液压挖掘机工作装置在ADAMS中的运动仿真解析(2021版)
综述基于ADAMS的液压仿真虚拟样机技术

综述基于ADA M S 的液压仿真虚拟样机技术3程 燕,鲍务均(武汉大学动力与机械学院,湖北武汉 430072)摘 要:当前液压驱动在整个机械工业领域得已广泛应用,现代市场竞争对其提出了更高更多更快更省的要求,虚拟样机技术作为此阶段应运而生的应用技术在液压控制分析中显得尤为重要。
文章综述基于ADAMS 的液压虚拟样机技术在机械系统仿真方面的优势和具体操作;并阐述其功能拓展,利用其提供的与其他分析软件的接口来进行互作、协调、统一,最终实现对整个机2电2液系统虚拟实现仿真分析。
关键词:虚拟样机;ADAMS/Hydraulics ;液压;模拟中图分类号:TP391.9 文献标识码:B 文章编号:1007-4414(2005)01-0094-021 研究目的意义虚拟样机(V irtual Pr ot oty pe )技术采用数值仿真形式进行虚拟产品设计开发,仿真模型的参数就是物理样机的设计参数,仿真模型能替代物理样机进行设计参数的测评。
虚拟样机因为参数修改方便,相比物理样机而言是“软模型”,能轻易的实现原型的多样化,柔性好。
虚拟样机技术无需制造实物样机就可预见和预测产品的性能,减免了昂贵成本的物理样机制造研发过程,降低了开发成本,节省了因物理样机制造装配所需要的长期修正时间,同时减少了不合理方案盲目上马的风险。
图1所示为虚拟样机原理图。
图1 虚拟样机原理 在现代工业中液压传动技术几乎应用于所有机械设备的驱动、传动和控制。
例如利用液压传动技术操纵汽车转向和制动,控制飞机飞行,驱动和控制机床、收割机、土木工程机械、采矿机械、食品机械以及医疗机械等。
在某种意义上几乎可以说,在各类现代工业产品中都可以看到液压传动技术的应用[2]。
鉴于液压技术使用的广泛性及现代机械设计生产快速发展的紧迫性,当前用于液压的虚拟样机技术得到高度重视,得以高速发展。
至今,利用计算机对液压元件和系统进行仿真虚拟研究和应用已有30年的历史。
动力学仿真 2

单斗液压挖掘机虚拟样pro/e建模与Adams动力学仿真耿大谦ADAMS即机械系统动力学自动(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.)开发的虚拟样机分析软件。
ADAMS已经被全世界各行各业的数百家主要制造商采用。
根据1999年机械系统动态仿真分析软件国际市场份额的统计资料,ADAMS 软件销售总额近八千万美元、占据了51%的份额,现已经并入美国MSC公司。
虚拟样机的建立由于ADAMS建模过程非常繁琐,但主要擅长于进行仿真分析,故首先,采用三维建模软件pro/e建立挖掘机的几何模型,之后保存为可以与Adams进行转换的特殊格式,导入到Adams环境中,建立虚拟样机进行动力学仿真分析。
导入模型后,原模型的装配关系失效,工作装置的各个部分都是相互独立的存在Adams环境中,这是需要进行布尔运算等操作,重新组装,建立挖掘机的虚拟样机。
在操作之前,需要进行环境和单位设置,这里设置重力加速单位为mm/s^2,其他为国际单位制。
如图所示:单位设置重力设置为了防止在运行仿真的时候,一些小部件在重力的作用下抛落,以及减少运动副化简运算,就要进行布尔运算,由原来的81个部分,合并成11部分。
第二步:为了明显的区别零部件,便于仿真分析,可以将相邻不同的部分赋予不同的颜色,方便辨别不同的零部件,最好重新命名;第三步:添加约束,给作相对滑动的零部件施加移动副,给作相对转动的零部件施加转动副,给固定的构件施加固定副。
其中,液压活塞和液压缸之间施加移动副,其他的施加转动副。
之后施加载荷和驱动;最后需要对模型进行验证。
表工作装置虚拟样机的约束情况表构件约束类型构件约束类型动臂、地面转动副动臂、斗杆转动副动臂液压缸、地面转动副斗杆、斗杆活塞转动副动臂活塞、动臂转动副斗杆、铲斗液压缸转动副动臂、斗杆液压缸转动副斗杆、连杆转动副铲斗、连杆转动副铲斗活塞、连杆转动副连杆、连杆转动副动臂液压缸、动臂活塞移动副斗杆液压缸、斗杆活塞移动副铲斗液压缸、铲斗活塞移动副之后施加载荷和驱动;最后需要对模型进行验证。
(完整版)Adams运动仿真例子--起重机的建模和仿真

1起重机的建模和仿真,如下图所示。
1)启动ADAMS1. 运行ADAMS,选择create a new model;2. modal name 中命名为lift_mecha;3. 确认gravity 文本框中是earth normal (-global Y),units文本框中是MKS;ok4. 选择setting——working grid,在打开的参数设置中,设置size在X和Y方向均为20 m,spacing在X和Y方向均为1m;ok5. 通过缩放按钮,使窗口显示所有栅格,单击F4打开坐标窗口。
2)建模1. 查看左下角的坐标系为XY平面2. 选择setting——icons下的new size图标单位为13. 在工具图标中,选择实体建模按钮中的box按钮4. 设置实体参数;On groundLength :12Height:4Depth:85. 鼠标点击屏幕上中心坐标处,建立基座部分6. 继续box建立Mount座架部件,设置参数:New partLength :3Height:3Depth: 3.5设置完毕,在基座右上角建立座架Mount部件7. 左键点击立体视角按钮,查看模型,座架Mount不在基座中间,调整座架到基座中间部位:①右键选择主工具箱中的position按钮图标中的move按钮②在打开的参数设置对话框中选择Vector,Distance项中输入3m,实现Mount 移至基座中间位置③设置完毕,选择座架实体,移动方向箭头按Z轴方向,Distance项中输入2.25m,完成座架的移动右键选择座架,在快捷菜单中选择rename,命名为Mount8. 选择setting—working grid 打开栅格设置对话框,在set location中,选择pick 选择Mount.cm座架质心,并选择X轴和Y轴方向,选择完毕,栅格位于座架中心选择主工具箱中的视角按钮,观察视图将spacing—working grid ,设置spacing中X和Y均为0.510. 选择圆柱实体绘图按钮,设置参数:New partLength:10mRadius:1m选择座架的中心点,点击左侧确定轴肩方向,建立轴肩,单击三维视图按钮,观察视图11. 继续圆柱工具,绘制悬臂①设置参数:New partLength: 13mRadius: 0.5m②选择Mount.cm作为创建点,方向同轴肩,建立悬臂③右键选择新建的悬臂,在快捷菜单中选择part_4——Rename,命名为boom④选择悬臂,移动方向沿X轴负向,实现悬臂的向左移动:1)右键选择工具箱中的position按钮中的move按钮2)在打开的参数对话框中,选择vector,distance中输入2m,点击悬臂,实现移动⑤右键点击实体建模按钮,在弹出的下一级菜单中选择导圆角工具,设置圆角半径为1.5m⑥左键选择座架上侧的两条边,点击右键,完成倒角12. 选择box按钮图标,创建铲斗①设置参数:New partLength : 4.5Height: 3.0Depth: 4.0②选择悬臂左侧中心点,命名为bucket,建立铲斗③右键选择position按钮下一级按钮move按钮④在打开的参数对话框中,选择vector,distance中输入2.25m,选择铲斗,移动方向沿全部坐标系X轴负方向,实现铲斗的横向移动⑤在主工具箱中,选择三维视图按钮,察看铲斗⑥继续选择move按钮,设置参数中选择vector,distance中输入2.0m,选择铲斗,移动方向沿全部坐标系 Z轴负方向,实现铲斗的纵向移动⑦移动完毕,选择主工具箱中的渲染按钮render,察看三维实体效果,再次选择render按钮,实体图则以线框显示⑧右键点击实体建模按钮,再弹出的下一级按钮中选择倒角工具,在打开的参数设置对话框中,设置倒角Width为1.5m,⑨选择铲斗下侧的两条边,完毕单击右键,完成倒角⑩右键选择实体建模工具按钮,再下一级按钮中选择Hollow按钮,在打开的参数设置对话框中设置参数Thickness为0.25m选择铲斗为挖空对象,铲斗上平面为工作平面,完毕点击右键挖空铲斗3)添加约束根据图示关系,添加链接①在主工具箱中,选择转动副,下方的参数设置对话框中,设置参数2 bod ——1 loc和pick feature②选择基座和座架,然后选择座架中心Mount.cm,旋转轴沿y轴正向,建立座架与基座的转动副③继续用转动副按钮,建立轴肩与座架间的转动副,设置参数为2 bod——1 loc 和Normal to grid,选择轴肩和座架,再选择座架中心点,建立转动副④继续用转动副按钮,建立铲斗与悬臂间的转动副,设置参数为2 bod——1 loc 和Normal to grid,选择铲斗与悬臂,再选择铲斗下侧中心点,建立转动副⑤选择主工具箱中的平动副,设置参数2 bod——1 loc和pick feature,选择悬臂与轴肩,再选择悬臂中心标记点,移动方向沿X轴正方向,建立悬臂和轴肩间的平动副⑥右键点击窗口右下角的Information 信息按钮,选择约束按钮,观察是否按要求施加约束,关闭信息窗口⑦检查完毕,选择仿真按钮,对系统进行仿真,观察系统在重力作用下的运动4)添加运动①选择主工具箱中的旋转运动按钮,右键点击座架中心标记点,在弹出的选择窗口中,选择JOINT_mount_ground,给座驾与基座的转动副添加转动运动②选择俯视图按钮,观察旋转运动副的箭头图标③右键点击该运动,在弹出的快捷菜单中选择motion_mount_ground——modify在修改对话框中,修改function项为360d*time④重复上述动作,在轴肩和座架之间建立旋转运动Motion_shoulder_ground,⑤右键点击该运动,在弹出的快捷菜单中选择motion_shoulder_ground——modify在修改对话框中,修改function项为-STEP(time,0,0,0.10,30d)⑥重复上述动作,在铲斗和悬臂之间建立旋转运动Motion_bucket_boom⑦设置运动函数为45d*(1-cos(360d*time))⑧右键点击主工具箱中旋转运动按钮,选择下一级平行运动按钮,点击悬臂中心平动副,在悬臂和座架间建立平行运动⑨设置平行运动函数为STEP(time,0.8,0,1,5)⑩选择主工具箱中的仿真按钮,设置仿真参数END Time:1;Steps:100,进行仿真5)测量和后处理①鼠标右键点击铲斗,打开右键快捷键,选择测量measure②系统打开参数设置对话框,将Characteristic设置为CM Point,Component 设置为Y,测量Y向位移。
基于ADAMS的农用挖掘机工作装置的动力学仿真

基于ADAMS的农用挖掘机工作装置的动力学仿真郑东京;吕新民;秦贞沛;戚烈【摘要】为了进一步提高农用挖掘机性能,降低生产成本,以农用挖掘机工作装置为研究对象,在Pro/Engineer中建立了三维模型,将模型导入到ADAMS中建立了挖掘机工作装置的虚拟样机.对其进行了动力学仿真分析,得到了在动臂受力最大的工况下,挖掘机进行转斗挖掘时动臂上4个铰接点受力的变化规律曲线,分析结果为进行动臂的有限元分析提供了依据.【期刊名称】《农机化研究》【年(卷),期】2011(033)005【总页数】4页(P52-55)【关键词】农用挖掘机;虚拟样机;动力学仿真【作者】郑东京;吕新民;秦贞沛;戚烈【作者单位】西北农林科技大学,机械与电子工程学院,陕西,杨凌,712100;西北农林科技大学,机械与电子工程学院,陕西,杨凌,712100;西北农林科技大学,机械与电子工程学院,陕西,杨凌,712100;西北农林科技大学,机械与电子工程学院,陕西,杨凌,712100【正文语种】中文【中图分类】TP391.910 引言农用挖掘机是一种广泛使用的农田水利建设施工机械,在减轻繁重的体力劳动,保证工程质量,加快建设速度等方面起着十分重要的作用。
工作装置是挖掘机直接承受工作载荷的主要部件,由动臂机构、斗杆机构、铲斗机构3部分组成。
其结构强度直接影响到挖掘机的可靠性和工作性能。
工作装置在作业过程中经常启动、制动、换向,且外负载变化很大,工作条件恶劣,冲击和振动多,因此对工作装置提出了较高的设计要求。
但工作装置作为一个多体系统,按照传统方法进行动力学分析相当繁琐,且很难优化,采用基于ADAMS平台的虚拟样机技术为工作装置的动力学仿真分析提供了一个简洁、高效的解决方案。
本文首先在Pro/E中建立了农用挖掘机工作装置的三维模型,然后将其导入到ADAMS软件中建立工作装置的虚拟样机。
利用STEP函数驱动各油缸运动,模拟工作装置外载荷的加载、卸载过程,进行动力学仿真后,得到了动臂上4个铰接点的受力变化曲线。
ADAMS软件在工程机械系统仿真中的应用案例

无弹簧时
分析模型
座位上下运动曲线
理论计算简介 对于座位体,质量为M,整体力平衡式可写为:
MX CX KX MG F 0
解上述方程即可得到座位的运动,并加以绘 制曲线。
ADAMS软件分析过程简介
建立模型样机
第一步:可简化建立样机,座位为一长 方体,底盘也简化为一长方体。注意:简化 时要保证质心位置不变、质量不变。
第四步:修改个零部件的物理特性。视图在由 CAD软件调入ADAMS软件后,其各部件的物理 特性丢失,只保留了几何特性,所以,为进行 系统仿真,需要对每一个零部件添加材料特性, 步骤如下:
将鼠标放在要修改的零部件上,点击右键, 依次选择:浮动菜单的第一项part—modify, 打开修改对话框;
此处选择 质量特征
第五讲 ADAMS软件在工程机械 系统仿真中的应用
一、ADAMS应用总述 二、综合实例
刚体运动方程
rT
mr''
F
'T
J'
.
'
~
'
J''
n'
0
Hale Waihona Puke 点在参考坐标系中位置表示及位移、速度、加速 度表示
r r0 As
r' r0' As
r''
r0''
''
As
利用adams仿真软件对机械系统进行仿真过程:
建模
*利用Adams软件建模工具
系统几何建模
直接建立样机模型 *利用其它软件建立模型
后输入Adams软件
施加约束和运动 施加载荷
测量调试
液压挖掘机工作装置的建模与仿真分析

。
纵观我国液压挖掘机 30 余年的发展历史,大致可以分成以下几个阶段: (1)开发阶段(1967 年—1977 年)。以测绘仿制为主的开发,通过多年坚持不懈的努力,克服一个一 个的困难, 有少量几种规格的液压挖掘机终于获得初步成功, 为我国挖掘机行业的形成和发展迈出了重 要的一步。 (2)液压挖掘机发展、提高并全面替代机械挖掘机阶段(1978~1986 年)。这个阶段通过各主机生产厂 引进技术(主要是德国挖掘机制造技术)的消化、吸收和移植,使我国液压挖掘机产品的性能指标全面提 高到国际 70 年代末 80 年代初期的水平。全国液压挖掘机平均年产量达到 1230 台。 (3)液压挖掘机生产企业数量增加,新加入挖掘机行业的国有大、中型企业以技贸结合,合作生产 方式联合引进日本挖掘机制造技术(1987 年~1993 年)。由于国内对挖掘机需求量的不断提高,新加入 挖掘机行业的企业通过开发和引进挖掘机制造技术, 其产品批量或小批量的投放国内市场或出口, 打破 了多年来主要由六大家挖掘机生产企业垄断国内挖掘机市场的局面, 引进了有益于提高产品质量、 性能 和产量的良性竞争。这个期间国内液压挖掘机的年均产量提高到 2000 余台。 (4)国内液压挖掘机供需矛盾日益扩大,广大用户为了提高施工质量和按期完成施工任务,对使用 高质量、高水平、高效率挖掘机的兴趣日趋浓厚。国外各著名挖掘机制造厂商纷纷前来中国创办合资、 独资挖掘机生产企业。从 1994 年开始,特别到 1995 年在我国挖掘机行业掀起了一股不小的合资浪潮. 其中美国卡特彼勒公司率先在徐州金山桥开发区建立了生产液压挖掘机的合资企业, 随后日本小松制作 所、日立建机株式会社、神户制钢所、韩国大宇重工业、现代重工业以及德国利勃海尔公司等都相继在 中国建立了合资、独资挖掘机生产企业,生产具有世界先进水平的多种型号和规格的液压挖掘机[7]。
液压挖掘机工作装置的动力学分析及仿真

26
机械传动
2 l2 H + l2 H] - L 3 2 l HlH] [ T] [ [ T2] : Tl] 等效力矩阵为
2005 年
等效有限元方法, 表示单元节点号与系统节点号之间 为 关系的关联阵 [ Nm ]
x3 :
[ F ]:[ Ml F cos "3
0
0
T 0]
M2
0
0
M3
F sin "
8
曲秀全 . 单自由度平面连杆机构等效转动惯量的计算公式 . 哈尔滨 工业大学学报,2004 . 5 610 ~ 612
图4
动臂的仿真曲线
9 车仁炜 . 一种自动仓储货运车工作装置的设计及动力分析 . 大连铁 道学院学报,2004 . 2 . 9 ~ 12 10 王国强, 张进平 . 虚拟样机技术及其在 ADAMS 上的实践 . 西安: 西 北工业大学出版社, 2002 收稿日期: 20041205 资助项目: 黑龙江省自然科学基金资助项目 (F01 - 23) 哈尔滨工业大学跨学科交叉基金资助项目 (HTT. MD 2000 . 17) 作者简介: 车仁炜 (1964 - ) , 女, 黑龙江哈尔滨人, 博士研究生
[6, 7] 本文采用等效元素法 对液压挖掘机工作装置
A l lI ! (! 2 2 (1)
进行动力分析, 并在 ADAMS 上进行动力学仿真, 改动 了模型后可以直接在仿真中把改动体现出来; 调整了 某设计参数或某关节的运动规律后无需改动程序就可 以直接进行运动学与动力学的重新计算。
(2)
1
!.!
动力学建模
等效原则 等效元素法的基本思想是把有限元方法与等效的
式中
— —系统等效质量阵, 它由单元质量阵和表 M— 示系统可能位移与单元节点坐标之间关 系的关联阵 [ Nm ] 所决定。 — —雅可比阵, 它建立了广义坐标和为推导 T— 和建立有限元模型的方便而设定的系统 "Ri 。 运动自由度之间的关系 [ T] = "gS — —广义坐标阵 g—
D-H坐标系下挖掘机工作装置运动学建模与仿真

D-H坐标系下挖掘机工作装置运动学建模与仿真
陈支;邹树梁;唐德文;谢宇鹏
【期刊名称】《机械设计与制造》
【年(卷),期】2014(000)011
【摘要】应用机器人运动学求解常用的D-H法建立挖掘机工作装置4自由度运动学数学模型,分析了挖掘机工作装置运动过程中铲斗齿尖位移、速度、加速度与空
间位置的运动关系.在此基础上采用Pro/E和大型有限元软件ADAMS建立挖掘机工作装置虚拟样机模型.对挖掘机工作装置进行了运动学仿真,得到了铲斗齿尖位移、速度、加速度动态曲线,并对动态曲线进行了分析,验证了运动学模型的正确性.这种方法简化了解析计算,同时求得的解具有使用性和代表性,对挖掘机工作装置的设计
具有普遍的适用意义.
【总页数】4页(P188-190,195)
【作者】陈支;邹树梁;唐德文;谢宇鹏
【作者单位】南华大学核应急安全技术与装备湖南省重点实验室,湖南衡阳421001;南华大学核应急安全技术与装备湖南省重点实验室,湖南衡阳421001;南
华大学核应急安全技术与装备湖南省重点实验室,湖南衡阳421001;南华大学核应
急安全技术与装备湖南省重点实验室,湖南衡阳421001
【正文语种】中文
【中图分类】TH16;U469.6+94
【相关文献】
1.步履式挖掘机工作装置运动学建模及仿真 [J], 陈秀峰
2.挖掘机工作装置的运动学建模与仿真 [J], 袁开磊
3.基于D-H矩阵的挖斗可偏转挖掘机工作装置运动学建模与分析 [J], 张晴晴;谢傲;龚智强
4.挖掘机工作装置运动学建模与仿真 [J], 徐兵;朱晓军;刘伟;刘英杰
5.挖掘机工作装置的运动学建模与仿真 [J], 袁开磊;史青录;曲德韵
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 安全技术 )
单位:_________________________
姓名:_________________________
日期:_________________________
精品文档 / Word文档 / 文字可改
液压挖掘机工作装置在ADAMS中的运动仿真解析(2021版) Technical safety means that the pursuit of technology should also include ensuring that people
make mistakes
液压挖掘机工作装置在ADAMS中的运动仿
真解析(2021版)
虚拟样机技术在使用过程中为液压挖掘机设计提供了有效的方法和手段,在使用过程中受到了条件限制,较少的单位会对运行学进行仿真研究,降低了色剂方案可行性。
文章基于动力学仿真软件ADAMS建立起了挖掘机工作装置虚拟系统,更好的完成了前期处理工作,使得建模正确性更高。
液压缸顺序工作的运动仿真分析
1.1.基于尺寸确定
当液压的挖掘机工作装置尺寸以及基本结构都确定下来之后,该挖掘机的工作范围也基本确定下来。
简单理解就是挖掘机铲斗齿尖轨迹的包络图得以确定。
在包括图中,有些部分区间靠近的比较紧密,有的会深入到挖掘机停点底部下,这一个位置虽然还可以挖
掘到,但是在挖掘过程中会引起土壤坍塌,从而影响机械运行稳定,使得施工安全性受到影响。
在以上动臂液压缸、斗杆液压缸和铲斗液压缸运动仿真分析过程中,选择的挖掘机工作顺序和方式一般都是在装置范畴内,这里讲解的顺序指的是,挖掘工作进行时,各个油缸都是根据一定顺序进行收缩或者伸出。
例如:挖掘进行时,需要先下降动动臂,再收回斗杆,这个动作完成之后,在使用铲斗进行挖掘。
1.2.顺序工作运动仿真实现的路线
仿真路线是,在斗杆液压缸、动臂液压缸、铲斗液压缸上进行设置,一般在不同的时间段内,它的运动驱动函数都不同,需要进行调节处理,使得各缸在相应的工作极限范围内相互运行,这样就可以获得挖掘机的工作范围。
可以在液压缸移动副约束处添加移动驱动,改变运动方式,将其更换成位移运动方式。
运动的函数输入时,需要注意相匹配的的STEP函数。
对液压缸进行STEP函数值设置时,应该满足运动函数需求。
当完成了函数值输入之后,在运行状态下可以启动ADAMS软件的仿真模块。
1.3.仿真过程
当工作面从最初的范围逐渐移动时,一般最初的指的是停机状态下。
可以适当的对斗杆、铲斗液压缸进行调整,将其保持在全缩的状态中,逐渐对动臂液压缸拉伸,将其缩小到CD弧线上。
这个伸缩过程需要得到弧线支撑,基于保障弧线运动轨迹基础上做好控制工作。
其中在进行一次姿态调整之后,作业范围会缩小,而且包络图中的各个点会逐渐深入挖掘机的底部,在这个范围上可以实现挖掘,但是可能出现塌陷实现,导致机械无法正常施工。
因此,一般除了有条件的挖沟作业之外进行使用,其他施工一般都不会使用。
可以在模型中建立起一个处于回转中心轴的三维坐标,将坐标点确定为(608,.0,0.0,1254.3306),这样就可以测量出方向移动值,可以得出这个位置的位移,这样便可以达到最大高度值,其实这个测量方法比较简单,也比较容易掌握。
根据曲线变化得出,从得到的曲线中得出最终的数值,可以查看到最大值,平均值以及最小值等。
工作装置模型的运动学仿真分析
2.1.参数范围
运动学仿真中的参数范围确定一般都包含速度、位移以及加速度,这些参数会有一个变化范围。
在进行运动学仿真分析中,需要基于ADAMS/Solver求解,就可以得出代数方程。
因此,在进行仿真系统自由度确认时,一般自由度的必须为零。
如果这个时候会考虑到物体的惯性以及运动质量,那么运动仿真还需要计算出运动需要的力矩以及需要的力度。
除了这些,影响运动仿真的因素还比较多,需要在检验中得出,因此需要在运动力学仿真运行之前,需要做好仿真分析工作。
虚拟装置上样机,模拟出运动态势,这样就可以充分的掌握了运动学仿真规律。
为了更加精确的描述出驱动运件的运动规律,应该将影响因素摒弃。
例如:当挖掘机动臂液压缸不断收缩中,当其收缩到一定位置上便不运动时,这个运动并不是简单的运动,它包含的运动规律比较多。
这是因为斗杆液压缸和铲斗液压缸伸缩到相应位置上时,这两个物体作用力相互进行挖掘,当力度不一致时便出现不运动现象。
这些一般都是自由度问题,在处理问题时,可以将运动分为几个过程,每个过程都有一个自由度进行支配。
当运动持续时,当达到一定状态下时,它会回到一个初始位置。
在进行分割处理时,可以清晰的看到问题所在,从而更加明确的研究出运动规律和运动过程。
对挖掘机进行动力学研究,分别从仿真角度深入解析,从而确定出液压缸运动顺序,提升仿真分析效果。
在这过程中,还得出了相应的参数尺寸。
对应的工作曲线图也得出,在实际生产中提供了可靠的数据,保障数据效益和质量。
云博创意设计
MzYunBo Creative Design Co., Ltd.。