第三章温度传感器1-2

合集下载

第三章 传感器

第三章 传感器

第三章常用的传感器§3.1传感器的分类一、传感器的定义通俗的讲,传感器就是将被测信息转换成某种信号的器件。

也就是将被测物理量转换成于之相对应的、容易检测、传输或处理的信号的装置,称之为传感器。

传感器通常直接作用于被测量。

传感器是对信号进行感受与传送的装置,它是测试装置的输入环节,因此传感器的性能直接影响着整个测试装置的工作可靠性。

近来,随着测量、控制及信息技术的发展,传感器作为这个领域内的一个重要构成因素,被视为90年代的重要技术之一受到了普遍的重视。

深入研究传感器的原理和应用,研制新型传感器,对于社会生产、科学技术和日常生活中的自动测量和自动控制的发展,以及在科学技术领域里实现现代化都有重要意义。

二、传感器的组成传感器一般由敏感元件、传感元件和测量电路三个主要部分组成,有时还加上辅助电源。

通常可用图表示如下:图4-1 传感器的组成由于其用途的不同或是结构原理的不同,其繁简程度相差很大。

因此,传感器的组成将依不同情况而有差异。

敏感元件——传感器的核心,它直接感受被测量(一般为非电量)并转换成信号形成,即输出与被测量成确定关系的其它量的元件,如膜片、热电偶,波纹管等。

传感元件——又称变换器,是传感器的重要组成部分。

传感元件可以直接感受被测量(一般为非电量)而输出与被测量成确定关系的电量。

如热电偶和热敏电阻等。

传感元件也可以不只感受被测量,而只是感受与被测两或确定关系的其它非电量;如应变式压力传感器的电阻片,并不直接感受压力,只是感受与被测压力成确定关系的应变,然后输出电量,在多数情况下,使用的就是这种传感元件。

测量电路——能把传感元件输出的电信号转换为便于显示、记录、控制和处理的有用电信号的电路。

测量电路视传感元件的类型而定。

三、传感器的分类在生产和科研中应用的传感器种类很多,一种被测量有时可以用集中传感器来测量,用一种传感器往往可以测量多种物理量。

为了对传感器有一个概括的认识,对传感器进行研究是很必要的。

sensor温度传感器

sensor温度传感器

接 触 式
热电效应 接 触 式 频率变化 光学特性 声学特性 非 接 触 式 亮度法 热辐射 — 全辐射法 比色法 红外法 气流变化
3.2 膨胀式传感器
1.玻璃温度计 2.压力温度计 3.双金属温度计 膨胀式测温是基于物体受热时产生膨胀的原理 膨胀式温度计种类很多,按膨胀基体可分成液 体膨胀式玻璃温度计、液体或气体膨胀式压力 温度计及固体膨胀式双金属温度计。
温度 ℃
0 100 200 300 400
(参考端温度为0℃)
60 70 80 90
0
10
20
30
40
50
热 电 动 势 mV 0.000 4.095 8.137 12.207 16.395 0.397 4.508 8.537 12.623 16.818 0.798 4.919 8.938 13.039 17.241 1.203 5.327 9.341 13.456 17.664 1.611 5.733 9.745 13.874 18.088 2.022 6.137 10.151 14.292 18.513 2.436 6.539 10.560 14.712 18.938 2.850 6.939 10.969 15.132 19.363 3.266 7.338 11.381 15.552 19.788 3.681 7.737 11.793 15.974 20.214
E AB (T , T0 ) E AC (T , T0 ) ECB (T , T0 )
A A C — T B
T
B
T0 = T
C
T0
T0
由于铂的物理化学性质稳定、人们多采用铂作为热电偶测温回路中TC为热电极上某点温度; 热电偶在温度为T、T0 时的热电势EAB(T,T0 )等于接 点温度 T、TC 和 TC、T0 时的热电势的代数和, A-B热电偶的热电势为:

2014秋(配粤教版,选修3-2)物理同步导学课件:第三章 传感器3.1-2

2014秋(配粤教版,选修3-2)物理同步导学课件:第三章 传感器3.1-2

思考:如图 3-1-5 所示为乳牛的自动喂水器,当液面降低时, 阀门在浮球的带动下打开,水自动流出来,试说明该装置是不是 传感器,并简单叙述原因.
乳牛自动喂水器 图 3-1-5
【答案】由于该装置没有把非电学信号转化为电学信号,所 以严格来讲不属于传感器.
知识点 1 热敏电阻和金属热电阻对比 1.热敏电阻或金属热电阻能够把温度这个热学量转换为电 阻这个电学量,它们有什么区别? 从温度变化对导电性能的影响上来讲,温度升高,热敏电阻 减小;金属热电阻增大.从化学稳定性上讲,金属热电阻的化学 稳定性好,测温范围大,而热敏电阻的灵敏度较好.
2.研究光敏电阻的光敏特性
图 3-1-4 (1)按照图 3-1-4 所示将光敏电阻连入电路中,多用电表的两 支表笔分别与光敏电阻的两端相连. (2)将多用电表的选择开关置于欧姆挡,选择合适的倍率,并 进行欧姆调零.
(3)在正常的光照下,把测得的电阻值填入下表中. (4)将手张开,放在光敏电阻的上方,上下移动手掌,观察阻 值的变化,记录不同情况下的阻值,将测量结果填入下表中. 光照强度 强 中 弱 R/Ω (5)结论:光敏电阻的阻值被光照射时发生变化,光照增强电 阻变小,光照减弱电阻变大.
感觉器官 一定关系
电学量
电学量 电学量
常见传感器 加速度传感器、 ______ 位移传感器、 速度 传感器、 按被测 压力传感器、______ 温度 传感器、负荷传感器、 量划分 扭矩传感器 电阻应变式传感器、压电式传感器、______ 电容式 按工作原 涡流式传感器、动圈式传感器、磁 传感器、______ 理划分 电式传感器、差动变压器式传感器 热电式 有源传感器、 压电式传感器、 ______传感器、 按能量传递 电磁式传感器 方式划分 无源传感器、________ 电阻式 传感器、电容式传感 电感式传感器 器、______

温度传感器(基于DS1820)

温度传感器(基于DS1820)

一、温度的基本概念 热平衡:温度是描述热平衡系统冷热程度的物理 量。 分子物理学:温度反映了物体内部分子无规则运 动的剧烈程度。 能量:温度是描述系统不同自由度间能量分配状 况的物理量。 表示温度大小的尺度是温度的标尺,简称温标。 热力学温标 国际实用温标 摄氏温标 华氏温标
1.热力学温标
1848年威廉·汤姆首先提出以热力学第二定律为基础,建 立温度仅与热量有关,而与物质无关的热力学温标。因 是开尔文总结出来的,故又称开尔文温标,用符号K表 示。它是国际基本单位制之一 。 根据热力学中的卡诺定理,如果在温度T 根据热力学中的卡诺定理,如果在温度 1的热源与温度 的冷源之间实现了卡诺循环, 为T2的冷源之间实现了卡诺循环,则存在下列关系式
第二节 热电偶温度传感器
温差热电偶(简称热电偶)是目前温度测量中使用最 普遍的传感元件之一。它除具有结构简单,测量范围 宽、准确度高、热惯性小,输出信号为电信号便于远 传或信号转换等优点外,还能用来测量流体的温度、 测量固体以及固体壁面的温度。微型热电偶还可用于 快速及动态温度的测量。
★热电偶的工作原理 ★热电偶回路的性质 ★热电偶的常用材料与结构 ★冷端处理及补偿 热电偶的选择、 ★热电偶的选择、安装使用和校验
三、温度传感器的发展概况 公元1600年,伽里略研制出气体温度计。一百 年后,研制成酒精温度计和水银温度计。随着 现代工业技术发展的需要,相继研制出金属丝 电阻、温差电动式元件、双金属式温度传感器。 1950年以后,相继研制成半导体热敏电阻器。 最近,随着原材料、加工技术的飞速发展、又 陆续研制出各种类型的温度传感器。 接触式温度传感器 非接触式用
绝对值 测定用
温度 测定用
电 、测温电阻器、 阻、 温度计、 度计、玻璃制温度计、 、 对值±1~ 感器、晶体 、 体 电 传感器、 ±5℃

高中物理 第三章 传感器 生活中的传感器课件 教科版选修32

高中物理 第三章 传感器 生活中的传感器课件 教科版选修32
高中物理·选修(xuǎnxiū)3-2·人教版
第三章 传感器
学案2 生活中的传感器 简单(jiǎndān)的光控和温控电路
(选学) 第一页,共21页。
1 了解洗一衣些机简、单电的冰自箱动中控的制传电感路器. .
2
了解家用报警器的原理.
3 了解传感器与人的感官的类比,以及它们各自的优势.
4
学习
知识(zhī
特性,PTC 元件具有发热、保温双重功能.对此, 图6
以下判断正确的是
()
①通电后,其电功率先增大后减小 ②通电后,其电功率先
减小后增大 ③当其产生的热量与散发的热量相等时,温度
保持在 t1 不变 ④当其产生的热量与散发的热量相等时,温 度保持在 t1 和 t2 之间的某一值不变 A.①② B.②③ C.②④ D.①④

()
A.φ2>φ3 C.φ2=φ3
学习
知识(zhī
图4 B.φ2<φ3 D.无法判断
学习(xuéxí) 典例精析 第十一页,共21页。
课堂小结
自我检测
解析 规定电源负极的电势为零,则 φ3=RE3+R4R4保持不变.而 φ2 =R1+ERR2g+Rg=R1+RgER2+1,当有烟雾时,光敏电阻 Rg 增大,φ2 增大.所以当 φ2>φ3 时,控制电路开始工作.
学习
知识(zhī 学习
典例精析
第八页,共21页。
课堂小结
自我检测
【例 2】 如图 2 所示为冲击防盗报警器的冲击传感器的结构示意图. 在外壳的绝缘基板上固定一个螺栓,螺栓上有一个弹簧,弹簧的 顶端焊有一个钢球,它们都是电的良导体,外壳也使用电的良导 体制成.请简述这种装置防盗的原理.
图2

《图解汽车传感器结构原理与检修》课件 7温度传感器

《图解汽车传感器结构原理与检修》课件 7温度传感器

(2)就车检测法 如图7-7所示,拔下进气温度传感器插头, 接通点火开关,测量插头上THA端子与E2端子之间的电压值, 该电压应为5V,若无电压,则应检查ECU插接器上THA端子 与E2端子之间的电压值。若此电压为5V,则表明ECU与传感 器之间的连接线路有故障;若无5V电压,则为ECU有故障。 插回插头,起动发动机,测量传感器THA端子与E2端子之间 在不同温度下的电压值,该电压值应在0.1~4.5V之间变化 (车型不同略有差异,但变化规律基本上是相同的)。如果 测量值与规定值不符,则说明进气温度传感器有故障或者损 坏,应予以更换。
桑塔纳200GLi AFE型发动机进气温度传感器(G72)与进气 压力传感器一体,安装于节气门之后的进气管上。桑塔纳 2000GSi AJR发动机也在进气总管上装有进气温度传感器 (G72),用于修正喷油量和点火提前角。图7-5所示为桑塔 纳2000GSi AJR发动机进气温度传感器安装位置及与ECU的连 接电路。进气温度传感器(G72)的接线端子2通过0.5mm2 导线与J220的T80/67端子相连,是搭铁端;G72的端子1与 控制单元J220的T80/54端子相连为参考电压输出端,同时也 是信号输入端。
(3)EGR(废气再循环)温度传感器 安装在废气再循环管 道上,位于EGR阀之后,用于监测EGR系统的工作。
二、温度传感器的结构
热敏电阻式温度传感器的结构型式如图7-3所示,主要由热敏 电阻、金属引线、接线插座和壳体等组成。
热敏电阻是温度传感器的主要部件,汽车用热敏电阻是在陶 瓷半导体材料中掺入适量金属氧化物,并在1000℃以上的高 温条件下烧结而成。控制掺入氧化物的比例和烧结温度,即 可得到不同特性的热敏电阻,从而满足使用要求。例如,如 果测量发动机冷却液温度,则热敏电阻的工作温度为-30℃~ 130℃;如果发动机的排气温度,热敏电阻的工作温度则为 600~1000℃。

传感器与检测技术-教案

传感器与检测技术-教案

传感器与检测技术-教案第一章:传感器概述1.1 教学目标了解传感器的定义、分类和作用理解传感器的基本原理和特性掌握传感器的选用和安装方法1.2 教学内容传感器的定义和分类传感器的基本原理和特性传感器的选用和安装方法1.3 教学方法讲授传感器的基本概念和分类分析实际案例,讲解传感器的工作原理和特性动手实验,演示传感器的选用和安装方法1.4 教学评估课堂问答,检查学生对传感器定义和分类的理解分析案例,评估学生对传感器工作原理和特性的掌握程度实验报告,评估学生对传感器选用和安装方法的掌握程度第二章:温度传感器2.1 教学目标了解温度传感器的定义、分类和作用理解温度传感器的基本原理和特性掌握温度传感器的选用和安装方法2.2 教学内容温度传感器的定义和分类温度传感器的基本原理和特性温度传感器的选用和安装方法2.3 教学方法讲授温度传感器的基本概念和分类分析实际案例,讲解温度传感器的工作原理和特性动手实验,演示温度传感器的选用和安装方法2.4 教学评估课堂问答,检查学生对温度传感器定义和分类的理解分析案例,评估学生对温度传感器工作原理和特性的掌握程度实验报告,评估学生对温度传感器选用和安装方法的掌握程度第三章:压力传感器3.1 教学目标了解压力传感器的定义、分类和作用理解压力传感器的基本原理和特性掌握压力传感器的选用和安装方法3.2 教学内容压力传感器的定义和分类压力传感器的基本原理和特性压力传感器的选用和安装方法3.3 教学方法讲授压力传感器的基本概念和分类分析实际案例,讲解压力传感器的工作原理和特性动手实验,演示压力传感器的选用和安装方法3.4 教学评估课堂问答,检查学生对压力传感器定义和分类的理解分析案例,评估学生对压力传感器工作原理和特性的掌握程度实验报告,评估学生对压力传感器选用和安装方法的掌握程度第四章:流量传感器4.1 教学目标了解流量传感器的定义、分类和作用理解流量传感器的基本原理和特性掌握流量传感器的选用和安装方法4.2 教学内容流量传感器的定义和分类流量传感器的基本原理和特性流量传感器的选用和安装方法4.3 教学方法讲授流量传感器的基本概念和分类分析实际案例,讲解流量传感器的工作原理和特性动手实验,演示流量传感器的选用和安装方法4.4 教学评估课堂问答,检查学生对流量传感器定义和分类的理解分析案例,评估学生对流量传感器工作原理和特性的掌握程度实验报告,评估学生对流量传感器选用和安装方法的掌握程度第五章:位移传感器5.1 教学目标了解位移传感器的定义、分类和作用理解位移传感器的基本原理和特性掌握位移传感器的选用和安装方法5.2 教学内容位移传感器的定义和分类位移传感器的基本原理和特性位移传感器的选用和安装方法5.3 教学方法讲授位移传感器的基本概念和分类分析实际案例,讲解位移传感器的工作原理和特性动手实验,演示位移传感器的选用和安装方法5.4 教学评估课堂问答,检查学生对位移传感器定义和分类的理解分析案例,评估学生对位移传感器工作原理和特性的掌握程度实验报告,评估学生对位移传感器选用和安装方法的掌握程度第六章:光学传感器6.1 教学目标了解光学传感器的定义、分类和作用理解光学传感器的基本原理和特性掌握光学传感器的选用和安装方法6.2 教学内容光学传感器的定义和分类光学传感器的基本原理和特性光学传感器的选用和安装方法6.3 教学方法讲授光学传感器的基本概念和分类分析实际案例,讲解光学传感器的工作原理和特性动手实验,演示光学传感器的选用和安装方法6.4 教学评估课堂问答,检查学生对光学传感器定义和分类的理解分析案例,评估学生对光学传感器工作原理和特性的掌握程度实验报告,评估学生对光学传感器选用和安装方法的掌握程度第七章:超声波传感器7.1 教学目标了解超声波传感器的定义、分类和作用理解超声波传感器的基本原理和特性掌握超声波传感器的选用和安装方法7.2 教学内容超声波传感器的定义和分类超声波传感器的基本原理和特性超声波传感器的选用和安装方法7.3 教学方法讲授超声波传感器的基本概念和分类分析实际案例,讲解超声波传感器的工作原理和特性动手实验,演示超声波传感器的选用和安装方法7.4 教学评估课堂问答,检查学生对超声波传感器定义和分类的理解分析案例,评估学生对超声波传感器工作原理和特性的掌握程度实验报告,评估学生对超声波传感器选用和安装方法的掌握程度第八章:无线传感器网络8.1 教学目标了解无线传感器网络的定义、分类和作用理解无线传感器网络的基本原理和特性掌握无线传感器网络的选用和安装方法8.2 教学内容无线传感器网络的定义和分类无线传感器网络的基本原理和特性无线传感器网络的选用和安装方法8.3 教学方法讲授无线传感器网络的基本概念和分类分析实际案例,讲解无线传感器网络的工作原理和特性动手实验,演示无线传感器网络的选用和安装方法8.4 教学评估课堂问答,检查学生对无线传感器网络定义和分类的理解分析案例,评估学生对无线传感器网络工作原理和特性的掌握程度实验报告,评估学生对无线传感器网络选用和安装方法的掌握程度第九章:传感器信号处理与分析9.1 教学目标了解传感器信号处理与分析的基本概念、方法和作用理解传感器信号处理与分析的基本原理和特性掌握传感器信号处理与分析的方法和技巧9.2 教学内容传感器信号处理与分析的基本概念和方法传感器信号处理与分析的基本原理和特性传感器信号处理与分析的方法和技巧9.3 教学方法讲授传感器信号处理与分析的基本概念和方法分析实际案例,讲解传感器信号处理与分析的基本原理和特性动手实验,演示传感器信号处理与分析的方法和技巧9.4 教学评估课堂问答,检查学生对传感器信号处理与分析的基本概念和方法的理解分析案例,评估学生对传感器信号处理与分析的基本原理和特性的掌握程度实验报告,评估学生对传感器信号处理与分析的方法和技巧的掌握程度第十章:传感器在工程应用中的案例分析10.1 教学目标了解传感器在工程应用中的重要性理解传感器在不同工程领域的应用案例掌握传感器在工程应用中的选型和应用方法10.2 教学内容传感器在工程应用中的重要性传感器在不同工程领域的应用案例传感器在工程应用中的选型和应用方法10.3 教学方法讲授传感器在工程应用中的重要性分析实际案例,讲解传感器在不同工程领域的应用动手实验,演示传感器在工程应用中的选型和应用方法10.4 教学评估课堂问答,检查学生对传感器在工程应用中的重要性的理解分析案例,评估学生对传感器在不同工程领域应用的掌握程度实验报告,评估学生对传感器在工程应用中的选型和应用方法的掌握程度重点和难点解析1. 传感器的基本概念和分类:重点关注传感器定义和分类的理解,以及传感器的功能和作用。

传感器课程设计报告

传感器课程设计报告

传感器课程设计报告一、课程目标知识目标:1. 学生能理解传感器的定义、分类及其在日常生活和科技领域的作用;2. 学生能够掌握不同传感器的工作原理,如温度传感器、光敏传感器、压力传感器等;3. 学生能够了解传感器在智能控制系统中的应用,并能分析其优缺点。

技能目标:1. 学生能够正确使用传感器进行数据采集,并处理传感器数据;2. 学生能够运用已学知识设计和制作简单的传感器应用电路;3. 学生能够运用传感器解决实际问题,培养创新意识和动手能力。

情感态度价值观目标:1. 学生对传感器技术产生兴趣,培养主动探究科学技术的积极态度;2. 学生通过学习传感器课程,认识到传感器技术在现实生活中的重要性,增强社会责任感和使命感;3. 学生在小组合作中,学会相互尊重、沟通与协作,培养团队精神。

课程性质:本课程为选修课程,旨在拓展学生的知识面,提高学生的实践能力和创新能力。

学生特点:学生为八年级学生,已具备一定的物理知识和动手能力,对新鲜事物充满好奇心。

教学要求:结合学生特点,注重理论与实践相结合,强调学生的参与度和实践操作,培养学生的学习兴趣和创新能力。

通过本课程的学习,使学生能够将所学知识应用于实际生活中,提高解决问题的能力。

后续教学设计和评估将围绕以上具体学习成果展开。

二、教学内容根据课程目标,教学内容主要包括以下三个方面:1. 传感器基础知识:- 传感器的定义、分类和作用;- 常见传感器的原理和特点。

对应教材章节:第一章“传感器概述”2. 传感器工作原理及实践:- 温度传感器、光敏传感器、压力传感器等的工作原理;- 传感器在智能控制系统中的应用实例;- 传感器数据采集与处理方法。

对应教材章节:第二章“传感器工作原理”和第三章“传感器应用实例”3. 传感器创新实践:- 设计和制作简单的传感器应用电路;- 解决实际问题的传感器应用方案;- 小组合作,进行创新性传感器项目设计。

对应教材章节:第四章“传感器创新实践”教学进度安排:1. 第1-2课时:传感器基础知识学习;2. 第3-4课时:传感器工作原理及实践;3. 第5-6课时:传感器创新实践。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温度 标准用 特 征 测定精度 ±0.1~ ±0.5℃ 测定精度 ±0.5~ ±5℃ 传 感 器 名 称 铂测温电阻、石英晶体振动 器、玻璃制温度计、气体温 度计、光学高温计
测 定 精
热电偶、测温电阻器、热敏电 阻、双金属温度计、压力式温 度 度计、玻璃制温度计、辐射传 管理温度 相对值±1~ 感器、晶体管、二极管、半导 体集成电路传感器、可控硅 测定用 ±5℃
EAB(T1, T2)=EAB(T1)-EAB(T2) (a)
A T2 a 2 T0 E AB T0 C 2 3 T0 C B A B 3 T0 A
第三种材料 接入热电偶 回路图
T1
(b)
T2
EAB
T1
20
根据上述原理,在热电偶回路中接入电位计E, 只要保证电位计与连接热电偶处的接点温度相 等,不会影响回路中原来的热电势,接入的方 式见下图所示。
18
2. 中间导体定律
一个由几种不同导体材料连接成的闭合回路, 只要它们彼此连接的接点温度相同,则此回 路各接点产生的热电势的代数和为零。
由A、B、C三种材料组成的闭合回路,则
E 总 =EAB (T)+EBC (T)+ECA (T
T
三种不同导体组成的热电偶回路
19
两点结论: l)将第三种材料C接入由A、B组成的热电偶回路,如 图,则图a中的A、C接点2与C、A的接点3,均处于相 同温度T0之中,此回路的总电势不变,即 EAB(T1,T2)=EAB(T1)-EAB(T2) 同理,图b中C、A接点2与C、B的接点3,同处于温度 T0之中,此回路的电势也为:
■了解其他温度传感器工作原理
2
第一节 概 论
温度是与人类生活息息相关的物理量。 温度检测始于2000多年前。
工业、农业、商业、科研、国防、医学及环保等 部门都与温度有着密切的关系。
工业生产自动化流程,温度测量点要占全部测量 点的一半左右。 因此,现代人类离不开温度,因此也离不开温度传感器。
第三章 温度传感器
概 论 热电偶温度传感器 热敏电阻温度传感器 集成温度传感器 其他温度传感器
1
学习要点
■了解温度传感器的作用、地位和分类 ■理解热电效应定义,掌握热电偶三定律及相关 计算,热电偶冷端补偿原因及补偿方法 ■掌握热敏电阻不同类型的特点、特性曲线及应 用场合 ■掌握电流型、电压型、数字型三种集成温度传 感器特点、工作原理和使用方法
8
温度传感器分类(1)
分 类 超高温用 传感器 高温用 传感器 中高温用 传感器 中温用 传感器 低温用 传感器 极低温用 传感器 特 征 传 感 器 名 称 光学高温计、辐射传感器 1500℃以上
测 温 范 围
1000~1500℃ 光学高温计、辐射传感器、 热电偶 光学高温计、辐射传感器、 500~1000℃ 热电偶
13
1. 接触电势
eAB(T)
接触电势 原理图
kT N A e AB (T ) ln e NB
eAB(T)——导体A、B结点在温度T 时形成的接触电动势; e——单位电荷, e =1.6×10-19C; k——波尔兹曼常数, k =1.38×10-23 J/K ; NA、NB ——导体A、B在温度为T 时的电子密度。
EAB(T1, T3)=EAB(T1, T2)+EAB(T2, T3)
A
A
T1
B A
T2
B
B
T3
23
对于冷端温度不是零度时,热电偶如何分度表的问题提 供了依据。如当T2=0℃时,则: EAB(T1,T3)=EAB(T1, 0)+EA B(0, T3) =EAB(T1, 0)-EAB(T3, 0)=EAB(T1)-EAB(T3) 说明:当在原来热电偶回路中分别引入与导体材料A、 B同样热电特性的材料A′、B′(如图)即引入所谓补偿导 线时,当EAA΄(T2)=EBB΄(T2)时,则回路总电动势为 EAB=EAB(T1)–EAB(T0)
5
体积热膨胀
物 理 现 象
1.气体温度计 2. 玻璃制水银温度计 3.玻璃制有机液体温度计 4.双金属温度计 5.液体压力温度计 6. 气体压力温度计
电阻变化 温差电现象
导磁率变化 电容变化 压电效应
铂电阻、热敏电阻 热电偶
1. 热铁氧体 2. Fe-Ni-Cu合金
BaSrTiO3陶瓷
石英晶体振动器 超声波温度计 示温涂料 液晶 半导体二极管 晶体管半导体集成电路温度传感器 可控硅 辐射温度传感器 光学高温计
导体材料确定后,热电势的大小只与热电偶两 端的温度有关。如果使 EAB(T0)=常数,则回路热 电势 EAB(T,T0)就只与温度 T 有关,而且是T的单 值函数,这就是利用热电偶测温的原理。
17
二、热电偶回路的性质 1. 均质导体定律
由一种均质导体组成的闭合回路,不论其导体 是否存在温度梯度,回路中没有电流(即不产 生电动势);反之,如果有电流流动,此材料 则一定是非均质的,即热电偶必须采用两种不 同材料作为电极。
E T0 T0 T0 T1 T1 T T
21
E
2)如果任意两种导体材料的热电势是已知的, 它们的冷端和热端的温度又分别相等,如图。 它们相互间热电势的关系为:
EAB(T, T0)= EAC(T, T0)+ ECB(T, T0)
22
3. 中间温度定律
如果不同的两种导体材料组成热电偶回路,其接点温度 分别为T1、T2(如图所示)时,则其热电势为EAB(T1, T2); 当接点温度为T2、T3时,其热电势为EAB(T2, T3);当接 点温度为T1、T3时,其热电势为EAB(T1, T3),则
分类 特 征 传 感 器 名 称
测 温
线性型
测温电阻器、晶体管、热电偶 测温范围宽 半导体集成电路传感器、 可控硅、石英晶体振动器、 输出小 压力式温度计、玻璃制温度计 测温范围窄 输出大 特定温度 输出大
特 指数型 性 函数
开关型 特性
热敏电阻
感温铁氧体、双金属温度计
10
温度传感器分类(3)
分 类
接触电势的大小与温度高低及导体中的电子密度有关。
14
2. 温差电势
温差电势原理
eA (T , T0 ) AdT
T0
T
eA(T,T0)——导体A两端温度为T、T0时形成的温差电动势; T,T0——高低端的绝对温度; σA——汤姆逊系数,表示导体A两端的温度差为1℃时所产生的 温差电动势,例如在0℃时,铜的σ =2μV/℃。 15
11
绝对值 测定用
第二节 热电偶温度传感器
温差热电偶(简称热电偶)是目前温度测量中使用最 普遍的传感元件之一。 特点:结构简单,测量范围宽、准确度高、热惯性小, 输出信号为电信号便于远传或信号转换,还能用来测 量流体的温度、测量固体以及固体壁面的温度。微型 热电偶还可用于快速及动态温度的测量。
★热电偶的工作原理 ★热电偶回路的性质 ★热电偶的常用材料与结构 ★冷端处理及补偿
0~500℃ -250~0℃
见表下内容
晶体管、热敏电阻、 压力式玻璃温度计 BaSrTiO3陶瓷
-270~-250℃
热电偶、测温电阻器、热敏电阻、感温铁氧体、石英晶体振 动器、双金属温度计、压力式温度计、玻璃制温度计、辐射 9 传感器、晶体管、二极管、半导体集成电路传感器、可控硅
温度传感器分类(2)
12
一、工作原理
两种不同的导体或半导体A和B组合成闭合回路, 若导体A和B的连接处温度不同(设 T > T0 ), 则在此闭合回路中就有电流产生,也就是说回 路中有电动势存在,这种现象叫做热电效应。 这种现象早在1821年首先由西拜克(See-back) 发现,所以又称西拜克效应。 回路中所产生的电动 势,叫热电势。热电 势 thermo-electric force 由两部分组成,即温 热端 冷端 差电势和接触电势。
6
超声波传播速度变化 物质 颜色 P–N结电动势 晶体管特性变化 可控硅动作特性变化 热、光辐射
种 类
2.温度传感器应满足的条件
▲特性与温度之间的关系要适中,并容易检
测和
处理,且随温度呈线性变化 ▲除温度以外,特性对其它物理量的灵敏度要低 ▲特性随时间变化要小 ▲重复性好,没有滞后和老化 ▲灵敏度高,坚固耐用,体积小,对检测对象的 影响要小 ▲机械性能好,耐化学腐蚀,耐热性能好 ▲能大批量生产,价格便宜 ▲无危险性,无公害等
二、温度传感器的特点与分类 1 温度传感器的物理原理(11种)
随物体的热膨胀相对变化而引起的体积变化 蒸气压的温度变化 电极的温度变化 诸多物理量或物 热电偶产生的电动势 理现象能够反映 光电效应 出温度的变化 热电效应 介电常数、导磁率的温度变化 物质的变色、融解 强性振动温度变化 热放射 热噪声
3. 回路总电势
由导体材料A、B组成的闭合回路,其接点温度分别为T、 T0,如果T>T0,则必存在着两个接触电势和两个温差电 势,回路总电势: E AB (T , T0 ) e AB (T ) e AB (T0 ) e A (T , T0 ) eB (T , T0 )
N AT k T N AT kT 0 ln ln e N BT e N BT
只要T1、T0不变,接入AˊBˊ后不管接点温度T2如何变 化,都不影响总热电势。这便是引入补偿导线原理。
A T2 A’ T0 E B T2 B’ T0
热电偶补偿 导线接线图
24
T1
例题
已知在某特定条件下材料A与铂配对的热电动势为 13.967mV,材料B与铂配对的热电动势为8.345mV, 求出在此特定条件下材料A与材料B配对后的热电势。 解:根据中间导体定律结论公式,有 EAB(T, T0)= EAC(T, T0)+ ECB(T, T0) 依题意可知,EAC(T, T0)=13.967mV; ECB(T, T0)=-8.345mV 则 EAB(T, T0)=13.967mV-8.345mV=5.622 mV 因此,在此特定条件下材料A与材料B配对后的热电势 为5.622 mV。
相关文档
最新文档