解析;(3)350050.【解答】(1)解:由表可知:因为本周生产量最多的一天是周四,最少的一天是周五,∴142﹣(﹣82)=224(个).答:本周生产量最多的一天比生产量最少的一天多生产224个.(2)∵43+(﹣35)+(﹣50)+(+142)+(﹣82)+(+21)+(﹣29)=43﹣35﹣50+142﹣82+21﹣29=10.∵10>0,∴本周实际生产总量达到了计划数量.(3)由利润=总量×(单价﹣成本)有:(10000×7+10)×(30﹣25)=70010×5=350050(元).答:该工厂本周的生产总利润是350050元.【题型 4 有理数的概念辨析】【典例5】(2022秋•朝阳区期末)下面的说法中,正确的是( )A.正有理数和负有理数统称有理数B.整数和小数统称有理数C.整数和分数统称有理数D.整数、零和分数统称有理数【答案】C【解答】解:A.正有理数、0和负有理数统称为有理数,故不符合题意;B.无限不循环小数是无理数,故不符合题意;C.整数和分数统称为有理数,故符合题意;D.整数包括零,故不符合题意.z故选:C .【变式5-1】(2022秋•长沙期末)在﹣3.5,,0.3070809,0,中,有理数有( )个. A .1 B .2C .3D .4【答案】D【解答】解:在﹣3.5,,0.3070809,0,中,有理数有﹣3.5,,0.3070809,0,共4个,故选:D .【变式5-2】(2022秋•南宫市期末)若有理数的分类表示为:,则“”表示的是( )A .正有理数B .负有理数C .0D .非负数【答案】C【解答】解:有理数包括:整数与分数,整数包括:正整数,0和负整数, 则“”表示的是0. 故选:C .【变式5-3】(2022秋•颍州区期末)下列说法正确的是( ) A .3.14不是分数B .不带“﹣”号的数都是正数C .0是自然数也是正数D .整数和分数统称为有理数 【答案】 Dz【解答】解:A 、3.14是分数,属于有理数,故A 不符合题意; B 、0不带“﹣”号,但不是正数,故B 不符合题意;C 、0是自然数,但既不是正数,也不是负数,故C 不符合题意;D 、整数和分数统称为有理数,说法正确,故D 符合题意. 故选:D .【题型 5 有理数的分类】【典例6】(2022秋•宁陕县校级期中)把下列各数填入相应的大括号里: ﹣3,3.14,﹣0.1,80,﹣25%,0,正数集合:{ }; 整数集合:{ }; 负数集合:{ }; 正分数集合:{ }. 【答案】3.14,80,;﹣3,80,0;﹣3,﹣0.1,﹣25%;3.14,.【解答】解:﹣3,3.14,﹣0.1,80,﹣25%,0,,正数集合:{3.14,80,,};整数集合:{﹣3,80,0,}; 负数集合:{﹣3,﹣0.1,﹣25%,}; 正分数集合:{3.14,,}.故答案为:3.14,80,;﹣3,80,0;﹣3,﹣0.1,﹣25%;3.14,.【变式6-1】把下列各数填入相应的集合里:﹣3.14,4.3,+72,0,,﹣6,﹣7.3,﹣12,0.4,﹣,,26.(1)正数集合:{ …}; (2)负数集合:{ …}; (3)正整数集合:{ …}; (4)负整数集合:{ …};(5)非负数集合:{ …}. 【答案】(1)4.3,+72,,0.4,,26;(2)﹣3.14,﹣6,﹣7.3,﹣12,﹣;(3)+72,26;(4)﹣6,﹣12;(5)4.3,+72,0,,0.4,,26.【解答】解:(1)正数集合:{4.3,+72,,0.4,,26…};故答案为:4.3,+72,,0.4,,26;(2)负数集合:{﹣3.14,﹣6,﹣7.3,﹣12,﹣…};故答案为:﹣3.14,﹣6,﹣7.3,﹣12,﹣;(3)正整数集合:{+72,26…};故答案为:+72,26;(4)负整数集合:{﹣6,﹣12…};故答案为:﹣6,﹣12;(5)非负数集合:{4.3,+72,0,,0.4,,26…}.故答案为:4.3,+72,0,,0.4,,26.【变式6-2】(2022秋•雁塔区校级月考)把下列各数填在相应的横线上:5%,z﹣,﹣12,0,0.,﹣3.14,+6,0.101101110,.整数集合:{…};正数集合:{…};负分数集合:{…};非负整数集合:{…}.【答案】﹣12,0,+6;5%,0.,+6,0.101101110,;﹣,﹣3.14;0,+6.【解答】解:整数集合:{﹣12,0,+6…};z正数集合:{5%,0.,+6,0.101101110,…};负分数集合:{﹣,﹣3.14…}; 非负整数集合:{0,+6…}; 故答案为:﹣12,0,+6; 5%,0.,+6,0.101101110,;﹣,﹣3.14; 0,+6.【题型 6 数轴的画法及应用】【典例7】(2022•苏州模拟)以下是四位同学画的数轴,其中正确的是( ) A . B .C .D .【答案】D【解答】解:∵数轴要有三要素:单位长度,原点,正方向,并且数轴上表示的数从左到右增大,∴四个选项中只有选项D 符合题意, 故选:D .【变式7-1】(2022•杭州模拟)下列说法中正确的是( )A .数轴是一条射线B .数轴上离开原点距离越远的点表示的数越大C .数轴上的点所表示的数从左到右依次减小D .任何一个有理数都可以用数轴上的一个点表示 【答案】D【解答】解:数轴是一条直线,A 说法错误;在数轴的负半轴上,到原点距离越远的点所表示的数一定越小,B 说法错误; 数轴上的点所表示的数从左到右依次增大,C 说法错误; 任何一个有理数都可以用数轴上的一个点表示,D 说法正确. 故选:D .【变式7-2】(2021秋•凉州区校级期末)判断下列图中所画的数轴正确的个数是( )个.A.0B.1C.2D.3【答案】B【解答】解:数轴的三要素是:原点、正方向、单位长度,图(1)没有原点,故(1)不正确;图(2)满足数轴的定义,故(2)正确;图(3)所画负半轴上的数字排列顺序不对,故(3)错误;图(4)所画单位长度不一致,故(4)不正确.故选:B.【典例8】(2022秋•自贡期末)a,b为有理数,它们在数轴上对应点的位置如z图所示.则下列关系式正确的是( )A.﹣a<﹣b<b<a B.﹣a<b<﹣b<aC.﹣b<b<﹣a<a D.a<﹣b<b<﹣a【答案】B【解答】解:如图,由数轴可得,﹣a<b<﹣b<a,故选:B.【变式8-1】(2023•贵阳模拟)有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是( )zA .a +b >0B .a ﹣b >0C .ab >0D .【答案】D【解答】解:由数轴可知b >0>a ,且b <|a|, ∴a+b <0,故A 错误,不符合题意; a ﹣b <0,故B 错误,不符合题意; ab <0,故C 错误,不符合题意;,故D 正确,符合题意.故选:D .【变式8-2】(2022秋•鼓楼区校级期末)如图,A ,B ,C ,D 是数轴上的四个点,已知a ,b 均为有理数,且a +b =0,则它们在数轴上的位置不可能落在( )A .线段AB 上 B .线段BC 上 C .线段BD 上 D .线段AD 上【答案】A【解答】解:∵a ,b 均为有理数,且a+b =0, ∴a ,b 位于原点两侧,∴a ,b 在数轴上的位置不可能落在线段AB 上.故选:A .【变式8-3】(2022秋•江阴市期末)如图,数轴上的点A ,B 分别对应有理数a ,b ,下列结论正确的是( )A .a +b >0B .a ﹣b >0C .ab >0D .以上都不正确【答案】C【解答】解:由数轴可知,a <b <0, ∴a+b <0,故A 不符合题意; a ﹣b <0,故B 不符合题意;ab >0,故C 符合题意,D 不符合题意.【题型 7 数轴上的点所表示的数】【典例9】(2022秋•天津期末)已知数轴上点A到点B的距离是4,且点B所表示的数是2,则点A所表示的数是( )A.4或﹣4B.6或﹣2C.6或2D.﹣6或﹣2【答案】B【解答】解:∵点B到点A的距离是4.∵B表示2,∴A表示为2﹣4=﹣2或2+4=6.故选:B.【变式9-1】(2022秋•武冈市期末)点A为数轴上表示﹣2的点,当点A沿数轴移动5个单位长度到点B时,点B所表示的数为( )A.7或﹣3B.3或﹣7C.3或﹣3D.7或﹣7【答案】B【解答】解:向左移动5个单位长度对应的点表示﹣2﹣5=﹣7,向右移动5个单位长度对应的点表示﹣2+5=3,故选:B.【变式9-2】(2023•义乌市校级开学)如图,小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是( )A.﹣1B.0C.1D.2【答案】C【解答】解:由图可知,被墨水盖住的整数为:﹣3,﹣2,1,2,3,相加为﹣3+(﹣2)+1+2+3=1;故选:C【变式9-3】(2023•新邵县校级一模)在数轴上表示数﹣1和2021的两个点之间的距离为( )个单位长度.A.2022B.2021C.2020D.2019z【解答】解:|﹣1﹣2021|=2022, 故选:A .【题型 8 数轴中点规律问题】【典例10】(2023•新华区校级二模)如图,不完整的数轴上有A ,B 两点,原点在A 、B 之间,沿原点将负半轴折叠到正半轴上,点A 落在点B 左侧4个单位长度处,则线段AB 的中点表示的数为( )A .2B .﹣2C .4D .﹣4【答案】A【解答】解:根据题意可设点A 表示的数为a ,则折叠后的点A 的对称点为﹣a , 因为点A 落在点B 左侧4个单位长度处,所以点B 表示的数为﹣a+4, 则AB =﹣a+4﹣a =4﹣2a , 线段AB 的一半为2﹣a ,所以AB 中点为:﹣a+4﹣(2﹣a )=2, 故选:A .【变式10-1】(2022秋•公安县期末)在数轴上,若点A ,B 表示的数分别是﹣3和5,点M 是线段AB 的中点,则M 表示的数为( ) A .1 B .2C .4D .﹣4【答案】A【解答】解:∵点A ,B 表示的数分别是﹣3和5, ∴AB =5﹣(﹣3)=8, ∵点M 是线段AB 的中点, ∴,∴点M 表示的数为:5﹣4=1; 故选:A .【变式10-2】(2022秋•江岸区期末)如图,在数轴上,点A 、B 表示的数分别是﹣19和3.点C 为线段AD 的中点,且BC =6BD ,则点C 表示的数为( )zA .﹣9B .﹣9.5C .﹣10D .﹣10.5【答案】A【解答】解:∵数轴上A ,B 两点所表示的数分别是﹣19和3, ∴AB =3+19=22, 设BD =x , ∵BC =6BD , ∴BC =6x , ∴CD =5x ,∵点C 为线段AD 的中点, ∴AD =2CD =10x , ∴AB =11x =22, ∴x =2, ∴AC =5x =10,∴点C 所表示的数是﹣19+10=﹣9. 故选:A .1.(2022•襄阳)若气温上升2℃记作+2℃,则气温下降3℃记作( ) A .﹣2℃ B .+2℃C .﹣3℃D .+3℃【答案】C【解答】解:∵气温上升2℃记作+2℃, ∴气温下降3℃记作﹣3℃. 故选:C .2.(2022•益阳)四个实数﹣,1,2,中,比0小的数是( )A .﹣B .1C .2D .【答案】A【解答】解:根据负数都小于零可得,﹣<0.故选:A.3.(2022•河池)如果将“收入50元”记作“+50元”,那么“支出20元”记作( )A.+20元B.﹣20元C.+30元D.﹣30元【答案】B【解答】解:∵收入50元,记作“+50元”.且收入跟支出意义互为相反.∴支出20元,记作“﹣20元”.故选:B.4.(2021•南京)北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00.小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间( )A.10:00B.12:00C.15:00D.18:00【答案】C【解答】解:由题意得,北京时间应该比莫斯科时间早5小时,当莫斯科时间为9:00,则北京时间为14:00;当北京时间为17:00,则莫斯科时间为12:00;所以这个时刻可以是14:00到17:00之间,所以这个时刻可以是北京时间15:00.故选:C.5.(2021•滨州)在数轴上,点A表示﹣2.若从点A出发,沿数轴的正方向移动4个单位长度到达点B,则点B表示的数是( )A.﹣6B.﹣4C.2D.4【答案】C【解答】解:由题意可得,点B表示的数为﹣2+4=2,故选:C.z6.(2021•广州)如图,在数轴上,点A 、B 分别表示a 、b ,且a +b =0,若AB =6,则点A 表示的数为( )A .﹣3B .0C .3D .﹣6【答案】A【解答】解:∵a+b =0, ∴a =﹣b ,即a 与b 互为相反数. 又∵AB =6, ∴b ﹣a =6. ∴2b =6. ∴b =3.∴a =﹣3,即点A 表示的数为﹣3. 故选:A .7.(2021•凉山州)下列数轴表示正确的是( ) A . B .C .D .【答案】D【解答】解:A 选项,应该正数在右边,负数在左边,故该选项错误;B 选项,负数的大小顺序不对,故该选项错误;C 选项,没有原点,故该选项错误;D 选项,有原点,正方向,单位长度,故该选项正确; 故选:D .8.(2020•乐山)数轴上点A 表示的数是﹣3,将点A 在数轴上平移7个单位长度得到点B ,则点B 表示的数是( ) A .4 B .﹣4或10C .4或﹣10D .﹣10【答案】C【解答】解:如果A 向右平移得到,点B 表示的数是:﹣3+7=4, 如果A 向左平移得到,点B 表示的数是:﹣3﹣7=﹣10,z故点B 表示的数是4或﹣10. 故选:C .9.(2020•临沂)如图,数轴上点A 对应的数是,将点A 沿数轴向左移动2个单位至点B ,则点B 对应的数是( )A .﹣B .﹣2C .D .【答案】A【解答】解:点A 向左移动2个单位, 点B 对应的数为:﹣2=﹣. 故选:A .10.(2020•湘潭)在数轴上到原点的距离小于4的整数可以为 .(任意写出一个即可) 【答案】见试题解答内容【解答】解:在数轴上到原点的距离小于4的整数有:﹣3,3,﹣2,2,﹣1,1,0从中任选一个即可故答案为:3(答案不唯一,3,2,1,0,﹣1,﹣2,﹣3任意一个均可);1.(2023•河北模拟)向东走2m ,记为+2m ,那么走﹣7m ,表示( ) A .向南走7m B .向东走7mC .向西走7mD .向北走7m【答案】C【解答】解:向东走2m ,记为+2m ,那么走﹣7m ,表示向西走7m . 故选:C .2.(2022秋•河池期末)下列说法错误的是( ) A .0既不是正数,也不是负数B .零上4摄氏度可以写成+4°C ,也可以写成4°CzC .若盈利100元记作+100元,则﹣20元表示亏损20元D .向正北走一定用正数表示,向正南走一定用负数表示 【答案】D【解答】解:A .0既不是正数,也不是负数,正确,故不符合题意; B .零上4摄氏度可以写成+4°C ,也可以写成4°C ,正确,故不符合题意; C .若盈利100元记作+100元,则﹣20元表示亏损20元,正确,故不符合题意; D .规定向正北走用正数表示,则向正南走才用负数表示,原说法错误,故符合题意. 故选:D .3.(2023•海安市一模)手机移动支付给生活带来便捷.如图是小颖某天微伯账单的收支明细(正数表示收入,负数表示支出,单位:元),小颖当天微信收支的最终结果是( )A .收入18元B .收入6元C .支出6元D .支出12元【答案】B【解答】解:+18+(﹣12)=6(元),即小颖当天微信收支的最终结果是收入6元.故选:B .4.(2023•官渡区校级模拟)检查四个篮球的质量,把超过标准的克数记为正数,不足标准质量的克数记为负数,结果如下表: 其中质量最好的是( )篮球编号 甲 乙 丙 丁与标准质量的差(g ) +4+7﹣3﹣8A .甲B .乙C .丙D .丁【答案】C【解答】解:根据题意可得:超过标准质量的克数记为正数,不足标准质量的克z数记为负数;观察图表,找绝对值最小的.易得|﹣3|=3最小, 故3号球最接近标准质量,质量最好, 故选:C .5.(2022秋•广西期末)在,﹣4,0,这四个数中,属于负整数的是( ) A .B .C .0D .﹣4【答案】D【解答】解:∵﹣,都是分数, ∴选项A ,B 不符合题意; ∵0既不是正数,也不是负数, ∴选项C 不符合题意; ∵﹣4是负整数, ∴选项D 符合题意, 故选:D .6.(2022秋•红河县期末)下列说法正确的是( ) A .0不是正数,不是负数,也不是整数 B .正整数与负整数包括所有的整数C .﹣0.6是分数,负数,也是有理数D .没有最小的有理数,也没有最小的自然数【答案】C【解答】解:A 0不是正数也不是负数,0是整数,故A 错误; B 正整数于负整数不包括0,故B 错误; C ﹣0.6是分数,负数,有理数,故C 正确; D 0是最小的自然数,故D 错误; 故选:C .7.(2023•晋安区校级模拟)如图,数轴的单位长度是1,若点A 表示的数是﹣1,则点B 表示的数是( )zA .1B .2C .3D .4【答案】D【解答】解:∵数轴的单位长度为1,如果点A 表示的数是﹣1, ∴点B 表示的数是:﹣1+5=4,故D 正确. 故选:D .8.(2022秋•惠阳区期末)有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a >﹣1B .﹣a <bC .a +b <0D .a ﹣b >0【答案】B【解答】解:观察数轴得:﹣2<a <﹣1,2<b <3, ∴A 选项错误,不符合题意; ∴1<﹣a <2,∴﹣a <b ,故B 选项正确,符合题意; ∴|a|<|b|,∴a+b >0,故C 选项错误,不符合题意; ∴a ﹣b <0,故D 选项错误,不符合题意; 故选:B .9.(2022秋•沈丘县月考)已知数轴上A ,B 两点到原点的距离分别是3和9,则A ,B 两点间的距离是( ) A .6 B .9或12C .12D .6或12【答案】D【解答】解:A 、B 两点表示的数同号时,A ,B 两点间的距离是9﹣3=6或﹣3﹣(﹣9)=6,A 、B 两点表示的数异号时,A ,B 两点间的距离是9﹣(﹣3)=12或3﹣(﹣9)=12,∴A ,B 两点间的距离是6或12. 故选:D .10.(2022秋•文成县期中)点A、B在同一条数轴上,其中点A表示的数为1,若点B到点A的距离为4,则点B表示的数是( )A.3B.5C.3或﹣3D.5或﹣3【答案】D【解答】解:∵1+4=5,1﹣4=﹣3,∴点B表示的数是5或﹣3,故选:D.11.(2022秋•济南期中)如图,一条数轴上有点A、B、C,其中点A、B表示的数分别是﹣14,10,现以点C为折点,将数轴向右对折,若点A落在射线CB上且到点B的距离为6,则C点表示的数是( )A.1B.﹣3C.1或﹣5D.1或﹣4【答案】C【解答】解:10+6=16,10﹣6=4,当A落在16对应的点时,C表示的数为:(16﹣14)=1,z当A落在4对应的点时,C表示的数为:(4﹣14)=﹣5,故选:C.12.(2023春•荣县月考)观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).【答案】见试题解答内容【解答】解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1,∴第16个答案为:.故答案为:.13.(2022秋•武侯区校级月考)把下列各数分别填入相应的集合里.0,,5,3.14,π,﹣3,0.1.(1)整数集合:{…};(2)分数集合:{…};(3)有理数集合:{…};(4)非负数集合:{…}.【答案】(1)0,5,﹣3;(2),3.14,0.1;(3)0,,5,3.14,﹣3,0.1;(4)0,5,3.14,π,0.1.【解答】解:0,,5,3.14,π,﹣3,0.1.(1)整数集合:{0,5,﹣3,…};故答案为:0,5,﹣3;(2)分数集合:{,3.14,0.1,…};、故答案为:,3.14,0.1;z(3)有理数集合:{0,,5,3.14,﹣3,0.1,…};故答案为:0,,5,3.14,﹣3,0.1;(4)非负数集合:{0,5,3.14,π,0.1,…}.故答案为:0,5,3.14,π,0.1.14.(2023•泰山区校级开学)自行车厂要生产一批相同型号的自行车,计划每天生产200辆.但由于各种原因,实际每天的生产量与计划量相比会有所差异.下表是工人在某周的生产情况:(超过200辆记为正,不足200辆记为负)星期一二三四五六日增减(辆)+5﹣3﹣4+13﹣10+15﹣9(1)根据记录可知,前三天共生产了辆;(2)生产量最多的一天比生产量最少的一天多生产了辆;(3)该厂实行计件工资制,每生产一辆得100元,对于每天的计划生产量,若每多生产一辆再额外奖20元,若每少生产一辆则要扣20元,求工人这一周的工资总额是多少元.【答案】(1)598;(2)25;(3)工人这一周的工资总额是140840元.【解答】解:(1)由表格可得,(200+5)+(200﹣3)+(200﹣4)=205+197+196=598(辆),即前三天共生产了598辆,故答案为:598;(2)由表格可得,生产量最多的一天比生产量最少的一天多生产了15﹣(﹣10)=15+10=25(辆),故答案为:25;(3)200×7×100+[5+(﹣3)+(﹣4)+13+(﹣10)+15+(﹣9)]×120=140000+7×120=140000+840=140840(元),答:工人这一周的工资总额是140840元.15.(2022秋•长安区校级期末)某食品厂在产品中抽出20袋样品,检查其质量是否达标,超过标准的部分用正数表示,不足的部分用负数表示:﹣3﹣2﹣1.501 1.5 2.5与标准质量的差/克袋数1434323(1)这批样品的总质量比标准总质量多还是少?多或少几克?(2)若每袋的标准质量为200克,求这批样品平均每袋的质量是多少克?【答案】(1)这批样品的总质量比标准总质量少,少2克;(2)这批样品平均每袋的质量是199.9克.【解答】解:(1)(﹣3)×1+(﹣2)×4+(﹣1.5)×3+0×4+1×3+1.5×2+2.5×3=﹣3﹣8﹣4.5+0+3+3+7.5=﹣2(克),即这批样品的总质量比标准总质量少,少2克;(2)200×20﹣2=4000﹣2=3998(克),3998÷20=199.9(克),即这批样品平均每袋的质量是199.9克.。

人教版 七年级上册数学 有理数单元 正数和负数练习卷1(含答案)

人教版 七年级上册数学  有理数单元  正数和负数练习卷1(含答案)

正数和负数练习卷(含答案)姓名:_____________ 年级:____________ 学号:______________ 题型 xx 题 xx 题 xx 题 xx 题 xx 题 xx 题 总分 得分 一、选择题(共12题,共**分)1、 3. 实数、在数轴上的位置如图3所示,则与的大小关系是() (A ) (B )(C ) (D )无法确定2、 的相反数是( )A .5B .C .D .3、 下列计算结果为1的是( )A.(+1)+(-2)B.(-1)-(-2)C.(+1)×(-1)D.(-2)÷(+2)4、 在5,,.这四个数中,小于0的数是( )A .5 B. C. D. 阅卷人 评分5、下列说法中错误的是( )A、一个正数的前面加上负号就是负数B、不是正数的数一定是负数C、0既不是正数,也不是负数D、正负数可以用来表示具有相反意义的量6、若,则的值为( )A.5 B.-5 C.5或1 D.以上都不对7、若,则对于数的论断正确的是( )A.一定是负数 B.可能是正数C.一定不是正数 D.可以是任何数8、若为有理数,则表示的数是( )A.正数 B.非正数 C.负数 D.非负数9、若,则的值是()A.1 B.-1 C.9 D.-910、若,那么一定是( )A.正数 B.负数 C.―1 D.±111、下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 412、 水文观测中,常遇到水位上升或下降的问题.我们规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天上升3cm ,今天的水位为0cm ,那么2天前的水位用算式表示正确的是( )A .(+3)×(+2)B .(+3)×(﹣2)C .(﹣3)×(+2)D .(﹣3)×(﹣2) 二、填空题(共6题,共**分) 1、 若7-3与+3互为相反数,则的值为________.2、 比较大小:-6 -8.(填“<”、“=”或“>”)3、 绝对值大于1而不大于3的整数有___________,它们的和是___________.4、 如果,那么m-2的值是____________.5、 若实数a 、b 满足,则=__________。

考试卷正负数相反数绝对值练习试卷

考试卷正负数相反数绝对值练习试卷

七年级有理数(正负数、相反数、绝对值)数学练习试卷一、选择题(共8小题;共24分)1. 检查个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:则质量较好的篮球的编号是A. 号B. 号C. 号D. 号2. 下列说法正确的个数为① 是整数;② 是负分数;③ 不是正数;④自然数一定是正数.A. B. C. D.3. 如图,数轴上有,,,四个点,其中表示互为相反数的点是A. 点与点B. 点与点C. 点与点D. 点与点4. 把四个数,,,,从大到小用“ ”连接起来,正确的是?( )A. B.C. D.5. 如果海平面的高度为米,用负数表示低于海平面某处的高度,一潜水艇在海平面下米处航行,一条鲨鱼在潜水艇上方米处游动,那么鲨鱼所在的高度是?( )A. 米B. 米C. 米D. 米6. 下列说法正确的是A. 在有理数中,的意义仅表示没有B. 一个有理数,它不是正数就是负数C. 正有理数和负有理数组成有理数集合D. 是自然数7. 如图,数轴上有,,,四个点,其中表示绝对值相等的两个实数的点是A. 点与点B. 点与点C. 点与点D. 点与点8. 如图,数轴上的,,三点所表示的数分别为,,,其中,如果,那么该数轴的原点的位置应该在?( )A. 点的左边B. 点与点之间C. 点与点之间D. 点的右边二、填空题(共12小题;共36分)9. 在,,,这四个有理数中,整数有 ?.10. ?, ?, ?.11. 在下列横线上填上适当的词,使前后构成具有相反意义的量:(1)收入元, ? 元;(2) ? 米,下降米;(3)向北前进米, ? 米.12. 表示 ? 的相反数,即 ?;表示 ? 的相反数,即?.13. 比较大小: ? (填“”,“”或“”).14. 在数轴上到原点的距离等于的点所表示的数是 ?.15. 如图,数轴上表示的点是点 ?,表示的点是点 ?,它们到原点的距离 ?,所以与是 ?.16. 已知数轴上有,两点,,之间的距离为,点与原点的距离为,则所有满足条件的点与原点的距离的和为 ?.17. 一跳蚤在一直线上从点开始,第次向右跳个单位长度,紧接着第次向左跳个单位长度,第次向右跳个单位长度,第次向左跳个单位长度,,依此规律跳下去,当它跳第次落下时,落点处离点的距离是 ? 个单位长度.18. 观察下面一列数的规律并填空:,,,,,,则它的第个数是 ?,第个数是 ?.19. 一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数,,,,就可以构成一个集合,记为.类比有理数有加法运算,集合也可以"相加".定义:集合与集合中的所有元素组成的集合称为集合与集合的和,记为.若,,则 ?.20. 如图,数轴上,点的初始位置表示的数为,现点做如下移动:第次点向左移动个单位长度至,第次点向右移动个单位长度至,第次从点向左移动个单位长度至,,按照这种移动方式进行下去,点表示的数是 ?,如果点与原点的距离不小于,那么的最小值是 ?.三、解答题(共6小题;共60分)21. 去掉中的绝对值符号.22. 把下列各数填人它属于的集合圈内:,,,,,,,,,,.23. 分别写出,,的相反数,在数轴上表示出各数及它们的相反数,并说明各对数在数轴上的位置特点.24. 张大妈在超市买了一袋食盐,发现包装上标有字样“净重:”,怎么也看不明白是什么意思,你能给她解释清楚吗?25. 已知数轴上三点,,对应的数分别为,,,点为数轴上任意一点,其对应的数为.Ⅰ如果点到点、点的距离相等,那么的值是 ?;Ⅱ数轴上是否存在点,使点到点、点的距离之和是;如果存在,求出的值;如果不存在,请说明理由;Ⅲ如果点以每秒钟个单位长度的速度从点向右运动时,点和点分别以每秒钟个单位长度和每秒钟个单位长度的速度也向右运动,且三点同时出发,那么经过几秒钟,点到点、点的距离相等.26. 请阅读下面材料:已知点,在数轴上分别表示有理数,,,两点之间的距离表示为.当,两点中有一点在原点时,不妨设点在原点,如图所示,.当,两点都不在原点时:()如图所示,点,都在原点右边,;()如图所示,点,都在原点左边,;()如图所示,点,在原点两边,.综上所述,数轴上,两点之间的距离表示为.回答下列问题:Ⅰ数轴上表示和两点之间的距离是 ?,数轴上表示和两点之间的距离是 ?.Ⅱ数轴上表示和两点和之间的距离是 ?;如果,那么 ?.Ⅲ当代数式取最小值时,的取值范围是 ?.答案第一部分1. D2. B3. B4. C5. A6. D7. C8. C第二部分9. ;10. ;;11. (1)支出;(2)上升;(3)向南前进12. ;;;13.14.15. ;;相等;相反数16.17.18. ;19. (注:各元素的排列顺序可以不同)20. ;第三部分21. (1)当时,,;(2)当时,,;(3)当时,,.22.23. ,,的相反数分别是,,.在数轴上表示如图所示:各对数在数轴上的位置特点是到原点的距离相等.24. “净重:”的意思是这袋食盐的净重在到的范围内,即的范围内.25. (1)??????(2),点在不在线段上.当点在点的左侧时,.解得 .当点在点的右侧时,.解得.存在点,使点到点、点的距离之和是,此时或.??????(3)设经过秒点到点、点的距离相等.点表示的数是,点表示的数是,点表示的数是,由题意,得...26. (1);??????(2);或??????(3)。

七年级数学上册-数轴、相反数与绝对值压轴题十四种模型全攻略(原卷版)

七年级数学上册-数轴、相反数与绝对值压轴题十四种模型全攻略(原卷版)

专题02数轴、相反数与绝对值压轴题十四种模型全攻略【考点导航】目录【典型例题】 (1)【考点一数轴的三要素及其画法】 (1)【考点二用数轴上的点表示有理数】 (2)【考点三数轴上两点之间的距离】 (3)【考点四根据点在数轴的位置判断式子的正负】 (3)【考点五数轴上的动点问题】 (3)【考点六求一个数的相反数】 (4)【考点七化简多重符号】 (4)【考点八判断是否互为相反数】 (4)【考点九利用相反数的性质,求参数的值】 (5)【考点十绝对值的意义】 (5)【考点十一化简绝对值】 (5)【考点十二绝对值非负性的应用】 (6)【考点十三利用绝对值比较负有理数的大小】 (6)【考点十四求解绝对值方程】 (7)【过关检测】 (8)【典型例题】【考点一数轴的三要素及其画法】例题:(2023·全国·七年级假期作业)以下是四位同学画的数轴,其中正确的是()A.B.C.D.【变式训练】1.(2023·江苏·七年级假期作业)在下列选项中数轴画法正确的是()A.B.C.D.2.(2023秋·吉林延边·七年级统考期末)下面是四位同学画的数轴,其中正确的是()A.B.C.D.【考点二用数轴上的点表示有理数】【变式训练】______<______<______<______.【考点三数轴上两点之间的距离】例题:(2023·江苏·七年级假期作业)数轴上表示有理数 4.5-与3.5两点的距离是______.【变式训练】1.(2023·江苏·七年级假期作业)数轴上数5-和14-的两点间的距离是______,与5-相距9个单位的点是______.2.(2023秋·河南洛阳·七年级统考期末)点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为4-、1,若2BC =,则AC 等于______.【考点四根据点在数轴的位置判断式子的正负】例题:(2023·陕西咸阳·统考二模)如图,数轴上A B 、两点所表示的数分别为a b ,,则a b +______0.(填“>”“=”或“<”)【变式训练】1.(2023·陕西西安·高新一中校考二模)已知实数,a b 在数轴上的对应点的位置如图所示,则a b --____0(填“>”,“<”或“=”).2.(2023春·广东惠州·七年级校考阶段练习)点a ,b 在数轴上的位置如图,则a b +______0,a b -+______0【考点五数轴上的动点问题】例题:(2023·江苏·七年级假期作业)一只跳蚤在数轴上从原点开始,第1次向右跳1个单位长度,第2次向左跳2个单位长度,第3次向右跳3个单位长度,第4次向左跳4个单位长度,…依此规律跳下去,当它跳第20次落下时,落点处离原点的距离是________个单位长度.【变式训练】1.(2023·江苏·七年级假期作业)点A 表示数轴上的一个点,将点A 向右移动3个单位,再向左移动5个单位,终点恰好是原点,则点A 表示的数是_______.2.(2023秋·广东佛山·七年级校考期末)如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示1-的点重合,再将圆沿着数轴向右滚动,则圆周上表示数字___的点与数轴上表示2023的点重合.【考点六求一个数的相反数】【考点七化简多重符号】【考点八判断是否互为相反数】【考点九利用相反数的性质,求参数的值】例题:(2023·浙江·七年级假期作业)已知23x+与5-互为相反数,则x等于______.【变式训练】a+与2互为相反数,那么=a___________.1.(2023秋·湖南湘西·七年级统考期末)已知42.(2023秋·全国·七年级专题练习)若a、b互为相反数,则a+b+2的值为______.【考点十绝对值的意义】A.a B.bA.点A与点B之间【考点十一化简绝对值】++--化简:a a b b c(1)填空:A,B之间的距离为______【考点十二绝对值非负性的应用】【考点十三利用绝对值比较负有理数的大小】【考点十四求解绝对值方程】【过关检测】一、选择题1.(2023·河南信阳·校考三模)5=3-()A .53B .53-C .53±D .352.(2023春·海南海口·九年级海口市义龙中学校考阶段练习)实数4-的相反数是()A .4B .4-C .14D .14-3.(2023·江苏·七年级假期作业)下列图形表示数轴正确的是()A .B .C .D .4.(2023·山西运城·山西省运城中学校校考三模)下列各数:()()110 6.67032423,,,,,,--------,其中属于非负数的共有()A .1个B .2个C .3个D .4个5.(2023秋·河北承德·七年级校考期末)实数a 、b 在数轴上的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是()A .0a b +=B .0a b -=C .||||a b <D .0ab >二、填空题6.(2023秋·全国·七年级专题练习)相反数是2的数是______;______的绝对值是3.7.(2023秋·山东德州·七年级校考期末)点B 先向右移动3个单位,又向左移动6个单位到达图中点A ,则点B 在数轴上表示的数为______.8.(2023秋·全国·七年级专题练习)()2--的相反数是______;()5+-的相反数是______,数()a -+的相反数是______,数()a --的相反数是_______;()a b ---与______互为相反数.10.(2023秋·山东枣庄·七年级校考期末)点三、解答题(1)求a b ca b c++=_______(1)观察数轴,填空:。

七年级数学上册1.2.2 数轴-根据点在数轴的位置判断式子的正负 选择题专项练习七(人教版,含解析)

七年级数学上册1.2.2 数轴-根据点在数轴的位置判断式子的正负 选择题专项练习七(人教版,含解析)

2021-2022学年度人教版七年级数学上册练习七1.2.2 数轴-根据点在数轴的位置判断式子的正负1.有理数,a b 在数轴上的位置如图所示,则下列说法不正确的是( )A .0a b +>B .0b a ->C .0ab <D .||a b >2.如图所示,下列判断正确的是( )A .a+b >0B .a+b <0C .ab >0D .|b|<|a|3.若数轴上的点A 、B 分别与有理数a 、b 对应,则下列关系正确的是()A .a <bB .﹣a <bC .|a|<|b|D .﹣a >﹣b4.有理数a ,b ,c 在数轴上对应的点如图所示,那么( )A .a+b+c >0B .a+b+c <0C .ab <acD .ac >bc5.实数a 在数轴上的位置如图所示,则下列结论中正确的是( )A .1a -<-B .1a >-C .10a -+>D .10a ->6.有理数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是()A .1a >-B .0⨯>a bC .0b a -<<-D .a b >7.已知a 、b 两数在数轴上对应的点如图所示,下列结论正确的是()A .a b >B .0ab >C .0a b ->D .0a b +>8.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c9.数a 、b 在数轴上的位置如图所示,则下列各式正确的是( )A .a b <B .C .D .10.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <11.有理数a ,b 的对应点在数轴上的位置如图所示,下列结论正确的是( )A .0a b +>B .0ab >C .0a b ->D .0a b -+>12.有理数a b ,在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a b >B .0ab >C .||||a b <D .a b ->13.已知a 、b 两数在数轴上对应的点如图所示,下列结论正确的共有( ) ①0ab <,②0ab >,③0a b -<,④0a b +>,⑤a b -<-,⑥a b <A .2个B .3个C .4个D .5个14.有理数 a 在数轴上的位置如图所示,下列各数中,可能在 1 到 2 之间的是( )A .-aB .aC .a -1D .1 -a15.已知有理数m 、n 的和m n +与差m n -在数轴上的大致位置如图所示,则以下判断①10m n ++<②10m n -+<③m 、n 一定都是负数④m 是正数,n 是负数.其中正确的判断( )A .4个B .3个C .2个D .1个16.如图,已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,则下列不等式中不正确的是( )A .c <b <aB .ac >abC .cb >abD .c+b <a+b17.如图,A ,B 两点在数轴上表示的数分别为a 、b ,下列式子成立的个数是( )①a b a b +=+ ② a b b a -=-③(1)(1)b a -->0 ④(1)(1)b a -+>0A .1个B .2个C .3个D .4个18.有理数a ,b 在数轴上的位置如图所示,则下列式子错误的是( )A .ab <0B .a+b <0C .|a|<|b|D .a ﹣b <|a|+|b|19.有理数a 在数轴上的对应点的位置如图所示,如果有理数b 满足a b a <<-,那么b 的值可以是( )A .2B .3C .1-D .2-20.已知实数a 在数轴上的位置如图所示,则化简|a-1|+|a|的结果为( )A .1B .1-C .12a -D .21a -参考答案1.A解析:根据数轴判断出a、b的正负情况以及绝对值的大小,然后对各选项分析判断利用排除法求解.详解:由图可知,b>0,a<0且|a|>|b|,A、0a b+<,错误,故本选项符合题意;B、0->,正确,故本选项不符合题意;b aC、0ab<,正确,故本选项不符合题意;>,正确,故本选项不符合题意.D、||a b故选:A.点睛:本题考查了数轴,准确识图,判断出a、b的正负情况以及绝对值的大小是解题的关键.2.B解析:试题分析:先由数轴知,b<0,a>0,再根据有理数的加法、乘法法则及绝对值的定义对各选项进行判定.解:由图可知,b<0,a>0|.A、∵b<0,a>0,且|a|<|b|,根据有理数的加法法则,得出a+b<0,错误;B、正确;C、∵b<0,a>0,∴ab<0,错误;D、根据绝对值的定义,得出|a|<|b|,错误.故选B.考点:有理数的乘法;有理数大小比较;有理数的加法.3.C解析:根据数轴的特征∵b<a,∴选项A不正确;∵b<a<0,∴−a>0,∴−a>b,∴选项B不正确;∵b<a<0,∴|a|<|b|,∴选项C正确;∵b<a<0,∴−b>−a>0,∴选项D不正确.故选C.4.B解析:由数轴可知-3<a<-2,-2<b<-1,0<c<1,所以A,C,D错误,B正确,故选B.5.C解析:由图示可知:-1<0<a,故:A.a1->-,故A错误;<-,故B错误;B. a1C.a10-+>,故C正确;D.a10->,故D错误.故选:C.6.C解析:分析:直接利用a,b在数轴上的位置,进而分别分析得出答案.详解:由a,b在数轴上的位置可得:A.a<﹣1,故此选项错误;B.ab<0,故此选项错误;C.﹣b<0<﹣a,正确;D.|a|<|b|,故此选项错误.故选C.点睛:本题主要考查了有理数与数轴,正确利用a,b的位置分析是解题的关键.7.A解析:由a、b两数在数轴上对应的点可知,a<0,b>0,|a|>|b|.详解:因为,a<0,b>0,|a|>|b|.所以,0ab < , 0,a b -< 0a b +<.故选A点睛:本题考核知识点:数的大小比较.解题关键点:利用数轴比较数的大小.8.C解析:根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简即可得到结果.详解:根据数轴得: 0c b a <<<,且a b c <<,0a b ∴->,0c a -<,b+c 0<,则原式=a-b+a-c+b+c+c-a=a+c ,所以C 选项是正确的.点睛:此题考查了数轴和绝对值,灵活运用解本题的关键.9.C解析:由数轴可知,|a|>b ,a <0,b >0,∴ a<b ,故选C .10.C解析:从数轴上可以看出m 、n 都是负数,且m <n ,由此逐项分析得出结论即可. 详解:解:因为m 、n 都是负数,且m <n ,|m|>|n|,A 、m >n 是错误的;B 、-n >|m|是错误的;C 、-m >|n|是正确的;D 、|m|<|n|是错误的.故选C .点睛:此题考查有理数的大小比较,关键是根据绝对值的意义等知识解答.11.D解析:根据有理数a 、b 在数轴上的位置确定a+b 、a ﹣b 、-a+b ,ab 的正负即可. 详解:解:由数轴上点的位置得:a <0,b >0,∣a∣>∣b∣,∴a+b<0,a ﹣b <0,ab <0,-a+b >0,故选:D .点睛:本题考查数轴,熟练掌握数轴上的点与有理数的关系是解答的关键.12.D解析:根据各点在数轴上的位置得出a 、b 两点到原点距离的大小,进而可得出结论. 详解:∵由图可知a <0<b ,且|a|>|b|,ab <0∴a<−b, a b ->故选:D .点睛:本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.13.B解析:根据数轴可得0b a <<,b a >,再根据有理数的加法、乘法、有理数减法进行分析可得答案.详解:由数轴可得0b a <<, ∴0ab<,①正确; 0ab <,②错误; 0a b ->,③错误; a b -<-,⑤正确; 根据数轴可得0b a <<,b a >,∴0a b +<,④错误;a b <,⑥正确;故正确的有:①⑤⑥,共3个,故选:B .点睛:本题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.14.C解析:根据数轴得出-3<a<-2,再逐个判断即可.详解:A、∵从数轴可知:-3<a<-2,∴2<-a<3,故本选项不符合题意;B、∵从数轴可知:-3<a<-2,∴2<a<3,故本选项不符合题意;C、∵从数轴可知:-3<a<-2,∴2<a<3,∴1<|a|-1<2,故本选项符合题意;D、∵从数轴可知:-3<a<-2,∴3<1 –a<4,故本选项不符合题意;故选:C.点睛:本题考查了数轴和绝对值、有理数的大小,能根据数轴得出-3<a<-2是解此题的关键.15.C+与差m n-在数轴上的位置确定出其符号,则m+n<-1<0<m-n<1,解析:先根m、n的和m n再分别进行判断即可.详解:解:由数轴可知:m+n<-1<0<m-n<1∵m+n<-1∴10++<,故①正确;m n∵-1<m-n∴10-+>,故②错误;m n∵m+n<m-n ,m+n+m-n<0∴20n <,2m<0∴0n <,m<0,故③正确,④错误;故选:C点睛:本题考查的是数轴的特点,根据数轴的特点判断出各未知数的符号是解答此题的关键.16.B解析:先根据数轴的特点得出a >0>b >c ,再根据不等式的性质进行判断.详解:由题意,可知a >0>b >c .A 、∵a>0>b >c ,∴c<b <a ,故此选项正确;B 、∵b>c ,a >0,∴ac<ab ,故此选项错误;C 、∵c<a ,b <0,∴cb>ab ,故此选项正确;D 、∵c<a ,∴c+b<a+b ,故此选项正确;故选:B .点睛:本题主要考查了不等式的性质.根据数轴的特点确定数轴上点所表示的数的符号及大小,是解决本题的关键.17.C解析:首先根据数轴上的有理数判定101a b -<<<<,然后逐一判定即可.详解:由题意,得101a b -<<<<∴0a b +>,0a b -<,1a -<0,10b ->,10a +> ①a b a b +=+,正确; ②a b b a -=-,正确;③(1)(1)0b a --<,错误;④(1)(1)0b a -+>,正确;故选:C.点睛:此题主要考查数轴上的有理数性质,熟练掌握,即可解题.18.D解析:根据图形可知0<<,且||||b a>,对每个选项对照判断即可.b a详解:解:由数轴可知b<0<a,且|b|>|a|,∴ab<0,答案A正确;∴a+b<0,答案B正确;∴|b|>|a|,答案C正确;而a﹣b=|a|+|b|,所以答案D错误;故选:D.点睛:本题考查的有理数及绝对值的大小比较,把握数形结合的思想是解题的关键.19.C解析:根据a的取值范围确定出-a的取值范围,进而确定出b的范围,判断即可.详解:解:根据数轴上的位置得:-2<a<-1,∴1<-a<2,2∴<a又a b a<<-,∴b在数轴上的对应点到原点的距离一定小于2,故选:C.点睛:本题考查了数轴,属于基础题,熟练并灵活运用数轴的定义是解决本题的关键.20.A解析:先根据点a在数轴上位置确定a的取值范围,再根据绝对值的性质把原式化简即可.详解:解:∵由数轴上a点的位置可知,0<a<1,∴a-1<0,∴原式=1-a+a=1.故选:A.点睛:考查的是绝对值的性质及数轴的特点,能够根据已知条件正确地判断出a的取值范围是解答此题的关键.。

湘教版七年级上册数学1.2数轴、相反数与绝对值同步练习(解析版)

湘教版七年级上册数学1.2数轴、相反数与绝对值同步练习(解析版)

1.2 数轴、相反数与绝对值一、选择题1.以下说法正确的选项是()A. ﹣3 的倒数是B.﹣2 的绝对值是﹣ 2C. ﹣(﹣ 5)的相反数是﹣ 5D. x 取随意实数时,都存心义2.以下各式正确的选项是()A. ﹣|﹣3|=3B. +(﹣ 3)=3C. ﹣(﹣ 3)=3D. ﹣(﹣ 3)=﹣33.如图,检测 4 个足球,此中超出标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最靠近标准的是()A. B. C.D.4.如图 ,四个实数 m,n,p,q 在数轴上对应的点分别为M,N,P,Q,若 p+m=0,则 m,n,p,q 四个实数中 ,绝对值最小的一个是()A. pB. qC. mD. n5.已知 a,b 两数在数轴上对应的点如下图,以下结论正确的选项是()A. a+b>0B. a>bC. ab<0 D. b﹣a>06.实数在数轴上对应点的地点如下图,则必有()A. B. C.D.7.若|a|=5,|b|=3,那么 a?b的值是()A. 15B.﹣15 C. 15±D.以上都不对8.有理数﹣ l 的绝对值是()A. 1B.﹣l C. l D±.29.已知 |a|=5,b3=﹣ 27,且 a>b,则 a﹣b 值为()A. 2B.﹣2 或8 C. 8 D.﹣210.若 a 为有理数,以下结论必定正确的选项是()A. a>﹣ aB. a>C. |a|=aD.2≥0a11.已知 |x+y|+(x﹣y+5)2=0,那么 x 和 y 的值分别是()A.﹣,B.,﹣C.,D.﹣,﹣12.以下说法正确的选项是()①有理数包含正有理数和负有理数②相反数大于自己的数是负数③数轴上原点双侧的数互为相反数④两个数比较,绝对值大的反而小A. ②B.①③C.①②D.②③④二、填空题13.的倒数的相反数是 ________.14.A 为数轴上表示 -1 的点,将点 A 沿数轴向右平移 3 个单位到点 B,则点 B 所表示的数为 ________.15.-2和它的相反数之间的整数有________个.16.如图,在数轴上,点A,B 分别在原点 O 的双侧,且到原点的距离都为 2 个单位长度,若点 A 以每秒 3 个单位长度,点 B 以每秒 1 个单位长度的速度均向右运动,当点 A 与点 B 重合时,它们所对应的数为 ________.17.绝对值不大于 5 的全部整数和为 ________18.数轴上表示数- 5 和表示- 14 的两点之间的距离是 ________.19.在数轴上 A 点表示-,B点表示,则离原点较近的点是________.20.假如 a、b 互为倒数, c、d 互为相反数,且 m=-1,则代数式 2ab-(c+d)+m2=________;21.实数 m,n 在数轴上对应点的地点如下图,化简:|m-n|=________22.-4 的绝对值是 ________三、解答题23.某邮递员依据邮递需要,先从 A 地向东走 3 千米,而后折回向西走了 10 千米.又折回向东走 6 千米,又折回向西走 5.5 千米.现规定向东为正,问该邮递员此时在 A 地的哪个方向?与 A 地相距多少千米?要求:用有理数加法运算,并将这一问题在数轴表示出来.24.实数 a,b,c 在数轴上的地点如下图,化简|c|﹣|a|+|﹣b|+|﹣a|.25.已知 |a﹣3|+|b﹣4|=0,求的值.26.在一条不完好的数轴上从左到右有点A,B,C,此中 AB=2 ,BC=1,如图所示,设点 A,B,C 所对应数的和是p.(1)若以 B 为原点,写出点 A,C 所对应的数,并计算 p 的值;若以 C 为原点,p又是多少?(2)若原点 O 在图中数轴上点 C 的右侧,且 CO=28,求 p.参照答案一、选择题1.【答案】 C【分析】:A、﹣3的倒数是﹣,故A选项不切合题意;B、﹣ 2 的绝对值是 2,故 B 选项不切合题意;C、﹣(﹣ 5)的相反数是﹣ 5,故 C 选项切合题意;D、应为 x 取随意不等于 0 的实数时,都存心义,故D选项不切合题意.故答案为: C.【剖析】乘积为 1 的两个数互为倒数;正数与0 的绝对值为它自己,负数的绝对值为它的相反数;在一个数前加一个负号,它就是这个数的相反数;分式的分母不可以为 0.2.【答案】 C【分析】 A. 原式 =-3;A 不切合题意; B.原式 =-3,B 不切合题意; C.原式 =3,C 切合题意; D.原式 =3, D 不切合题意;故答案为: C.【剖析】 A.依据绝对值性质来剖析; B.依据正负得负来剖析; C.依据负负得正来剖析; D.依据负负得正来剖析;3.【答案】 A【分析】:∵ |+0.9|=0.9,|+1.2|=1.2,|﹣2.4|=2.4,|+2.8|=2.8,0.9<1.2<2.4<2.8,∴从轻重的角度看,最靠近标准的是﹣0.9.故答案为: A.【剖析】先求出各数的绝对值可得|+0.9|=0.9,|+1.2|=1.2,|﹣2.4|=2.4,|+2.8|=2.8,再比较大小可得0.9<1.2<2.4<2.8,因此从轻重的角度看,最靠近标准的是﹣0.9.4.【答案】 D【分析】:∵ p+m=0,∴p和 m 互为相反数, 0 在线段 PM 的中点处,∴四个数中绝对值最小的一个是 n故答案为: D【剖析】依据 p+m=0,p 和 m 互为相反数, 0 在线段 PM 的中点处,依据绝对值的意义,可得出点N 离原点的距离近来,即可求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册正负数与数轴练习题
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
特立培训七年级数学上册正负数与数轴练习题
姓名 班级 学号
一.填空题
1.数轴上原点所表示的数是( ),原点右边的点所表示的数是( )数,原点左边的点所表示的数是( )数.
2.数轴上表示-4.5的点到原点的距离是( )个单位长度;+4.5的点到原点的距离是( )个单位长度;到原点距离4.5个单位长度的数有( )个.
3.数轴上的点A所对应的数是-2,点B所对应的数是5,那么A、B两点的距离是( ),点A 、B 的中点表示的数是( ).
4.一个点从数轴的原点开始,先向右移动了3个单位长度,再向左移动4个单位长度,则终点表示的数是( ).
5.小于7.5的正整数有( ),大于-3小于3的整数有( )。

6.在数轴上, 点M 表示的数是-2, 将它先向右移动4.5个单位, 再向左移动5个单位到达点N, 则点N 表示的数是 ( )
7.在数轴上, 表示数( )的点到表示数-5的点之间的距离是3.
二.选择题
1.在数轴上, 一点从原点开始, 先向右移动2个单位, 再向左移动3个单位后到达终点, 终点表示的数是( ) .
A. 5
B. 1
C.-1
D.-5
2.下列一组数: 1, 4, 0, -2
1, -3在数轴上表示的点中, 不在原点右边的点的个数为( ) . A. 2 B. 3 C. 4 D. 5
3.数轴上点A 表示-3, 点B 表示1, 则这两点间的点表示的有理数的个数为( ) .
A. 3
B. 2
C.有限个
D.无数个
4.已知数轴上的点A 到原点的距离是2, 那么在数轴上到点A 的距离是3的点所表示的数有( ) .
A. 1个
B. 2个
C. 3个
D. 4个
5.如 图, 在 数 轴 上 点 A 表 示 的 数 可 能 是( )
A. 1. 5
B.-1. 5
C.-2. 6
D. 2. 6
三、解答题
1.一个点从数轴上的原点开始, 先向右移动3个单位长度,再向左移动5个单位长度从图中 可以看出, 终点表示的数是-2, 请同学们参照上图, 完成填空:
( 1) 如果点A 表示数-3, 将点A 向右移动7个单位长度到达点B, 那么终点B 表示的数
是( ) ;
( 2) 如果点A 表示数3, 将点A 向左移动7个单位长度,再向右移动5个单位长度到达点B 表示的数是 ( ).
2.在数轴上的点 M 对应的数是 -23
2 那么与点 M 相距1个单位长度的点N 所对应的数 是多少?
3.画出数轴, 在数轴上画出表示下列数的点, 并按从小到大的顺序用“ <” 连接起来. -5, 2. 5, 0, -121
, 4
4.中国女足名将在自由走活动训练中, 从出发点向东走了100 m, 然后返回向西走了 30 m, 又返回向东走了60 m,问此时她在出发点的哪个方向 相距多远
( 试用数轴进行表示)
5.在数轴上, 点A 表示-6, 点B 表示+4, 请你将线段A B 五等分, 依次分别得到点C 、 D 、 E 、 F, 再写出它们各表示什么数?。

相关文档
最新文档