Direct synthesis of graphene-chitosan composite and its application as an enzymeless methyl

合集下载

石墨烯量子点的生物学应用

石墨烯量子点的生物学应用

石墨烯量子点的生物学应用吴慧俊【摘要】石墨烯量子点是石墨烯家族的衍生物,石墨烯量子点除了具有石墨烯的优良性能,还具有量子限制效应和边界效应所产生的一系列新的特性,因此吸引了各领域科学家的广泛关注。

石墨烯量子点这类新颖材料的研究在这两三年内,无论是实验还是理论方面均取得了极大进展。

石墨烯量子点生物相容性好,能够光致发光,具有光电特性,可用于生物成像和生物传感器。

作者着重探索石墨烯多样的生物学应用,并从石墨烯量子点的发展、特性、制备方法、修饰、生物学应用、生物安全性等方面进行综述。

%The graphene and its derivative graphene oxide have attracted remarkable attention of scientists due to their extraordinary optical and electronic properties and biocompatibility. Re-cently, the study of graphene quantum dots (GQDs) has made great progress in theory and practice. Because of strong quantum confinement, excellent edge effects and biocompatibility, GQDs are help-ful for bioimaging and biosensors. In this review, the various biological application of GQDs is intro-duced deeply in this article. The article mainly describes in sequence of development, character, synthesis, biological application and biological toxicity of GQDs.【期刊名称】《转化医学杂志》【年(卷),期】2017(006)001【总页数】4页(P47-50)【关键词】石墨烯量子点;生物学应用;量子尺寸效应;制备方法;生物安全性【作者】吴慧俊【作者单位】200092 上海,同济大学生命科学与技术学院【正文语种】中文【中图分类】O59石墨烯及其衍生物氧化石墨烯受到了全世界科学家越来越多的关注。

氮化碳异质结的表征 解释说明以及概述

氮化碳异质结的表征 解释说明以及概述

氮化碳异质结的表征解释说明以及概述1. 引言1.1 概述氮化碳异质结作为一种新型的二维材料,在过去几年中引起了广泛的关注和研究。

其特殊的结构与性质使其在电子学、光学和能源领域具有巨大的潜力。

由于氮原子和碳原子的不同排列方式,氮化碳异质结呈现出丰富多样的结构,如二维平面、一维纳米带以及零维量子点等。

同时,它还具有较宽的能带隙、优异的电子输运性能以及较高的热稳定性,这些特点使得它在纳米电子器件和传感器方面具有很高的应用价值。

1.2 文章结构本文将对氮化碳异质结进行全面而深入地探讨。

首先,在第2部分中,我们将介绍氮化碳异质结的表征方法。

这包括理论基础、实验方法以及表征技术等方面。

第3部分将解释说明氮化碳异质结的物理原理,并分析其特性与性能。

最后,在第4部分中,我们将总结主要发现与结果,并展望未来在氮化碳异质结领域的研究方向与应用前景。

1.3 目的本文旨在对氮化碳异质结进行全面系统的介绍与分析,希望通过本文的阐述,读者能够了解到氮化碳异质结的表征方法、物理原理以及其在纳米电子器件和传感器等领域的应用前景。

同时,我们也希望通过本文的撰写能够促进相关研究领域的学术交流与合作,推动氮化碳异质结技术的发展与应用。

2. 氮化碳异质结的表征2.1 理论基础氮化碳异质结是由氮化碳材料构成的结构,在进行表征之前,我们需要了解一些相关的理论基础知识。

首先,氮化碳属于二维材料家族,具有类似于石墨烯的六角晶格结构。

其晶格中同时存在碳和氮原子,形成了C-N键。

此外,氮化碳还具有良好的机械强度、优异的导电性能以及较高的耐腐蚀性。

2.2 实验方法在对氮化碳异质结进行表征时,我们可以采用多种实验方法来获取相关数据和信息。

例如,常见的实验方法包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及X射线衍射(XRD)等。

这些实验方法能够提供关于样品表面形貌、晶体结构和组分等方面的详细信息。

2.3 表征技术除了实验方法外,还存在一些特定的表征技术用于对氮化碳异质结进行更深入的分析。

石墨烯复合材料研究进展

石墨烯复合材料研究进展

石墨烯复合材料研究进展摘要:近年来石墨烯因其优良的力学、电学、热学和光学等特性, 且添加到基体材料中可以提高复合材料的性能,拓展其功能,因此石墨烯复合材料的制备成为研究热点之一。

本文介绍了国内外对石墨烯复合材料的研究,对石墨烯复合材料的研究进展及现状进行了详细的介绍,并对石墨烯复合材料的发展趋势进行了展望。

关键词:石墨烯;复合材料;研究进展一、引言石墨烯因其优异的物理性能和可修饰性, 受到国内外学者的广泛关注。

石墨烯的杨氏模量高达1TPa、断裂强度高达130GPa,是目前已知的强度性能最高的材料,同时是目前发现电阻率最小的材料, 只有约10-8Ω·m;拥有很高的电子迁移率,且具有较高的导热系数。

氧化石墨烯作为石墨烯的重要派生物,氧化石墨烯薄片在剪切力作用下很容易平行排列于复合材料中, 从而提高复合材料的性能。

本文总结介绍了几种常见的石墨烯复合材料。

二、石墨烯复合材料(1)石墨烯及氧化石墨烯复合材料膜聚乙烯醇(PVA)结构中有非常多的羟基,因此其能与水相互溶解,溶解效果很好。

GO和PVA都可以在溶液中形成均匀、稳定的分散体系。

干燥成型后,GO在PVA中的分散可以达到分子水平,GO表面丰富的含氧官能团可以与PVA的羟基形成氢键,因此添加少量的GO可以显著提高复合材料的力学性能。

樊志敏[1]等制备出了氧化石墨烯纳米带/TPU复合膜。

通过机械测试显示,当加入氧化石墨烯纳米带的量为2%时,复合薄膜的弹性模量和抗拉强度与不加氧化石墨烯纳米带的纯TPU薄膜相比都得到了非常大的提高,分别提高了160%和123%。

马国富[2]等人发现,在聚乙烯醇(PVA)和氧化石墨烯(GO)复合制备的得复合薄膜中,GO均匀的分散在PVA溶液中,PVA的羟基与GO表面的含氧基团发生相互作用复合而不分相。

加入GO之后,大大提高了复合膜的热稳定性,当加入的GO量为3%时,纳米复合膜力学性能测试出现最大值,此时断裂伸长率也出现了最大值,这表明在此GO含量时复合膜有最佳性能;与不加GO的纯PVA膜相比,当加入的GO量为3%时,耐水性也大大地提高。

人大考研-化学系研究生导师简介-金朝霞教授

人大考研-化学系研究生导师简介-金朝霞教授

爱考机构-人大考研-化学系研究生导师简介-金朝霞教授金朝霞教授金朝霞,1970年出生。

北京大学化学系理学学士(1991年);北京大学化学系助理工程师(1991年)、工程师(1996年);新加坡国立大学化学系哲学博士(2002年);韩国国立汉城大学物理系博士后研究(2001年-2002年)。

中国人民大学化学系副教授(2004年6月),教授(2011年7月)。

主要研究方向:a.限域条件下聚合物纳米结构的制备、性质与功能的研究 b.碳纳米材料与聚合物的复合材料的生物医学应用主要科研项目与课题在研课题:国家自然科学基金面上项目21074149(2011.1-2013.12),51173201(2012.1-2015.12)中国人民大学明德学者计划(2009.12-2012.12)北京分子科学国家实验室开放课题(2009.10-2011.12)已完成课题:国家自然科学基金青年项目(2005年,项目号50503025)其他科研项目:中国人民大学科研启动基金教育部归国留学人员启动基金已发表论文:1.S.L.Mei,L.Wang,X.D.Feng,Z.X.Jin*,Swellingofblockcopolymernanoparticles---apro cesscombiningdeformationandphaseseparation,Langmuir2013,29,4640-4646.2.S.L.Mei, Z.X.Jin*,Mesoporousblock-copolymernanospherespreparedbyselectiveswelling,Small2 013,9,322-329.3.S.L.Mei,X.D.Feng,Z.X.Jin*,Polymernanofibersbycontrollableinfilt rationofvapourswollenpolymersintocylindricalnanopores,SoftMatter,2013,9,945-951 .4.X.D.Feng,S.L.Mei,Z.X.Jin*,Wettabilitytransitioninducedtransformationandentra pmentofpolymernanostructuresincylindricalnanopores,Langmuir2011,27,14240-14247.5.S.L.Mei,X.D.Feng,Z.X.Jin*,FabricationofPolymerNanospheresBasedonRayleighInsta bilityinCapillaryChannels,Macromolecules2011,44,1615-1620.6.L.Zhang,D.A.Zha,T.T .Du.S.L.Mei,Z.J.Shi,Z.X.Jin*,Formationofsuperhydrophobicmicrospheresofpoly(viny lidenefluoride-hexafluoropropylene)/graphenecompositeviagelation,Langmuir2011,2 7,8943-8949.7.D.A.Zha,S.L.Mei,Z.Y.Wang,H.J.Li,Z.J.ShiandZ.X.Jin*,Superhydrophob icpolyvinylidenefluoride/grapheneporousmaterials,Carbon2011,49,5166-5172.8.K.K. Zhao,Z.Y.Wang,Z.J.Shi,Z.N.Gu,Z.X.Jin*,Fillingdouble-walledcarbonnanotubeswithWO 3andWnanowiresviaconfinedchemicalreactions,J.Nanosci.Nanotechnol.2011,11,2278-2 282.9.H.L.Fan,L.L.Wang,K.K.Zhao,N.Li,Z.J.Shi,Z.G.Ge,andZ.X.Jin*,Fabrication,Mec hanicalProperties,andBiocompatibilityofGraphene-ReinforcedChitosanComposites,Bi omacromolecules2010,11,2345-2351.10.Q.C.Zhao,J.Yin,X.D.Feng,Z.J.Shi,Z.G.GeandZ. X.Jin*,Abiocompatiblechitosancompositecontainingphosphotungsticacidmodifiedsing le-walledcarbonnanotubes,J.Nanosci.Nanotechno.2010,10,7126-7129.11.X.D.Feng,Z.X .Jin*,SpontaneousFormationofNanoscalePolymerSpheres,Capsules,orRodsbyEvaporatio nofPolymerSolutionsinCylindricalAluminaNanopores,Macromolecules2009,42,569-572.12.Q.C.Zhao,X.D.Feng,S.L.MeiandZ.X.Jin*,Carbonnanotubeassistedhighloadingandcon trolledreleaseofpolyoxometalatesinbiodegradablemultilayerthinfilm,Nanotechnolog y2009,20,105101.13.Z.G.Ge,Z.X.JinandT.Cao,Manufactureofdegradablepolymericscaff oldsforboneregeneration,Biomed.Mater.2008,3,22001.14.Z.X.Jin*,Z.YWang,Z.J.Shi,H .J.Lee,Y.W.ParkandK.Akagi,Thehierarchicalmicrostructureofhelicalpolyacetylenena nofibers,Curr.App.Phys.2007,7,367.15.H.J.Lee,Z.X.Jin,A.N.Aleshin,J.Y.Lee,M.J.Go h,K.Akagi,Y.S.Kim,D.W.Kim,Y.W.Park,"Dispersionandcurrent-voltagecharacteristics ofhelicalpolyacetylenesinglefiber",J.Am.Chem.Soc.2004,126,16722.16.Z.X.Jin,S.H. Goh,G.Q.Xu,Y.W.Park,Dynamicmechanicalpropertiesofmulti-walledcarbonnanotube/poly(acrylicacid)-surfactantcomplex,Synth.Met.2003,135(Sp.Iss.),735-736.17.Z.X.Jin ,K.PPramoda,G.Q.Xu,S.HGoh,Poly(vinylidenefluoride)-assistedmelt-blendingofmulti -walledcarbonnanotube/poly(methylmethacrylate)composites,Mater.Res.Bull.,2002,3 7,271-278.18.Z.X.Jin,L.Huang,S.H.Goh,G.Q.Xu,W.Ji,Size-dependentopticallimitingb ehaviorofmulti-walledcarbonnanotubes,Chem.Phys.Lett.,2002,352,328-333.19.Z.X.Ji n,K.PPramoda,G.Q.Xu,S.HGoh,Dynamicmechanicalbehaviorofmelt-processedmulti-walle dcarbonnanotube/poly(methylmethacrylate)composites,Chem.Phys.Lett.,2001,337,43-47.20.Z.X.Jin,L.Huang,S.H.Goh,G.Q.Xu,W.Ji,Characterizationandnonlinearpropertie sofapoly(acrylicacid)-surfactant-multi-walledcarbonnanotubecomplex,Chem.Phys.Le tt.,2000,332,461-466.21.Z.X.Jin,X.Sun,G.Q.Xu,S.H.Goh,Nonlinearopticalproperties ofsomepolymer/multi-walledcarbonnanotubecomposites,Chem.Phys.Lett.,2000,318,505 -510.22.Z.X.Jin,G.Q.Xu,S.H.Goh,Apreferentiallyorderedaccumulationofbromineonmul ti-wallcarbonnanotube,Carbon2000,38,1135-1139.。

211122226_PAA

211122226_PAA

DOI :10.3969/j.issn.1671-024x.2023.01.001第42卷第1期圆园23年2月Vol.42No.1February 2023天津工业大学学报允韵哉砸晕粤蕴韵云栽陨粤晕GONG 哉晕陨灾耘砸杂陨栽再PAA/CS/GO 水凝胶的制备及其吸附性能李广芬1,2,陈蔚1,2,王帅帅1,2,李万盛1,2,李茗萱3(1.天津工业大学材料科学与工程学院,天津300387;2.天津工业大学省部共建分离膜与膜过程国家重点实验室,天津300387;3.天津科技大学海洋与环境学院,天津300457)摘要:为了克服壳聚糖在酸性条件下不稳定的缺点,提高氧化石墨烯的分散性能,提升壳聚糖/氧化石墨烯体系对亚甲基蓝的吸附性能,利用自由基聚合和热交联法将丙烯酸(AA )引入壳聚糖(CS )/氧化石墨烯(GO )体系,制备了聚丙烯酸(PAA )/CS/GO 水凝胶,并采用电子扫描电镜和傅里叶变换红外光谱对水凝胶的表面结构及化学成分进行了表征,探究了丙烯酸用量、pH 值、吸附时间、染料浓度和温度对水凝胶吸附亚甲基蓝容量的影响。

结果表明:PAA/CS/GO 水凝胶内部成功引入了大量羧酸基团,内部充满孔洞结构并具有稳定性和极佳的吸水溶胀性能;吸附实验表明,丙烯酸剂量为12mL 时制备的PAA/CS/GO 水凝胶在温度为333K 时对亚甲基蓝(MB )具有最佳吸附效果,吸附量达到了771.5mg/g ;同时该水凝胶对亚甲基蓝的吸附过程遵循拟二阶动力学模型和Freundlich 等温吸附模型。

吸附机理研究发现,静电作用力、氢键、共轭作用和孔隙结构是高吸附性能的主要影响作用力。

关键词:丙烯酸;壳聚糖;氧化石墨烯;水凝胶;亚甲基蓝;吸附性能中图分类号:TQ319;TQ427.26文献标志码:A 文章编号:员远苑员原园圆源载(圆园23)园1原园园01原08Preparation of PAA/CS/GO hydrogel and its adsorption performanceLI Guang-fen 1,2,CHEN Wei 1,2,WANG Shuai-shuai 1,2,LI Wan-sheng 1,2,LI Ming-xuan 3(1.School of Material Science and Engineering ,Tiangong University ,Tianjin 300387,China ;2.State Key Laboratory of Separation Membranes and Membrane Processes ,Tiangong University ,Tianjin 300387,China ;3.College of Marine and Environmental Sciences ,Tianjin University of Science &Technology ,Tianjin 300457,China )Abstract :In order to overcome the shortcomings of chitosan忆s instability under acidic conditions袁improve the dispersionperformance of graphene oxide袁and strenghthen the adsorption performance of chitosan/graphene oxide system for methylene blue袁acrylic acid 渊AA冤was introduced into the chitosan渊CS冤/graphene oxide渊GO冤system for prepar鄄ing polyacrylic acid 渊PAA冤/CS/GO hydrogel via free radical polymerization and thermal cross-linking approach.The hydrogel material was characterized by scanning electron microscopy and Fourier transform infrared spec鄄trometer.The effects of acrylic acid dosage袁pH value袁adsorption time袁dye concentration and temperature on the adsorption capacity of hydrogel for methylene blue were extensively studied.The results show that PAA/CS/GO hydrogel has successfully introduced a large number of carboxylic acid groups into the interior and it is filled with uniformly distributed pores袁therefore袁possess excellent water swelling properties.The adsorption experiment proved that the PAA/CS/GO hydrogel prepared with acrylic acid dosage of 12mL has maximum methylene blue 渊MB冤adsorption capacity of 771.5mg/g when the temperature is set as 333K.Moreover袁the adsorption processof methylene blue by the hydrogel follows the Pseudo-Second-Order kinetic model and Freundlich isotherm ad鄄sorption model.The study on adsorption mechanism suggests that electrostatic force袁hydrogen bonding袁conjuga鄄tion and pore structure all contribute to the adsorption performance.Key words :acrylic acid渊AA冤曰chitosan渊CS冤曰graphene oxide渊GO冤曰hydrogel曰methylene blue曰adsorption performance近年来,随着工业的迅速发展,人类对合成染料的需求量已经呈现对数上升趋势,染料大量使用带来的直接后果是大量水资源被污染[1]。

南通市人民政府关于公布南通市第十二届自然科学优秀学术论文的通知

南通市人民政府关于公布南通市第十二届自然科学优秀学术论文的通知

南通市人民政府关于公布南通市第十二届自然科学优秀学术论文的通知文章属性•【制定机关】南通市人民政府•【公布日期】2021.08.27•【字号】通政发〔2021〕28号•【施行日期】2021.08.27•【效力等级】地方规范性文件•【时效性】现行有效•【主题分类】科技成果与知识产权正文市政府关于公布南通市第十二届自然科学优秀学术论文的通知各县(市、区)人民政府,市各直属园区管委会,市各委、办、局,市各直属单位:近年来,全市上下深入学习贯彻习近平总书记关于科技创新的重要论述,着力构建“如鱼得水、如鸟归林”的一流创新生态,注重发挥科技人员的积极性和创造性,鼓励科技人员进行理论创新和实践创新,取得了较好成绩。

2019~2020年度,全市科技人员结合南通实际,撰写并在省级以上刊物发表了一大批基础科学和工程技术科学领域的学术论文,为推进科技创新工程作出了积极贡献。

经南通市自然科学优秀学术论文奖评审委员会认真评审,并向社会公示,共评出南通市第十二届自然科学优秀学术论文119篇,现将获奖论文名单予以公布。

希望各地、各部门、各单位和全市广大科技工作者切实担负起新时代科技创新责任与使命,自觉投身我市高质量发展生动实践,奋力谱写无愧于时代的壮丽篇章,为“强富美高”新南通建设贡献智慧和力量。

附件:南通市第十二届自然科学优秀学术论文奖获奖名单南通市人民政府2021年8月27日附件南通市第十二届自然科学优秀学术论文奖获奖名单(共119篇)一等奖(共12篇)1.紫菜番茄红素环化酶的功能研究阐明了红藻的叶黄素合成过程(Functional characterization of lycopene cyclases illustrates the metabolic pathway toward lutein in red algal seaweeds)邓银银(江苏省海洋水产研究所)、程璐、王齐2.串联式细纱机短车集落改造技术探讨及应用效果分析吉宜军(南通双弘纺织有限公司)、夏春明、吕兴明3.靶向递送siVEGF的仿病毒壳聚糖胶束和FRET技术追踪下的酸触发释药过程(Virus Mimetic Shell-Sheddable Chitosan Micelles for siVEGF Delivery and FRET-Traceable Acid-Triggered Release)张胜喻(南通市海门区人民医院)、干烨、邵兰兰4.精神应激-糖皮质激素-tsc22d3信号通路抑制肿瘤治疗诱导的抗肿瘤免疫应答(Stress–glucocorticoid–TSC22D3 axis compromises therapy-induced antitumor immunity)陈健(南通市肿瘤医院)、马瑜婷、杨衡5.1ncRNA Gm10451靶向miR-338-3p调控PTIP促进胰岛类β细胞体外分化的机制研究(1ncRNA Gm10451 regulates PTIP to facilitate iPSCs-derived β-like cell differentiation by targeting miR-338-3p as a ceRNA)黄(南通大学附属医院)、徐阳、陆玉华6.大跨度钢桥沥青混凝土面层疲劳寿命损伤演化新规律(New damage evolution law for modeling fatigue life of asphalt concrete surfacing of long-span steel bridge)徐勋倩(南通大学)、杨霄、黄卫7.元麦麸皮羧甲基β-葡聚糖的制备及其对金黄色葡萄球菌的抗菌活性和机理研究(Synthesis of carboxymethylated β-glucan from naked barley bran and its antibacterial activity an d mechanism against Staphylococcus aureus)宋居易(江苏沿江地区农业科学研究所)、陈惠、魏亚凤8.基于最近邻模因组量子粒子群算法的深度神经-感知模糊属性协同约简(Deep neuro-cognitive co-evolution for fuzzy attribute reduction by quantum leaping PSO with nearest-neighbor memeplexes)丁卫平(南通大学)、Chin-Teng Lin、Zehong Cao9.血糖响应控制释放-红细胞载药平台的构建及解决肿瘤乏氧提高放疗效果研究(Overcoming Hypoxia-Restrained Radiotherapy Using an Erythrocyte-Inspired and Glucose-Activatable Platform)夏栋林(南通大学)10.激光冲击诱发镍基高温合金GH202渗铝涂层高温氧化性能的提升(Laser shock processing improving the high temperature oxidation resistanceof the aluminized coating on GH202 by pack cementation)曹将栋(江苏航运职业技术学院)11.“封城”措施遏制中国黄石市新冠疫情发展——早期流行病学发现(Lockdown Contained the Spread of 2019 Novel Coronavirus Diseas e in Huangshi City,China:EarlyEpidemiological Findings)秦刚(南通市第三人民医院)、纪托、陈海莲12.无单元伽辽金法在船体开孔板格弹性屈曲分析中的应用杨源(南通中远海运川崎船舶工程有限公司)、莫中华、孙启荣二等奖(共24篇)1.通过具有联合稀疏性的堆叠式深度嵌入式回归进行脑电特征选择(EEG Feature Selection via Stacked Deep Embedded Regression Wit h Joint Sparsity)蒋葵(南通大学)、唐嘉茜、王宇龙2.有序介孔五氧化二铌/氮掺杂氧化石墨烯复合材料的制备及光催化性能(Structure Retentively Synthesis of Highly Ordered Mesoporous Nb 2O5/N-Doped Graphene Nanocomposite with Superior Interfacial Contacts a nd Improved Visible Photocatalysis)黄徽(南通职业大学)、周君、周杰3.聚合硅酸铁钛混凝剂的表征及其处理分散和活性印染废水的研究(Characterization and application of poly-ferric-titanium-silicate-sulfate in disperse and reactive dye wastewaters treatment)石健(南通大学)、万杨4.利用锌指介导的蛋白标记方法揭示膜蛋白复合体的亚基几何构型(Zinc-finger-mediated labeling reveals the stoichiometry of membrane proteins )XXX盛(南通大学)、Maximilian H. Ulbrich5.用于下一代设备的功能性2D MXene纳米结构的最新进展(Recent Advances in Functional 2D MXene-Based Nanostructures for Next-Generation Devices)黄卫春(南通大学)、胡兰萍、汤艳峰6.矿物质粉尘诱导基因在肿瘤外在调节作用的新发现(New discoveries of mdig in the epigenetic regulation of cance rs)施军卫(南通市第六人民医院)7.脑卒中患者早期肌力训练的最佳证据总结陈晓艳(南通大学附属医院)、王娅、仲悦萍8.严重创伤患者谵妄发生风险预测模型的构建吉云兰(南通大学附属医院)、徐旭娟、单君9.直流电场干扰对γ-FeOOH向α-FeOOH转变的抑制作用加速碳钢在模拟工业大气环境中的腐蚀速率(The Suppression of transformation of γ-FeOOH to α-FeOOH accelerating the steel corrosion in simulated industrial a tmospheric environment with a DC electric field interference)顾剑锋(南通科技职业学院)、肖轶、戴念维10.养老机构照护服务质量评价指标的构建及信效度检验耿桂灵(南通大学)、高晶、肖玉华11.低频交变电磁疗法结合计算机辅助认知训练对脑卒中患者康复的影响胡永林(南通市第二人民医院)、陈晓磊、华永萍12.代谢相关基因FDFT1和UQCR5在CLM中表达和突变的双重调控机制(Dual Regulatory Mechanisms of Expression and Mutation Involving Metabolism-Related Genes FDFT1 and UQCR5 during CLM)吴徐明(南通市第四人民医院)、刘继斌13.绿色合成具有强磁性的复合石墨烯气凝胶用于有效的水修复(Green Synthesis of Composite Graphene Aerogels with Robust Mag netism for Effective Water Remediation)刘其霞(南通大学)、胡世棋、杨智联14.响应面法优化蒲公英根多糖的提取工艺、结构表征及抗氧化活性(Optimization of extraction of polysaccharide from dandelion roo t by response surface methodology: Structural characterization an dantioxidant activity)蔡亮亮(南通大学附属医院)、陈伯华、易芳莲15.异质结和磷掺杂协同提升氮化碳光催化降解抗生素废水性能的研究(Boosting Photocatalytic Degradation of Antibiotic Wastewater by Synergy Effect of Heterojunction and Phosphorus Doping)周杰(南通职业大学)16.基于弹塑性减震曲线的黏滞阻尼器减震加固结构设计方法研究(Design method of structural retrofitting using viscous dampers based on elastic-plastic response reduction curve)沈华(南通职业大学)、张瑞甫、翁大根17.p-Ag2O/n-Nb2O5分级结构异质结微球制备及其光催化性能研究(Facile fabrication of hierarchical p-Ag2O/n-Nb2O5 heterojunction microspheres with enhanced visible-light photocatalytic activity)王璐(南通职业大学)、李亚、韩萍芳18.益气养阴方联合化疗治疗非小细胞肺癌的荟萃分析与系统回顾(Chinese herbal medicines of supplementing Qi and nourishing Yi n combined with chemotherapy for non–small cell lung cancer: A meta‐analysis and systematic review)沈水杰(南通市中医院)、姜水菊19.B/Bax/Caspase-3通路调控脑出血后神经元凋亡(GATA-4 regulates neuronal apoptosis after intracerebral hemorrhage via the NF- B/Bax/Caspase-3 pathway both in vivo and in vitro GATA-4蛋白通过NF-κ)徐辉(南通市第六人民医院)20.海马PPARα参与文拉法辛对小鼠的抗抑郁样作用(Hippocampal PPARαis involved in the antidepressant-like effects of venlafaxine in mice)陈诚(南通市第六人民医院)、吴中华、沈剑虹21.中国帕金森病患者血清SIRT1下降——一项病例对照研究(Reduced serum SIRT1 levels in patients with Parkinson’s disea se:a cross-sectional study in China)朱向阳(南通市第一人民医院)、朱羽婷、周永22.半潜式起重拆解平台重型吊机基座疲劳损伤分析陈文科〔招商局重工(江苏)有限公司〕、来海华、张时运23.高维分位数回归模型的纠偏和分布式估计(Debiasing and distributed estimation for high-dimensional quantile regression)赵为华(南通大学)、Zhang Fode、Lian Heng24.携带myocilin基因Val25lAla突变的中国青光眼大家系临床表型研究(Glaucoma phenotype in a large Chinese family with myocilin Va l25lAla mutation)陆宏(南通大学附属医院)、徐绘、陈颖三等奖(共83篇)1.低成本且价态丰富的铜-铁-硫-氧多孔纳米簇在碱性或近中性电解质中驱动出色节能的碳酰肼氧化反应(Low-cost valence-rich copper–iron–sulfur–oxygen porous nanocluster that drives an exceptional energy-saving carbohydrazide oxidization reaction in alkali and near-neutral electrolytes)王艳青(南通大学)、李岳濛、丁丽萍2.一个核糖体DNAl来源的microRNA调控斑马鱼胚胎血管新生(A ribosomal DNA-hosted microRNA regulates zebrafish embryonic angiogenesis)石运伟(南通大学)、段旭初、许广敏3.高表达的MIR106A-5p可抑制自噬并促进鼻咽癌的恶性进展(MIR106A-5p upregulation suppresses autophagy and accelerates malignant ph enotype in nasopharyngeal carcinoma)游波(南通大学附属医院)、尤易文、张启成4.可以查询肿瘤表型及免疫微环境相关性的DNA调控元件网络平台(SPACE: a web server for linking chromatin accessibility with clinical phenotypes and the immune microenvironment in pan-cancer analysis)范义辉(南通大学)、吴英成5.各向异性沟脊微结构调节雪旺细胞形态和生物功能的研究(Anisotropic ridge/groove microstructure for regulating morphology and biological function of Schwann cells)李贵才(南通大学)、赵雪莹、张鲁中6.Bi(OH)3修饰Pt纳米框架的精准构筑及其催化乙醇氧化研究(Porous Pt nanoframes decorated with Bi(OH)3 as highly efficien t and stable electrocatalyst for ethanol oxidation reaction)袁小磊(南通大学)、蒋孛、曹暮寒7.BDH2通过促进Nrf2泛素化在胃癌中触发ROS诱导的细胞死亡和自噬(BDH2 triggers ROS-induced cell death and autophagy by promoting Nrf2 ubiquitinatio n in gastric cancer)刘家洲(南通大学附属医院)、毛勤生、薛万江8.LncRNA H19过表达通过miR-29b-3p靶向MCL-1诱导多发性骨髓瘤对硼替佐米耐药(LncRNA H19 overexpression induces bortezomib resistance in mult iple myeloma by targeting MCL-1 via miR-29b-3p)潘亚芳(南通大学附属医院)、丛辉、陈宏梅9.风电接入系统的低碳电力调度策略优化(Optimization of power dispatching strategies integrating managem ent attitudes with low carbon factors)金晶亮(南通大学)、李晨宇、温晴岚10.基于纳米粒修饰的中性粒细胞的高灵敏“活”探针用于精准肿瘤影像诊断(A highly sensitive living probe derived from nanoparticle-remodeled neutrophils for precision tumor imaging diagnosi)邱钱赛(南通市肿瘤医院)、冯峰、温亚11.ABHD6通过调控单酰甘油的脂解影响非小细胞肺癌的发病机制(Enhanced monoacylglycerol lipolysis by ABHD6 promotes NSCLC pat hogenesis)汤志远(南通大学附属医院)、倪松石12.新生对比成年大鼠源性星形胶质细胞对神经干细胞的增殖影响及其机制研究(Effects and Mechanism of Action of Neonatal Versus Adult Astr ocytes on Neural Stem Cell Proliferation After Traumatic Brain Injury)戴勇(南通大学附属医院)、孙非凡、朱慧13.启东:肝癌病因学和预防研究的熔炉(Qidong: A Crucible for Studies on Liver Cancer Etiology and Prevention)陈建国(启东肝癌防治研究所)、朱健、王高仁14.长链非编码RNA ANRIL通过表观抑制ERRFI1基因的表达促进胆管癌恶性进展(Long non-coding RNA ANRIL promotes the malignant progression of cholangiocarcinoma by epigenetically repressing ERRFI1 expression)于洋(南通市肿瘤医院)、陈俏羽、张珣磊15.血清半乳糖凝集素-3可以作为胰腺癌筛查、早期诊断、预后和疗效评价的生物标记物(Serum galectin-3 as a biomarker for screening, early diagnosis, prognosis, and therapeutic effect evaluation of pancreatic cancer)易楠(南通大学附属医院)、赵絮影、江枫16.表观遗传调控机制在丙戊酸抑制肝星状细胞激活中的交互作用:蛋白质组和miRNA表达谱的整合研究(Crosstalk between Epigenetic Modulations in Valproic Acid Deact ivated Hepatic Stellate Cells: An Integrated Protein and miRNA Profiling Study)陆鹏(南通大学)、颜民、何理17.hsa_circ_0005785通过miR-578/APRIL轴促进肝细胞癌的细胞生长和转移的研究(Upregulated hsa_circ_0005785 Facilitates Cell Growth andMetastasi s of Hepatocellular Carcinoma Through the miR-578/APRIL Axis)陈琳(南通市第三人民医院)、王峰、吴安琪18.长非编码RNA NR_027471作为miRNA-8055的竞争性内源RNA通过调节TP53INP1的表达抑制骨肉瘤的生长(LncRNA NR_027471 Functions as a ceRNA for miRNA-8055 Leading to Suppression of Osteosarcoma by Regulating the E xpression of TP53INP1)陈佳佳(南通市第一人民医院)、缪吴军、杨赛帅19.第二代不可逆性表皮生长受体抑制剂——阿法替尼氧化还原敏感脂质聚合物纳米粒用于非小细胞肺癌靶向给药系统的体内外评价(Non-small cell lung cancer-targeted,redox-sensitive lipid-polymer hybrid nanoparticles for the delivery of a second-generation irreversible epidermal growth factor inhibitor—Afatinib: In vitro and in vivo evaluation)王金丽(南通大学附属医院)、苏高星、殷晓芹20.未知控制方向下高阶非线性多智能体系统一致性分布式控制(Consensus control of higher-order nonlinear multi-agent systems with unknown control directions)张智华(江苏航运职业技术学院)、王朝立、蔡轩21.慢性吗啡诱导小鼠脊髓环磷酸腺苷的形成和超极化激活环核苷酸门控通道的表达(Chronic morphine induces cyclic adenosine monophosphate formatio n and hyperpolarization-activated cyclic nucleotide-gated channel expression in the spinal cord of mic)袁林(南通市通州区人民医院)、骆利敏、马霞青22.胰腺癌来源血清外泌体的特征和蛋白质组学分析(Characterization and proteomic profiling of pancreaticcancer-derived serum exosomes)江枫(南通大学附属医院)、倪温慨、朱净23.人类活动背景下江苏近岸海域(中国东部)海洋生物价值评价研究(The evaluation of marine biological value of the Jiangsu coas tal zone (east of China) under the interference of human activities)于雯雯(江苏省海洋水产研究所)、邹欣庆、张东菊24.一种新的逆转录环介导的恒温扩增方法用于快速检测SARS-CoV-2 (A Novel Reverse Tranion Loop-Mediated Isothermal Ampli?cationMethod for Rapid Detection)陆仁飞(南通市第三人民医院)、武秀明、万郑州25.刺激性干预在老年创伤性颅脑损伤昏迷患者中的应用顾宇丹(南通大学附属医院)、费雅雅、秦殊26.丙氨酸乙醛酸-丝氨酸丙酮酸氨基转移酶低表达促进肝细胞肝癌演进和预后不良(Loss of alanine-glyoxylate and serine-pyruvate aminotransferase expression accelerated the progression o f hepatocellular carcinoma and predicted poor prognosis)孙玉风(南通大学)、李文超、沈诗琪27.在非酒精性脂肪性肝中CCN1促进肝脏脂肪变性和炎症(CCN1 promotes hepatic steatosisand inflammation in non-alcoholicsteatohepatitis)居林玲(南通市第三人民医院)、孙燕、薛红28.CD14在结直肠癌中的临床和免疫特征的大样本的分析(The clinical and immune features of CD14 in colorectalcancer identified vialage-scale analysis)陈达天(南通市海门区人民医院)29.用于电池充电的谐振变换器设计及其CC-CV输出特性研究(Resonant Converter for Battery Charging Applications With CC-CV Output Profiles)王书昶〔海迪科(南通)光电科技有限公司〕、刘玉申、王雪峰30.肾母细胞瘤基因(WT1)通过调控E-cadherin和ERK1/2信号通路促进卵巢癌进展(Wilms’tumor 1 (WT1) promotes ovarian cancer progression by regulating E-cadherin and ERK1/2 signaling)韩云(南通市第一人民医院)、宋超、张婷婷31.基于共价组装的荧光探针用于活细胞中hNQO1的检测与成像(Covalent-Assembly Based Fluorescent Probes for Detection of hNQO1 and Im aging in Living Cells)韩佳玲(南通市海门区人民医院)32.黏膜相关恒定T细胞在乙肝病毒相关肝衰竭中的表达(Mucosal-associated invariant T cells in hepatitis B virus-related liver failure)卞兆连(南通市第三人民医院)、薛红、李晗33.以医院为基础的肿瘤登记系统资料收集过程中常见问题辨析潘敏侠(江苏省南通卫生高等职业技术学校)、陈海珍、沈茜34.由华北污染物区域输送引起的一次江苏污染天气分析(Cold fronts transport features of North China pollutant over Jiangsu Province, China)顾沛澍(南通市气象局)、钱俊龙、刘端阳35.一类适用于血浆浓度预测的基于自记忆算法的非线性灰色Bernoulli组合模型(A prediction method for plasma concentration by using a nonli near grey Bernoulli combined model based on a self-memory algorithm)郭晓君(南通大学)、刘思峰、Yingjie Yang36.一种去除细菌生物膜的聚酯基伤口清创材料(A textile pile debridement material consisting of polyester fi bers for in vitro removal of biofilm)付译鋆(南通大学)、安琪、成悦37.基于热刺激驻极的高过滤效率稳定性聚丙烯熔喷非织造材料(Design of Polypropylene Electret Melt Blown Nonwovens with Sup erior Filtration Efficiency Stability through Thermally Stimulated Charging)张海峰(南通大学)、刘诺、曾倩茹38.基于高通量测序的舌癌转录组学研究(Tranome analysis of tongue cancer based on high throughput se quencing)汤明明(南通市肿瘤医院)、韩靓39.玉米苞叶数目和长度的遗传解析及苞叶数目主效QTL的精细定位(Genetic dissection of husk number and length across multiple environments and fine-mapping of a major-effect QTL for husk number in maize (Zea may L.))周广飞(江苏沿江地区农科所)、冒宇翔、薛林40.并行框架下大数据挖掘的改进K-Means聚类算法(Improved K-Means Clustering Algorithm for Big Data Mining under Hadoop Par allel Framework.Hadoop)陆维嘉(南通大学附属医院)41.木板抓取机器人手眼标定方法徐呈艺(南通职业大学)、刘英、贾民平42.考虑应力——锈胀开裂动态相互作用的钢筋混凝土构件耐久性劣(Durability of Reinforced Concrete Members Considering the Dynam ic Interaction of Stress-Corrosion Expansion and Cracking)戴丽(南通理工学院)、吴旭、刘荣桂43.超声辅助双水相萃取虎杖酶解液中的白藜芦醇(Ultrasound-assisted aqueous two-phase extraction of resveratrol from the enzymatic hydrolysates of Poly-gonum cuspidatum)周林芳(江苏工程职业技术学院)、江波、张涛44.Ti3Zr2Sn3Mo25Nb新型β钛合金超声冲击纳米化后的疲劳性能(Effect of Ultrasonic Surface Impact on the Fatigue Properties of Ti3Zr2Sn3Mo25Nb)曹小建(南通大学)、徐小丽45.角度可控性斜坡支架在经皮肾镜手术中的应用(Application of angle controllable slope stent in percutaneousne phrolithotomy)毛秋月(南通市第一人民医院)、陈黎敏46.南通地区住宅使用分户式地源热泵系统设计和运行分析邹丽丽(南通国能制冷空调技术有限公司)、吴志华、杨晓宏47.FGF21通过抑制神经炎症保护帕金森模型中多巴胺能神经元的研究(FGF21 Protects Dopaminergic Neurons in Parkinson’s Disease Mod els Via Repression of Neuroinflammation)连博琳(南通大学)、孙诚、房星星48.基于形态联合约束的结直肠肿瘤病理图像分割研究(Multiple Morphological Constraints-Based Complex Gland Segmentation in Colorectal Cancer Pathology Image Analysis)张堃(南通大学)、付君红、华亮49.针刺配合呼吸训练在慢性阻塞性肺疾病急性加重期病人中的应用王小琴(海安市人民医院)50.卵巢切除诱导大鼠前额叶皮质小胶质细胞活化和炎症反应加速慢性应激介导的焦虑和抑郁机制研究(Ovariectomy Induces Microglial Cell Activation and Inflammatory Response in Rat Prefrontal Cortices to Accelerate the Chronic Unpredictable Stress-Mediated Anxiety and Depression)葛飞(海安市中医院)、刘丽娜、严晶51.个别差异与交通要素对儿童在虚拟交通情境中过马路行为的影响(Roles of individual differences and traffic environment factors on children’s street-crossing behaviour in a VR environment)王华容(南通大学)、高瞻、沈婷52.双面神亲/疏水锌箔制备及其气泡运输特性肖轶(南通职业大学)、孟东、徐呈艺53.中西医结合治疗急性哺乳期乳腺炎并脓肿形成临床疗效观察乔楠(南通市中医院)、丁晓雯、倪毓生54.改良腰腹肌康复锻炼对经皮椎间孔镜髓核摘除术后患者的影响郭玲(海安市中医院)、田春燕、邵月琴55.轴影响阿尔茨海默病的发生发展(LncRNA ZBTB20-AS1靶向miR-132-3p/MAPT)李文玲(南通大学附属医院)、陈伯华、徐新56.水稻种植对沿海滩涂土壤有机碳及碳库管理指数的影响张蛟(江苏沿江地区农业科学研究所)、崔士友、胡帅栋57.文蛤CDK1基因克隆及其在早期生长阶段中的差异表达陈素华(江苏省海洋水产研究所)、吴杨平、陈爱华58.解毒消瘿汤治疗亚急性甲状腺炎热毒壅盛证临床疗效及对血清炎性因子水平的影响张允申(南通市中医院)、方勇、丁晓雯59.C反应蛋白及降钙素原在血流细菌感染诊断中的应用价值沈旭峰(如东县中医院)60.不同形式冷空气侵入台风暴雨过程对比分析张树民(南通市气象局)、吴海英、王坤61.基于第一性原理的锰掺杂二维二硫族化物的电磁学特性研究卿晓梅(南通理工学院)、镇思琦62.污水处理厂达标尾水导流排江可行性研究——以南通市益民污水处理厂为例张云(江苏省水文水资源勘测局南通分局)、蔡彬彬63.有极小边界的非负Bakry-émery Ricci曲率流形(Manifolds with non-negative Bakry-émery Ricci curvature and minimal boundary)杨宁(南通师范高等专科学校)64.del Nido心脏停搏液在成人冠脉动脉旁路移植联合瓣膜置换手术中的安全性姜秀丽(南通市第一人民医院)、顾天玉、刘麟65.固定卡座级进模设计孟玉喜(南通开放大学)、李强66.用好河长制“金钥匙”打造农民身边“幸福河”——江苏省南通市农村治水初探吴晓春(南通市水利局)、卢建均、喻红芬67.医学科研人员科研数据管理的认知调查与分析——以江苏省某地三甲医院医学科研人员为例王玥(南通大学附属医院)、陈飞、徐水珠68.基于认知分析的急诊标准化分诊及质控软件升级与应用刘颖(南通市第一人民医院)、陈建荣、张鹏69.模块化康复训练在车祸致脑外伤偏瘫痪患者中的应用吴莉蓉(如东县人民医院)、季晓平、石利平70.不同拭子和润湿试剂对生物物证的转移释放效果研究高泽华(南通市公安局)、贾东涛、韩海军71.XDA-1大孔树脂吸附处理含苯甲酸废水李珣珣(江苏九九久科技有限公司)、周新基、葛大伟72.南通市农机化发展短板及对策研究姜广林(南通市农业农村局)、周宇、陆锦林73.黄秋葵花的采摘贮运保鲜方法初探唐明霞(江苏沿江地区农业科学研究所)、顾拥建、袁春新74.血清外泌体Annexin A11检测方法学构建及其在胰腺癌中的临床应用肖明兵(南通大学附属医院)、徐伟松、陈晓君75.胸腹部肿瘤手术患者术后重度疼痛的危险因素王迪(南通市肿瘤医院)、缪长虹、陈万坤76.长链非编码RNAATB检测在乳腺癌诊断中的意义洪宏(南通市中医院)、喻海忠、袁建芬77.人工授精前实时三维子宫输卵管超声造影对输卵管通畅性评估的有效性彭琛(南通大学附属医院)、王迪、王霞78.基于心肺交互机制的监测技术对感染性休克患者容量反应性预测价值祁峰(南通市第一人民医院)、曹亮、张玲玲79.新型城镇化背景下土地资源节约集约利用的标准化实践与探索茆根明(海安市自然资源和规划局)、夏晶、崔晓鹏80.互联网医院发热咨询平台在新型冠状病毒肺炎疫情防控中的应用蒋杏茂(南通市第六人民医院)、金琰斐、尹栗81.肝癌患者血清miR-493-5p检测临床应用研究蔡卫华(南通市第三人民医院)、陈琳、居林玲82.如皋市桑树主要害虫的消长规律与防控布局徐祥(如皋市蚕桑技术指导站)、王静、钱小兰83.红木家具雕刻写实手法的应用探析陈加国(江苏翎视界红木艺术品有限公司)。

J.Mater.Chem.A,2013,1,1992-Graphene oxide–chitosan composite hydrogels as broad-spectrum adsorbents

View Journal | View Issue
Cite this: J. Mater. Chem. A, 2013, 1, 1992
Graphene oxide–chitosan composite hydrogels as broad-spectrum adsorbents for water purification†
College of Materials, Xiamen University, Xiamen, 361005, P. R. China. E-mail: baihua@; lilei@ † Electronic supplementary information (ESI) available: Adsorption kinetic curves of hydrogel particles and compact GO–CS composites, adsorption of MB and Eosin Y on pure GO and CS, and quantitative analysis of adsorption isotherms with Langmuir and Freundlich functions. See DOI: 10.1039/c2ta00406b
Journal of Materials Chemistry A
PAPER
Published on 23 November 2012. Downloaded by South China University of Technology on 19/06/2014 13:32:31.
View Article Online
a certain type of pollutants, but are not so efficient to other types. For example, unmodied CNTs show high adsorption capacity towards many organic compounds,10,20 but its adsorption capacity towards metal ions is low.21 Oxidizing modication can signicantly increase the adsorption capacity of carbon-based adsorbents towards ions, such as oxidized CNTs or chemically activated AC, due to the introduction of oxygencontained functional groups on the surface,22 but the resultant adsorbents exhibit low affinity for negatively charged (anionic) dyes.23 Therefore, it still remains a challenge to develop a broadspectrum adsorbent with high adsorption capacity for water purication. In recent years, graphene, as a new type of nanocarbon material, has aroused general interest among researchers from different elds, due to its excellent properties, such as high mobility of charge carriers, mechanical exibility, thermal and chemical stability.24–26 Especially, graphene has a large specic surface area (2630 m2 gÀ1),27 becoming a potential candidate as a high performance adsorbent. Pristine graphene, as an adsorbent, can only provide van der Waals force to bind adsorbates, because there are only sp2 carbon atoms on the graphene sheets. Thus graphene is not a good adsorbent for many types of contaminations, such as metal ions. The adsorption capacity of graphene can be signicantly increased by decorating it with functional groups or other materials.28 Graphene oxide (GO, Scheme 1), a precursor of chemically converted graphene, has plenty of oxygen atoms on the basal plane and the edge of the sheets in the form of epoxy, hydroxyl, and carboxyl groups.29 These oxygen groups can bind metal ions,30,31 and positively charged organic compounds,32 through coordination and electrostatic interaction. However, like ptember 2012 Accepted 22nd November 2012 DOI: 10.1039/c2ta00406b /MaterialsA

SiO2 graphene composite for highly selective adsorption of Pb(II) ion

SiO 2/graphene composite for highly selective adsorption of Pb(II)ionLiying Hao,Hongjie Song,Lichun Zhang,Xiangyu Wan,Yurong Tang,Yi Lv ⇑Key Laboratory of Green Chemistry &Technology,Ministry of Education,College of Chemistry,Sichuan University,Chengdu,Sichuan 610064,Chinaa r t i c l e i n f o Article history:Received 24October 2011Accepted 8December 2011Available online 16December 2011Keywords:Pb(II)ionSiO 2/graphene composite Adsorptiona b s t r a c tSiO 2/graphene composite was prepared through a simple two-step reaction,including the preparation of SiO 2/graphene oxide and the reduction of graphene oxide (GO).The composite was characterized by UV–Vis spectroscopy,Fourier transform infrared spectroscopy,scanning electron microscope,and X-ray pho-toelectron spectroscopy,and what is more,the adsorption behavior of as-synthesized SiO 2/graphene composite was investigated.It was interestingly found that the composite shows high efficiency and high selectivity toward Pb(II)ion.The maximum adsorption capacity of SiO 2/graphene composite for Pb(II)ion was found to be 113.6mg g À1,which was much higher than that of bare SiO 2nanoparticles.The results indicated that SiO 2/graphene composite with high adsorption efficiency and fast adsorption equilibrium can be used as a practical adsorbent for Pb(II)ion.Ó2011Elsevier Inc.All rights reserved.1.IntroductionGraphene (G),discovered in 2004[1],has been attempted in many applications due to its excellent characteristics,such as mobil-ity of charge carriers,mechanical flexibility,thermal and chemical stability,and large surface area [2–4].Significantly,graphene,as ideal two-dimensional ultrathin material with large surface area,is a promising building block material for composites [5];further-more,decoration of the graphene nanosheets with metal/metal oxide/nonmetallic oxide nanomaterials can bring about an impor-tant kind of graphene-based composites [6–10].The decoration of nanomaterials onto graphene nanosheets is also helpful to over-come the aggregation of individual graphene nanosheets [11]and nanomaterials themselves.Besides,the composites with larger sur-face area show superior properties,compared with bare nanomate-rials [12],due to the synergistic effect between graphene nanosheets and nanomaterials.Therefore,in recent years,many endeavors have been poured on the synthesis of graphene-based nanocomposites,e.g.,graphene/metal oxide and graphene/metal composites,and these composite materials have been explored as adsorbents [13,14],catalysts [15],and lithium ion batteries [16]along with an excellent application potential.Considering the inexpensive cost,innocuity,reliable and chemical stability,biocompatibility,and ver-satility of SiO 2[17],graphene/silica composite would be one of the greatly popular and interest topics in the field of nanomaterial and nanotechnology.On the other hand,there has been a long-time concern on the pollution of heavy metals to the aquatic environment because oftheir toxicity and detriment to living species including humans.Among all of the heavy metal ions,lead ion,which commonly exists in industrial and agricultural wastewater and in acidic leach-ate from landfill sites [18],is ubiquitous in the environment and severely hazardous to human and living things.Long-term drink-ing water containing high level of lead ion would cause serious dis-orders,such as anemia,kidney disease,nausea,convulsions,coma,renal failure,and cancer,along with subtly negative effects on metabolism and intelligence [19].Up to now,many techniques have been applied to remove Pb(II)ion from waste water,such as ion exchange [20],cloud point extraction [21],coprecipitation [22],flocculation [23],membrane filtration [24],reverse osmosis [25],adsorption [26],and so forth.Among these methods,adsorption-based methodology is greatly popular thanks to its high efficiency,cost-effectiveness,simple operation,and environmental friendliness [27].Especially,adsorptive removal of aqueous Pb(II)ion has been widely investigated by using various materials,such as activated carbon,ash,zeolites,metal oxides,chitosan,and agri-cultural by-products [28].It is also worth mentioning here that graphene/nanomaterials composites are also considered to be a highly effective adsorbent due to the peculiar properties and large surface area.Particularly,the research about the application of graphene/nanomaterials composites in the adsorption of heavy metal ions is important for environment and human.In this work,SiO 2/graphene composite was prepared via a two-step procedure route that contains the preparation of silica nanoparticles in the presence of graphene oxide solution and the reduction of graphene oxide in the presence of silica nanoparticles.Then,the resulting composite was chosen as an adsorbent toward Pb(II)ion and the adsorption behaviors were investigated in de-tails.Meanwhile,the influence of experimental conditions,includ-ing pH value,ionic strength and contact time,adsorbability,and0021-9797/$-see front matter Ó2011Elsevier Inc.All rights reserved.doi:10.1016/j.jcis.2011.12.023Corresponding author.Fax:+862885412798.E-mail address:lvy@ (Y.Lv).adsorption capacity,was also discussed.Interestingly,the SiO 2/graphene composite was found to be highly effective adsorbent with high selectivity and fast adsorption equilibrium toward Pb(II)ion.2.Materials and methods2.1.Chemical reagents and materialsGraphite powder was of SpecPure grade and was purchased from Tianjin Guangfu Fine Chemical Research Institute.Other reagents were of analytical grade and were used without further purification.Deionized (DI)water from ULUPURE Water Purification System (Chengdu,China)was used to prepare all solutions.Lead nitrate (Pb(NO 3)2,P 99.0%),ethanol,sodium hydroxide (NaOH),hydrazine hydrate (H 2NNH 2ÁH 2O,P 50.06%),and hydrochloric acid (HCl,P 36.46%)were obtained from Chengdu Kelong Chemical Reagent Company (China).Stock standard solution of lead (1000mg L À1)was prepared from analytical grade lead nitrate.2.2.Preparation and characterization of SiO 2/graphene composite The soluble graphene oxide–based sheets were produced by complete exfoliation of graphite oxide as an entry into SiO 2/graph-ene composite.Graphite oxide was synthesized according to the Hummers method through the oxidation of natural graphite pow-der [12].After that,graphite oxide (100mg)was exfoliated in 400mL of distilled alcohol–water (7:1,v/v)solution by ultrasonic treatment for 2h to form a colloidal suspension approximately.Then,the collected colloidal suspension was separated by centrifu-gation at 4000rpm,and the supernatant was obtained in order to prepare the followed composite.The well-known hydrolysis of tet-ramethyl orthosilicate (TEOS)was used for the fabrication of the composite.Briefly,the pH of the reaction mixture was adjusted to 9.00with ammonia solution and then added TEOS (2.1mL)into this dispersion,resulting graphene oxide–containing sol [29].The obtained mixture was stirred magnetically and reduced with hydrazine hydrate (P 50.06%)at 95°C for 24h.was collected through 0.45l m filter and water to remove the excess hydrazine hydrate,thesized composite was dried at 323K overnight 2.3.Characterization and apparatusThe UV–Vis spectra of GO and SiO 2/GO 200–500nm were recorded by U-2910UV–Vis The surface properties and composition of silica nanoparticles were investigated by Fourier IR)spectroscopy using Thermo Nicolet IS10FT-IR KBr pellets in the range 500–4000cm À1.X-ray troscopy (XPS)was performed with a XSAM 800eter (Kratos)using medium resolution and radiation to analyze the surface composition and of products.The binding energies were calibrated tainment carbon (284.8eV).Also,the wide-angle 35mA)powder X-ray diffraction (XRD)using a X’Pert Pro X-ray diffractometer (Philips)tion (k =1.5406Å).The surface morphology of the examined by SEM (Hitachi,S3400).The (BET)surface area and the pore size distribution were measured using N 2adsorption and desorption SI,Quantachrome,USA)at 77K over a relative 0.0955to 0.993.2.4.Batch adsorption experimentBatch adsorption tests were carried out at room temperature (25°C)and used to investigate the effects of various parameters on the adsorption of Pb(II)ion by SiO 2/graphene.For adsorption experiments,3mg of adsorbents was dispersed into a 20mg L À1Pb(II)ion solution (10mL)and was shaken with a magnetic stirrer for 60min to reach equilibrium except kinetic experiments.The SiO 2/graphene solution mixtures were filtered with a 0.45l m fil-ter,and the equilibrium concentrations of Pb(II)ion in the solution were quantified by flame atomic absorption spectroscopy (FAAS,Zeeman GGX-6,China).According to the above procedure,the impact of the pH value,ionic strength,and contact time on adsorp-tion was investigated.The adsorption capacity (q e ,mg g À1)and the adsorption efficiency (E ,%)were calculated according to Eqs.(1)and (2):q e ¼ðC 0ÀC e ÞÁVWð1ÞE ¼C 0ÀC eC 0Â100%ð2Þwhere C 0and C e (mg L À1)are the initial and equilibrium concentra-tions of Pb(II)ion in aqueous phase,and V is the volume of the solu-tion (L ),and W is the mass of dry adsorbent used (g ),respectively.3.Results and discussion 3.1.Characterizations of compositeUV–Vis spectrogram (Fig.S1)shows that GO nanosheets pres-ent a clear characteristic absorption in aqueous solution with a maximum wavelength at 228nm.On the other hand,SiO 2/GO composite exhibits a weak absorption at 226nm,which is due to the assembly of the GO nanosheets.The phenomenon of blueshift of the maximum wavelength is attributed to the change of the environment around the GO nanosheets,which preliminarily indi-cates that SiO 2/GO composite is successfully prepared.Similar 382L.Hao et al./Journal of Colloid and Interface Science 369(2012)381–387the A OH bending vibration of the adsorbed water molecules[29]. This suggests that SiO2nanoparticles are successfully prepared through the above pared with SiO2nanoparticles, the minor and weak peaks are observed at2980and2930cmÀ1, which are attributed to the C A H stretching vibration[33],which indicate the effective attachment of graphene and the successful preparation of SiO2/graphene composite.The surface composition and the element characterization of the composite were analyzed using XPS spectra of composite, which was conducted in the region of0–1100eV.As shown in Fig.2a,there are three elements in the XPS spectra of the compos-ite,namely carbon,oxygen,and silicon,without other elements. The spectra of XPS(Fig.2a)exist the characteristic peaks of Si2s (150eV),Si2p(104.5eV),which is indicative of the formation of the SiO2phase in composite.Moreover,the presence of SiO2can be further confirmed by the O1s XPS peak at532.8eV(Fig.2c), which is regarded as the oxygen species in the SiO2[34,35].In addition,there are at least three types of oxygen species about the O1s peak(Fig.2c),that is,the contribution of the anionic oxy-gen in SiO2at about532.8eV,the oxygen-containing functional groups at around532.3eV,and water at higher binding energies. The C1s XPS spectra,as shown in Fig.2b,contain four components corresponding to carbon atoms in different oxygen-containing functional groups[36]:(a)the non-oxygenated ring C at 284.8eV,(b)the carbon in C A O at285.9eV,(c)the carbonyl car-bon(C@O)at287.0eV,and(d)the carboxylate carbon(O A C@O) at288.2eV.The C1s spectrum of SiO2/graphene shows mainly the nonoxygenated carbon(284.8eV)and the carbon in C A O (285.9eV).Moreover,nonoxygenated carbon is more than the car-bon in C A O,which indicates that deoxygenation has appeared. Meanwhile,XRD was used to further verify the deoxygenation (Supplementary data,Fig.S2).The peak at10.4°corresponding to the diffraction peak of GO was disappeared and the newly obtuse peak at23.0°was observed,which confirm that GO was reduced with hydrazine hydrate and amorphous SiO2nanoparticles were formed[29,32].However,small amount residual oxygenated groups are still left,which are verified by the O1s XPS peaks at 532.3eV(C@O)and533.6eV(C A O)and also indicated that GO has not been completely reduced by hydrazine hydrate.Besides,silica nanoparticles to form a composite in nanoscale.In the images of SiO2/graphene(Fig.3c and d),the layer structure of graphene is well observed at high magnification and SiO2nanoparticles are tightly covered by the corrugated grapheneflakes,which is differ-ent from previous report[30]that graphene nanosheets are immo-bilized onto SiO2nanoparticles through surface assembly.In addition,N2adsorption–desorption isotherms were also em-ployed to investigate the specific surface area and the pore struc-tures of prepared samples(the chemical analysis reveals that the weight percentage of graphene is about12.5wt.%)(Fig.4).The BET surface area and pore volume estimated from Barret–Joyner–Halenda(BJH)analysis of the isotherms were determined to be 252.5m2gÀ1and0.3771cm3gÀ1,respectively.Also,the average of the pore size distribution is2.987nm,which was calculated from the absorption branch by the BJH method.As Fig.4shows, a slight adsorption is observed in the low pressure region(<0.6P/ P0),followed by a sharp adsorption at0.8P/P0,which suggests that this adsorption step occurs on its surface and the interlayer of restacking graphene layers[37].Also,a hysteresis loop can be seen in desorption branch.The shape of adsorption isotherms may be considered to be reversible type V isotherms,which is considered that there is weak interaction between materials and nitrogen. The shape of desorption branch is a typical H3type,indicating that the slit holes in the composite may be formed by the aggregation of various platelike particles.Thus,SiO2/graphene could be a good candidate as a kind of adsorption material.3.2.Adsorption performance3.2.1.Effect of pH on the adsorptionThe pH of the solution usually exerts a great effect on the adsorption of metal ions.According to the solubility-product con-stant of Pb(OH)2(Ksp=1.43Â10À15)and the initial concentration of Pb(II)ion of20mg LÀ1,the pH value of appearance of metal ion hydroxides precipitation is calculated as8.59.In order to investi-gate the effect of pH on the adsorption of Pb(II)ion onto SiO2/ graphene,10mL Pb(II)ion solution with the concentration of 20mg LÀ1was adjusted to a pH range of2.00–7.00with different concentrations of NaOH and HCl solutions,during which noL.Hao et al./Journal of Colloid and Interface Science369(2012)381–387383results in low adsorption.As the pH increased,more binding sites were released and there were less competition of active sites between hydrogen ion and lead(II)ion,resulting in better adsorp-tion behavior.In addition,the surface charge of SiO2/graphene with more negative charge density at higher pH causes more electro-static attractions of Pb(II)ion,which serves as another reason for the better adsorption behavior.3.2.2.Effect of ionic strength on the adsorptionThe different ionic strengths,such as0.001M,0.005M,0.01M, 0.05M,0.1M KNO3,and without KNO3,were chosen to investigate their effect on Pb(II)ion adsorption by SiO2/graphene.Fig.5b shows that Pb(II)ion adsorption decreases with increasing ionic strength.This phenomenon could be attributed to following reasons:(1)the Pb(II)ion forms outer-spherethe adsorbent sites,which favor the adsorptiontration of the competing salt is decreased.adsorption between the adsorbent andmainly of ionic interaction nature;(2)ionicinfluences the activity coefficient of metaltransfer to the composite surfaces[38].3.2.3.Effect of contact time on the adsorptionTime course of Pb(II)ion adsorption ontoexecuted under Pb(II)ion solution with concentrationat pH=6.00and I=0.001M KNO3.Fig.6contact time on the adsorption of Pb(II)composite.It can be seen that the adsorptionsharply,with about95%of total Pb(II)ion10min,then the adsorption reaches equilibriumfast adsorption rate is attributed to the laminatedlarge external surface of SiO2/graphene.Furthertime does not enhance the adsorption percentage2value industrial applications.The kinetics of Pb(II)ion adsorption was determined in order to understand the adsorption behavior of the SiO2/graphene compos-ite.The adsorption data of Pb(II)ion at different time intervals are fit for a pseudo-second-order kinetic model.The calculated curve corresponding to Pb(II)ion sorption was plotted in Fig.6(inset). The kinetic rate equation is expressed asdqtdt¼k2Áðq eÀq tÞ2ð3ÞBy integrating Eq.(3)with the boundary conditions of q t=0at t=0and q t=q t at t=t,the following linear equation can be obtained:tt¼12eþteð4ÞFig.3.SEM image of SiO2(a)and the different magnification of SiO2/graphene composite(b–d). (black)–desorption(red)isotherms and pore sizeV0¼k2Áq2eð5Þwhere q t and q e are the amounts of Pb(II)ion adsorbed at time t and at equilibrium(mg gÀ1),respectively.The k2(g mgÀ1minÀ1)repre-sents the pseudo-second-order rate constant for the kinetic model, which can be obtained by a plot of t/q t against t.V0(mg gÀ1minÀ1) is the initial sorption rate.As shown in Table S1,the comparison be-tween the experimental adsorption capacity(q exp)value and the calculated adsorption capacity(q cal)value shows that q cal value is very close to q exp value for the pseudo-second-order kinetics. Moreover,the adsorbent system can be well described by pseudo-second-order kinetic model,which also is confirmed according to the correlation coefficient value for pseudo-second-order model, equal to1.000,higher than that of pseudo-first-order,suggesting that the adsorption may be the rate-limiting step involving valence forces through sharing or exchange of electrons between the adsor-bent and the adsorbate.3.3.Adsorption isothermsIn addition to adsorption kinetics,we measured the absorption isotherms of Pb(II)ion onto SiO2/graphene to explore the adsorp-tion mechanism much deeply.As shown in Fig.7,at low initial Pb(II)ion concentration,the composite exhibits high adsorption percentage as98.82%.Although the adsorptivity decreases with increasing initial Pb(II)ion concentration,Pb(II)ion adsorption capacity steadily rises.The Langmuir and Freundlich models are the most frequently used models among the abundant isothermal models.The Lang-muir isotherm,which assumes monolayer coverage on adsorbent [39]and no subsequent interaction among adsorbed molecules, is expressed as[40]:1qe¼1qmþ1K LÁq mÁC eThe Freundlich isotherm is derived to model multilayer adsorp-tion on adsorbent.It can be described as[40]:ln qe¼ln K Fþ1nÁln C ewhere q e and C e are the adsorption capacity(mg gÀ1)and the equi-librium concentration of the adsorbate(mg LÀ1),respectively.K L is the constant related to the free energy of adsorption(L mgÀ1),and q m is the maximum adsorption capacity(mg gÀ1).K F and n are the Freundlich constants,which represent the adsorption capacity (mg gÀ1)and the adsorption strength,respectively.The values of q m and K L are calculated from the slope and intercept of the linear plot of1/q e against1/C e.ln K F and1/n can be obtained from the intercept and the slope of the linear plot of ln q e versus ln C e.The adsorption isotherms of Pb(II)ion on the SiO2/graphene com-posite as a function of Pb(II)concentration(pH=6.00,30min adsorption time)are shown in Fig.7(inset),and the Langmuir and Freundlich constants are presented in Table1.The adsorption data(a)and ionic strength(b)for the adsorption percentage and capacity of Pb(II)ion at room temperature(25°C):adsorption time, concentration,20mg LÀ1;and ionic strength,0.001M KNO3for a;pH,6.00for b.arefit for Langmuir model,and it shows the maximum adsorption capacity of113.6mg gÀ1for the SiO2/graphene composite.Also, the higher correlation coefficients indicate that the Langmuir model fits the adsorption data better than the Freundlich model.In other words,this adsorption process took place by monolayer on the homogeneous sites of the surface of SiO2/graphene.The adsorption capacities of other absorbents toward Pb(II)ion are listed in Table S2,and the comparative results show that the adsorption capacity of SiO2/graphene is higher.Therefore,it can be concluded that SiO2/graphene has much superior adsorption capacity for removing Pb(II)ion.3.4.Selective adsorption experimentThere are mainly six different heavy metals in the waste water: Cu2+,Pb2+,Ni2+,Co2+,Cd2+,and Cr3+.We chose a mixed solution of metal ions,which was prepared by diluting1000mg LÀ1of Cu2+, Pb2+,Ni2+,Cd2+,Co2+,and Cr3+to20mg LÀ1in25mLflask volumet-ric for a selective adsorption experiment;6.0mg adsorbent was dispersed in20mL of solution and the mixture was stirred for 30min at room temperature.In order to avoid to produce Cu(OH)2 (pH=5.92)and Cr(OH)3(pH=5.07)at the optimum condition (pH=6.00),the pH value of solution was chosen as4.80,at which the adsorption efficiency of Pb(II)ion would be little lower.Under this condition,the uptake of Pb(II)ion from this mixed metal ion solution on the SiO2/graphene composite is as high as84.23%, while other ions show only slight/negligible adsorption.The exper-iment data demonstrate highly selective adsorption of Pb(II)ion on the SiO2/graphene composite.3.5.Adsorption mechanismGenerally speaking,the adsorption of metal ions is based on the three adsorption mechanisms:electrostatic interactions,ion ex-change,and complex formation[41].In our study,the pH value of the solution increased after adsorption of Pb(II)ion(Table2), and the adsorption efficiency of Pb(II)ion increased with increas-ing the pH value until the optimum pH,which is in accordance with the related literature[27].As we all know,graphene sheets, containing delocalized p electrons,and lead ion/hydrogen ion act as electron donor and acceptor,respectively,which can form the electron donor–acceptor complexes.In this system,the complex is formed by a coordination bond(or dative bond or dipolar bond) between the unshared electron pair of the composites and an elec-tron-deficient atom of lead ion and hydrogen ion.So,it suggests that lead ion and hydrogen ion simultaneously adsorbed onto graphene and form composites,and results in an increase in the pH value.This phenomenon indicates that ion exchange is not the main cause.For our study,the surface charge is regarded as negative at high pH,which provides the ability of binding cations through electrostatic interaction.Besides,according to the previ-ous report,the basic sites as C p electrons on graphene sheets are considered as the important adsorption sites[42].Conse-quently,electrostatic interaction between Pb(II)cations and nega-tive surface charge and/or C p electrons of the composite is regarded as the main interaction for the adsorption of Pb(II)ion onto the composite.In addition,the specific surface area (252.5m2gÀ1)according to BET measure is another course,which provides more active sites for Pb(II)ion adsorption.However,re-search is needed for the clear mechanism in further investigations.4.ConclusionsIn summary,the SiO2/graphene composite was synthesized via a facile,fast,and low-cost process and further was developed to be highly efficient adsorbent for Pb(II)ion in aqueous solution.The SiO2/graphene composite reduces the serious stacking of graphene sheets and prevents the agglomeration of SiO2nanoparticles,and also produces a high surface area,which enables the composite to show high binding capability and excellent adsorption proper-ties for Pb(II)ion.This adsorbent is stable,low-cost,and environ-mentally friendly and shows potential application in the removal of Pb(II)ion from agricultural and industrial waste water.In addi-tion,successful preparation of SiO2/graphene composite was very helpful to understand the fundamental properties of graphene-based composites and some practical applications.AcknowledgmentsThis work was supported by the National Nature Science Foun-dation of China(21075084)and the Sichuan Youth Science&Tech-nology Foundation(No.2009-18-409).The authors also would like to show gratitude for Dr.Jiqiu Wen and Dr.Hong Chen of Analytical &Testing Center at Sichuan University for their assistance in the XRD and XPS analysis.Appendix A.Supplementary materialSupplementary data associated with this article can be found,in the online version,at doi:10.1016/j.jcis.2011.12.023.References[1]K.S.Novoselov,A.K.Geim,S.V.Morozov,D.Jiang,Y.Zhang,S.V.Dubonos,I.V.Grigorieva,A.A.Firsov,Science306(2004)666.[2]A.H.Castro Neto,F.Guinea,N.M.R.Peres,K.S.Novoselov,A.K.Geim,Rev.Mod.Phys.81(2009)109.[3]C.N.R.Rao,A.K.Sood,K.S.Subrahmanyam,indaraj,Angew.Chem.Int.Ed.48(2009)7752.[4]A.K.Geim,K.S.Novoselov,Nat.Mater.6(2007)183.[5]D.A.D.Sasha Stankovich,Geoffrey H.B.Dommett,Kevin M.Kohlhaas,Eric J.Zimney,Nature442(2006)282.[6]C.Xu,X.Wang,J.Zhu,J.Phys.Chem.C112(2008)19841.[7]J.Shen,Y.Hu,M.Shi,N.Li,H.Ma,M.Ye,J.Phys.Chem.C114(2010)1498.[8]T.S.Sreeprasad,S.M.Maliyekkal,K.P.Lisha,T.Pradeep,J.Hazard.Mater.186(2011)921.[9]R.Muszynski,B.Seger,P.V.Kamat,J.Phys.Chem.C112(2008)5263.[10]Y.Si,E.T.Samulski,Chem.Mater.20(2008)6792.[11]G.Williams,B.Seger,P.V.Kamat,ACS Nano2(2008)1487.[12]H.Song,L.Zhang,C.He,Y.Qu,Y.Tian,Y.Lv,J.Mater.Chem.21(2011)5972.[13]K.Zhang,V.Dwivedi,C.Chi,J.Wu,J.Hazard.Mater.182(2010)162.[14]V.Chandra,J.Park,Y.Chun,J.W.Lee,I.C.Hwang,K.S.Kim,ACS Nano4(2010)3979.Table1Parameters of Langmuir and Freundlich isotherm models for Pb(II)ion on SiO2/graphene composite.Langmuir FreundlichAdsorbent q m(mg gÀ1)K L(L mgÀ1)R2K F(mg gÀ1)n R2SiO2/graphene113.6 3.3860.992070.39 3.4820.9682Table2Changes in the pH value after adsorption of Pb(II)ion.pH b 2.00 3.00 4.00 5.00 5.50 6.007.00pH a 2.68 4.04 5.60 5.81 6.16 6.38 6.67pH b:the pH value before adsorption of Pb(II)ion;pH a:the pH value after adsorption of Pb(II)ion.386L.Hao et al./Journal of Colloid and Interface Science369(2012)381–387[15]C.Xu,X.Wang,J.Zhu,X.Yang,L.Lu,J.Mater.Chem.18(2008)5625.[16]S.Yang,X.Feng,S.Ivanovici,K.Müllen,Angew.Chem.Int.Ed.49(2010)8408.[17]F.G.H.H.Yuan,Z.G.Zhang,L.D.Miao,R.H.Yu,H.L.Zhao,n,J.Health Sci.56(2010)632.[18]S.W.Yan Hui Li,J.Q.Wei,X.F.Zhang,C.L.Xu,Z.K.Luan,D.H.Wu,B.Q.Wei,Chem.Phys.Lett.357(2002)263.[19]Y.H.Li,Z.Di,J.Ding,D.Wu,Z.Luan,Y.Zhu,Water Res.39(2005)605.[20]G.P.Rao,C.Lu,F.Su,Sep.Pur.Technol.58(2007)224.[21]M.Ghaedi,A.Shokrollahi,K.Niknam,E.Niknam,A.Najibi,M.Soylak,J.Hazard.Mater.168(2009)1022.[22]O.D.Uluozlu,M.Tuzen,D.Mendil,M.Soylak,J.Hazard.Mater.176(2010)1032.[23]A.R.Karbassi,S.Nadjafpour,Environ.Pollut.93(1996)257.[24]M.Soylak,Y.E.Unsal,N.Kizil,A.Aydin,Food Chem.Toxicol.48(2010)517.[25]M.M.Rao,D.K.Ramana,K.Seshaiah,M.C.Wang,S.W.C.Chien,J.Hazard.Mater.166(2009)1006.[26]V.K.Gupta,I.Ali,J.Colloid Interface Sci.271(2004)321.[27]Z.H.Huang,X.Zheng,W.Lv,M.Wang,Q.H.Yang,F.Kang,Langmuir27(2011)7558.[28]A.H.Chen,S.C.Liu,C.Y.Chen,C.Y.Chen,J.Hazard.Mater.154(2008)184.[29]L.Kou,C.Gao,Nanoscale3(2011)519.[30]J.W.Liu,Q.Zhang,X.W.Chen,J.H.Wang,Chem.Eur.J.17(2011)4864.[31]Y.Yang,S.Qiu,W.Cui,Q.Zhao,X.Cheng,R.Li,X.Xie,Y.W.Mai,J.Mater.Sci.44(2009)4539.[32]Q.Liu,J.T.Sun,Thanh Wang,L.X.Zeng,G.B.Jiang,Angew.Chem.123(2011)6035.[33]X.G.Li,H.Feng,M.R.Huang,Chem.Eur.J.16(2010)10113.[34]D.S.f,Amauri J.Paula,Antonio G.Souza Filho,Yoong Ahm Kim,MorinobuEndo,Oswaldo L.Alves,Chem.Eur.J.17(2011)3228.[35]C.Y.Kim,S.H.Kim,R.Navamathavan,C.K.Choi,W.Y.Jeung,Thin Solid Films516(2007)340.[36]S.Stankovich,R.D.Piner,X.Chen,N.Wu,S.T.Nguyen,R.S.Ruoff,J.Mater.Chem.16(2006)155.[37]X.Deng,L.Lü,H.Li,F.Luo,J.Hazard.Mater.183(2010)923.[38]C.Chen,X.Wang,Ind.Eng.Chem.Res.45(2006)9144.[39]ngmuir,J.Am.Chem.Soc.38(1916)2221.[40]Y.Li,P.Zhang,Q.Du,X.Peng,T.Liu,Z.Wang,Y.Xia,W.Zhang,K.Wang,H.Zhu,D.Wu,J.Colloid Interface Sci.363(2011)348.[41]C.Moreno-Castilla,M.A.Álvarez-Merino,L.M.Pastrana-Martínez,M.V.López-Ramón,J.Colloid Interface Sci.345(2010)461.[42]M.Machida,T.Mochimaru,H.Tatsumoto,Carbon44(2006)2681.L.Hao et al./Journal of Colloid and Interface Science369(2012)381–387387。

南京先丰纳米材料科技有限公司南京...

先丰客户发表文章Publications Featuring XFNANO Graphene, Carbon Nanotubes and Others.此统计数据日期截至2014年02月22日,由于文章较多,此处仅统计先丰客户英文文章且直接引用先丰公司英文名称”Nanjing XFNANO Materials Tech Co.,Ltd”,截至到现在已经有超过500篇文章(包括英文/中文/专利)署名先丰纳米,我司现整理出242篇高质量英文文章,总影响因子超过1000,平均影响因子3.993。

其中2014年前两个月客户已经发表高质量英文文章50篇;2013年客户发表200多篇高质量的英文文章,其中有JACS,AM,AFM,CC,JPCC,JMC 等等,值得骄傲的是这些材料都是实验的主体材料,在国际上宣传了”XFNANO”,为先丰带来了声誉和很多国际客户,这也说明了国外杂志对我司的认可,也为后来客户发表文章直接引用我司提供了很多方便和印证。

先丰纳米公司从09年发展至今,一直专注于提供高质量的石墨烯产品。

我司现摘录部分英文文章如下,一是为宣传我司;二是也是为广大客户更信任我司产品,启迪客户科研思路,用好我司提供的材料;三是推动我司继续前进,履行“先进纳米材料制造商以及技术服务商”的宗旨。

另外我司代理的产品,国内客户发表文章的也有上百篇,由于署名不是我司,较难查找,我司以后会摘录几篇影响因子较高的客户文章,同时也欢迎客户反馈文章发表信息。

反馈一篇我司此列表中未摘录的英文文章包括会议论文奖励一百元,作者亲自反馈的除奖金外,购买我司产品一律享受VIP待遇。

以下为影响因子和文章概述,经我司计算,客户以我司名义发表SCI文章影响因子平均高达:3.993影响因子(Impact Factor)概述:大于等于10:期刊:Advanced Materials 2013 影响因子:14.829文章Vertically Oriented Graphene Bridging Active-Layer/Current-Collector Interface for Ultrahigh Rate Supercapacitors期刊:Advanced Functional Materials 2012 影响因子:10.179文章: Layered H2Ti6O13-Nanowires: A New Promising Pseudocapacitive Material in Non-Aqueous Electrolyte南京先丰纳米材料科技有限公司Nanjing XFNANO Materials Tech Co.,Ltd 地址:南京市鼓楼区南京大学国家大学科技园Add:Nanjing Jiangsu Province China大于等于6:期刊:Nanoscale 2014 影响因子:6.233文章:Vertical junction photodetectors based on reduced graphene oxide/silicon Schottky diodes.期刊:Biomaterials 影响因子:7.604文章:Inhibitory effect of silver nanomaterials on transmissible virus-induced host cell infections.期刊:Biosensors and Bioelectronics 2014 影响因子: 5.437文章A general strategy to prepare homogeneous and reagentless GO/lucigenin&enzyme biosensors for detection of small biomolecules期刊:Biosensors and Bioelectronics 2014 影响因子: 5.437文章Simultaneous electrochemical detection of cervical cancer markers using reduced graphene oxide-tetraethylene pentamine as electrode materials and distinguishable redox probes as labels期刊:Biosensors and Bioelectronics 2014 影响因子: 5.437文章Electrochemical determination of cefotaxime based on a three-dimensional molecularly imprinted film sensor期刊:Biosensors and Bioelectronics 2014 影响因子: 5.437文章Femtomole level photoelectrochemical aptasensing for mercury ions using quercetin–copper(II) complex as the DNA intercalator期刊:analytical chemistry 2014 影响因子: 5.695文章 A Homogeneous Signal-On Strategy for the Detection of rpoB Genes of Mycobacterium tuberculosis Based on Electrochemiluminescent Graphene Oxide and Ferrocene Quenching期刊:Biosensors and Bioelectronics 2014影响因子: 5.437文章Investigation of the effect of phytohormone on the expression of microRNA-159a in Arabidopsis thaliana seedlings based on mimic enzyme catalysis systematic electrochemical biosensor期刊:Biosensors and Bioelectronics 2014 影响因子: 5.437文章Target-induced electronic switch for ultrasensitive detection of Pb2+ based on three dimensionally ordered macroporous Au–Pd bimetallic electrode期刊:Biosensors and Bioelectronics 2014 影响因子: 5.437文章Electrochemical immunoassay for procalcitonin antigen detection based on signal amplification strategy of multiple nanocomposites期刊:Carbon 2014 影响因子: 5.868文章Enhanced nonlinear optical and optical limiting properties of graphene/ZnO hybrid organic glasses期刊:Carbon 2014 影响因子: 5.868文章Reductive dechlorination of hexachloroethane by sulfide in aqueous solutions mediated by graphene oxide and carbon nanotubes文章Facile and novel electrochemical preparation of a graphene–transition metal oxide nanocomposite for ultrasensitive electrochemical sensing of acetaminophen and phenacetin期刊:Biomaterials 2014 影响因子:7.604文章Graphene oxide doped conducting polymer nanocomposite film for electrode-tissue interface 期刊:Nanoscale 2014 影响因子:6.233南京先丰纳米材料科技有限公司Nanjing XFNANO Materials Tech Co.,Ltd 地址:南京市鼓楼区南京大学国家大学科技园Add:Nanjing Jiangsu Province China文章Fabrication and application of flexible graphene silk composite film electrodes decorated with spiky Pt nanospheres期刊:Journal of Materials Chemistry A 2014 影响因子: 6.101文章Binder-free phenyl sulfonated graphene/sulfur electrodes with excellent cyclability for lithium sulfur batteries期刊:Journal of Materials Chemistry A 2014 影响因子: 6.101文章A 3D hierarchical porous α-Ni(OH)2/graphite nanosheet composite as an electrode material for supercapacitors期刊:Chemical Communications 2012 影响因子:6.169文章: Graphene electrochemical supercapacitors: the influence of oxygen functional groups期刊:Advanced Functional Materials 2013 影响因子:9.765文章Highly Electron Transparent Graphene for Field Emission Triode Gates期刊:Biomaterials 2013 影响因子:7.604文章Nanodiamonds-mediated doxorubicin nuclear delivery to inhibit lung metastasis of breast cancer期刊:Nanoscale 2013 影响因子:6.233期刊:Nanoscale 2013 影响因子: 6.233文章Using ruthenium polypyridyl functionalized ZnO mesocrystals and gold nanoparticle dotted graphene composite for biological recognition and electrochemiluminescence biosensing期刊:Nanoscale 2013 影响因子: 6.233文章One-pot, water-based and high-yield synthesis of tetrahedral palladium nanocrystal decorated graphene期刊:Journal of Materials Chemistry A 2013影响因子:6.101文章Graphene-wrapped silver/porous silicon composite with enhanced electrochemical performance for lithium-ion batteries期刊:Biomaterials 2013 影响因子:7.604文章:Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy大于等于5:期刊:Biosensors and Bioelectronics 2014 影响因子:5.437文章:Mild and Novel Electrochemical Preparation of β-Cyclodextrin/Graphene Nanocomposite Film for Super-Sensitive Sensing of Quercetin期刊:Anal. Chem. 2014 影响因子:5.695文章:In Situ Growth of Porous Platinum Nanoparticles on Graphene Oxide for Colorimetric Detection of Cancer Cells期刊:Journal of Materials Chemistry A 2013 影响因子:5.968文章: Highly loaded CoO/graphene nanocomposites as lithium-ion anodes with superior reversible capacity期刊:Journal of Materials Chemistry 2012 影响因子:5.968文章: Graphene/porous cobalt nanocomposite and its noticeable electrochemical hydrogen storage ability at room temperature南京先丰纳米材料科技有限公司Nanjing XFNANO Materials Tech Co.,Ltd 地址:南京市鼓楼区南京大学国家大学科技园Add:Nanjing Jiangsu Province China期刊:Journal of Materials Chemistry 2012 影响因子:5.968文章: Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties期刊:Journal of Materials Chemistry 2012 影响因子:5.968文章: A novel Fe3O4–graphene–Au multifunctional nanocomposite: green synthesis and catalytic application期刊:Journal of Materials Chemistry 2013 影响因子:5.968文章: Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2 nanosheets/graphene composite films期刊:Journal of Materials Chemistry A 2013 影响因子:5.968文章: Stabilization of NaZn(BH4)3via nanoconfinement in SBA-15 towards enhanced hydrogen release期刊:Applied Catalysis B: Environmental 2012 影响因子:5.625文章: Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2–graphene composites for photodegradation of acetone in air期刊:Biosensors and Bioelectronics 2012 影响因子:5.602文章: Acetylcholinesterase biosensor based on chitosan/prussian blue/multiwall carbon nanotubes/hollow gold nanospheres nanocomposite film by one-step electrodeposition期刊:Biosensors and Bioelectronics 2012 影响因子:5.602文章: Label-free colorimetric sensor for ultrasensitive detection of heparin based on color quenching of gold nanorods by graphene oxide期刊:Biosensors and Bioelectronics 2012 影响因子:5.602文章: Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene期刊:Biosensors and Bioelectronics 2012 影响因子:5.602文章: DNA electrochemical biosensor based on thionine-graphene nanocomposite期刊:Carbon 2012 影响因子:5.378文章: Synthesis of electrochemiluminescent graphene oxide functionalized with a ruthenium(II) complex and its use in the detection of tripropylamine期刊:Carbon 2013 影响因子: 5.868文章Preparation and tribological properties of TiAl matrix composites reinforced by multilayer graphene期刊:Biosensors and Bioelectronics 2013 影响因子: 5.437文章Simple Approach for Ultrasensitive Electrochemical Immunoassay of Clostridium difficile toxin B Detection期刊:Biosensors and Bioelectronics 2013 影响因子: 5.437文章Target-induced Electronic Switch for Ultrasensitive Detection of Pb2+ Based on Three Dimensionally Ordered Macroporous Au-Pd Bimetallic Electrode期刊:Biosensors and Bioelectronics 2014 影响因子: 5.437文章Direct electron transfer of glucose oxidase and biosensing for glucose based on PDDA-capped gold nanoparticle modified graphene/multi-walled carbon nanotubes electrode南京先丰纳米材料科技有限公司Nanjing XFNANO Materials Tech Co.,Ltd 地址:南京市鼓楼区南京大学国家大学科技园Add:Nanjing Jiangsu Province China期刊:Analytical chemistry 2013 影响因子: 5.695文章Graphene Oxide–Peptide Nanocomplex as a Versatile Fluorescence Probe of Protein Kinase Activity Based on Phosphorylation Protection against Carboxypeptidase Digestion期刊:Lab on a Chip 2013 影响因子: 5.697文章On-chip selective capture of cancer cells and ultrasensitive fluorescence detection of survivin mRNA in a single living cell期刊:Environmental Science & Technology 2013 影响因子:5.257文章Graphene and g-C3N4 Nanosheets Cowrapped Elemental α-Sulfur As a Novel Metal-Free Heterojunction Photocatalyst for Bacterial Inactivation under Visible-Light期刊:Biosensors and Bioelectronics 2014 影响因子:5.437文章A highly sensitive and wide-ranged electrochemical zinc(II) aptasensor fabricated on core–shell SiO2-Pt@meso-SiO2期刊:Analytical chemistry 2013 影响因子:5.695文章Electrochemiluminescent Quenching of Quantum Dots for Ultrasensitive Immunoassay through Oxygen Reduction Catalyzed by Nitrogen-Doped Graphene-Supported Hemin期刊:Biosensors and Bioelectronics 2013 影响因子:5.437文章A novel ionic liquid stabilized molecularly imprinted optosensing material based on quantum dots and graphene oxide for specific recognition of vitamin E期刊:APPLIED MATERIALS & INTERFACES 2013 影响因子:5.008文章Dye-Sensitization-Induced Visible-Light Reduction of Graphene Oxide for the Enhanced TiO2 Photocatalytic Performance期刊:Biosensors and Bioelectronics 2014 影响因子:5.437文章Graphene oxide as nanogold carrier for ultrasensitive electrochemical immunoassay of Shewanella oneidensis with silver enhancement strategy期刊:ACS APPLIED MATERIALS & INTERFACES 2013 影响因子:5.008文章Graphene-Wrapped CoS Nanoparticles for High-Capacity Lithium-Ion Storage期刊:Biosensors and Bioelectronics 2013 影响因子:5.437文章Combination of cascade chemical reactions with graphene–DNA interaction to develop new strategy for biosensor fabrication期刊:Biosensors and Bioelectronics 2013 影响因子:5.437文章 A graphene oxide-based FRET sensor for rapid and sensitive detection of matrix metalloproteinase 2 in human serum sample期刊:Biosensors and Bioelectronics 2014 影响因子:5.437文章Ultrasensitive photoelectrochemical immunoassay of indole-3-acetic acid based on the MPA modified CdS/RGO nanocomposites decorated ITO electrode期刊:Environ. Sci. Technol 2013 影响因子:5.228文章:Graphene Oxide-Facilitated Reduction of Nitrobenzene in Sulfide-Containing Aqueous Solutions期刊:Journal of Materials Chemistry A 2013 影响因子:5.968文章:Nitrogen-doped mesoporous carbons originated from ionic liquids as electrode materials for supercapacitors南京先丰纳米材料科技有限公司Nanjing XFNANO Materials Tech Co.,Ltd 地址:南京市鼓楼区南京大学国家大学科技园Add:Nanjing Jiangsu Province China期刊:Nanoscale 2013 影响因子:5.914文章:Label-free Electrochemical Impedance Genosensor Based on 1-Aminopyrene/Graphene Hybrids 期刊:Chemistry - A European Journal 2013 影响因子:5.925文章:Three-Dimensional Hierarchical Architectures Constructed by Graphene/MoS2 Nanoflake Arrays and Their Rapid Charging/Discharging Properties as Lithium-Ion Battery Anodes期刊:Chemistry - A European Journal 2013 影响因子:5.925文章:Structural Engineering for High Energy and Voltage Output Supercapacitors期刊:Chemistry - A European Journal 2013 影响因子:5.925文章: Label-Free Detection of MicroRNA: Two-Step Signal Enhancement with a Hairpin-Probe-Based Graphene Fluorescence Switch and Isothermal Amplification大于等于4:期刊:Analytica Chimica Acta 2014 影响因子:4.378文章:In situ synthesis of ceria nanoparticles in the ordered mesoporous carbon as a novel electrochemical sensor for the determination of hydrazine.期刊:Journal of Power Sources 2014 影响因子:4.675文章:Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells.期刊:Journal of Power Sources 2014 影响因子:4.675文章:Sulfonated poly(ether ether ketone)/mesoporous silica hybrid membrane for high performance vanadium redox flow battery期刊:Journal of Power Sources 2012 影响因子:4.951文章: Carbon felt supported carbon nanotubes catalysts composite electrode for vanadium redox flow battery application期刊:Journal of Power Sources 2012 影响因子:4.951文章: A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes期刊:J. Phys. Chem. C 2012 影响因子:4.805文章: Alignment of Single-Walled Carbon Nanotubes with Ferroelectric Liquid Crystal期刊:Analytica Chimica Acta 2012 影响因子:4.555文章: Highly sensitive luminol electrochemiluminescence immunosensor based on ZnO nanoparticles and glucose oxidase decorated graphene for cancer biomarker detection期刊:Journal of Chromatography A 2012 影响因子:4.531文章: Simultaneous determination of 10 β2-agonists in swine urine using liquid chromatography–tandem mass spectrometry and multi-walled carbon nanotubes as a reversed dispersive solid phase extraction sorbent期刊:ACS Applied Materials & Interfaces 2012 影响因子:4.525文章: “Turn-on”Fluorescence Detection of Lead Ions Based on Accelerated Leaching of Gold Nanoparticles on the Surface of Graphene期刊:Chemistry-An Asian Journal 2012 影响因子:4.5南京先丰纳米材料科技有限公司Nanjing XFNANO Materials Tech Co.,Ltd 地址:南京市鼓楼区南京大学国家大学科技园Add:Nanjing Jiangsu Province China文章: Dispersion of Reduced Graphene Oxide in Multiple Solvents with an Imidazolium-Modified Hexa-peri-hexabenzocoronene期刊:Analyst 2012 影响因子:4.23文章: Glucose sensor based on an electrochemical reduced graphene oxide-poly(L-lysine) composite film modified GC electrode期刊:Analyst 2012 影响因子:4.23文章: A functional graphene oxide-ionic liquid composites/gold nanoparticles sensing platform for ultrasensitive electrochemical detection of Hg2+期刊:Analyst 2012 影响因子:4.23文章: Ultrasensitive colorimetric detection of heparin based on self-assembly of gold nanoparticles on graphene oxide期刊:PLOS ONE 2012 影响因子:4.092文章: Obstruction of Photoinduced Electron Transfer from Excited Porphyrin to Graphene Oxide: A Fluorescence Turn-On Sensing Platform for Iron (III) Ions期刊:Pharmaceutical Research 2012 影响因子:4.093文章: PEGylated Multi-Walled Carbon Nanotubes for Encapsulation and Sustained Release of Oxaliplatin期刊:Electrochemistry Communications 2014 影响因子: 4.425文章A Novel Electrochemical Immunosensor for Golgi Protein 73 Assay期刊:Journal of Power Sources 2014 影响因子: 4.675文章Mesoporous Li3V2(PO4)3@CMK-3 nanocomposite cathode material for lithium ion batteries期刊:Analytica Chimica Acta 2014 影响因子: 4.387文章Sensitive and selective electrochemical determination of quinoxaline-2-carboxylic acid based on bilayer of novel poly(pyrrole) functional composite using one-step electro-polymerization and molecularly imprinted poly(o-phenylenediamine)期刊:Journal of Membrane Science 2014 影响因子:4.093文章Poly(vinyl alcohol)–graphene oxide nanohybrid “pore-filling” membrane for pervaporation of toluene/n-heptane mixtures期刊:Journal of Power Sources 2014 影响因子: 4.675文章Non-aqueous hybrid supercapacitors fabricated with mesoporous TiO2 microspheres and activated carbon electrodes with superior performance期刊:Journal of Power Sources 2014 影响因子: 4.675文章Preparation of three-dimensional hybrid nanostructure-encapsulated sulfur cathode for high-rate lithium sulfur batteries期刊:Bioresource Technology 2013 影响因子: 4.75文章Selective production of chemicals from biomass pyrolysis over metal chlorides supported on zeolite期刊:Journal of Chromatography A 2013 影响因子: 4.612文章Simultaneous determination of six resorcylic acid lactones in feed using liquid chromatography–tandem mass spectrometry and multi-walled carbon nanotubes as a dispersive solid phase extraction sorbent南京先丰纳米材料科技有限公司Nanjing XFNANO Materials Tech Co.,Ltd 地址:南京市鼓楼区南京大学国家大学科技园Add:Nanjing Jiangsu Province China期刊:Journal of Power Sources 2013 影响因子: 4.675文章Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium–sulfur battery期刊:The Journal of Physical Chemistry C 2013 影响因子: 4.814文章Electromagnetic Wave Absorption Properties of Reduced Graphene Oxide Modified by Maghemite Colloidal Nanoparticle Clusters期刊:Journal of Power Sources 2013 影响因子: 4.675文章Improving the performance of lithium–sulfur batteries by graphene coating期刊:Journal of Chromatography A 2013 影响因子:4.612文章Application of graphene as the stationary phase for open-tubular capillary electrochromatography 期刊:Journal of Power Sources 2013 影响因子:4.675文章Design, hydrothermal synthesis and electrochemical properties of porous birnessite-type manganese dioxide nanosheets on graphene as a hybrid material for supercapacitors期刊:Appl. Mater. Interfaces 2013 影响因子:4.525文章:One-Pot Environmentally Friendly Approach toward Highly Catalytically Active Bimetal-Nanoparticle-Graphene Hybrids期刊:Electrochemistry Communications 2013 影响因子:4.859文章:Fabrication of streptavidin functionalized silver nanoparticle decorated graphene and its application in disposable electrochemical sensor for immunoglobulin E期刊:ACS Appl. Mater. Interfaces 2013 影响因子:4.525文章:Facile Fabrication and Enhanced Photocatalytic Performance of Ag/AgCl/rGO Heterostructure Photocatalyst期刊:Analyst 2013 影响因子:4.23文章:One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection大于等于3:期刊:Sensors and Actuators B: Chemical影响因子:3.535文章:Facile preparation of highly water-stable and flexible PEDOT:PSS organic/inorganic composite materials and their application in electrochemical sensors.期刊:Electrochimica Acta影响因子:3.777文章:Inhibitory effect of silver nanomaterials on transmissible virus-induced host cell infections期刊:Microchimica Acta 2014 影响因子:3.434文章:Graphene oxide functionalized magnetic nanoparticles as adsorbents for removal of phthalate esters.期刊:Nanotechnology 2013 影响因子:3.979文章: Facile and straightforward synthesis of superparamagnetic reduced graphene oxide–Fe3O4 hybrid composite by a solvothermal reaction期刊:Sensors and Actuators B: Chemical 2012 影响因子:3.898文章: Sensitive DNA biosensor improved by 1,10-phenanthroline cobalt complex as indicator based on the electrode modified by gold nanoparticles and graphene期刊:Electrochimica Acta 2013 影响因子:3.832南京先丰纳米材料科技有限公司Nanjing XFNANO Materials Tech Co.,Ltd 地址:南京市鼓楼区南京大学国家大学科技园Add:Nanjing Jiangsu Province China文章: Electrochemical biosensor based on reduced graphene oxide modified electrode with Prussian blue and poly(toluidine blue O) coating期刊:Electrochimica Acta 2012 影响因子:3.832文章: High sensitive determination of theophylline based on gold nanoparticles/l-cysteine/Graphene/Nafion modified electrode期刊:Electrochimica Acta 2013 影响因子:3.832文章: Graphene oxide/nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor期刊:Electrochimica Acta 2012 影响因子:3.832文章: Graphene oxide nanoribbon and polyhedral oligomeric silsesquioxane assembled composite frameworks for pre-concentrating and electrochemical sensing of 1-hydroxypyrene期刊:Bioelectrochemistry 2012 影响因子:3.759文章: Nonenzymatic amperometric determination of glucose by CuO nanocubes–graphene nanocomposite modified electrode期刊:Chemical Engineering Journal 2012 影响因子:3.461文章: Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation期刊:Fuel 2012 影响因子:3.248文章: Experimental study on bio-oil upgrading over catalyst in supercritical ethanol期刊:RSC Advances 2013 2011年创刊预计影响因子:大于3.0文章: Sandwich nanocomposites of polyaniline embedded between graphene layers and multi-walled carbon nanotubes for cycle-stable electrode materials of organic supercapacitors期刊:RSC Advances 2012 2011年新刊,预计影响因子:大于3.0文章: Electrochemically-driven and dynamic enhancement of drug metabolism via cytochrome P450 microsomes on colloidal gold/graphene nanocomposites期刊:Electrochimica Acta 2014 影响因子: 3.777文章(4-Ferrocenylethyne) Phenylamine Functionalized Graphene Oxide Modified Electrode for Sensitive Nitrite Sensing期刊:Sensors and Actuators B: Chemical 2014 影响因子: 3.535文章Simultaneous determination of dihydroxybenzene isomers based on graphene-graphene oxide nanocomposite modified glassy carbon electrode期刊:Sensors and Actuators B: Chemical 2014 影响因子: 3.535文章Sensitive electrochemiluminescence sensor based on ordered mesoporous carbon composite film for dopamine期刊:Talanta 2014 影响因子: 3.498文章Square wave anodic stripping voltammetric determination of Cd2+ and Pb2+ at bismuth-film electrode modified with electroreduced graphene oxide-supported thiolated thionine期刊:Sensors and Actuators B: Chemical 2014 影响因子: 3.535文章A multiple-promoted silver enhancement strategy in electrochemical detection of target virus期刊:Nanotechnology 2014 影响因子: 3.842南京先丰纳米材料科技有限公司Nanjing XFNANO Materials Tech Co.,Ltd 地址:南京市鼓楼区南京大学国家大学科技园Add:Nanjing Jiangsu Province China文章Ag–graphene hybrid conductive ink for writing electronics期刊:Analyst 2014 影响因子: 3.969文章Capillary electrophoresis-based immobilized enzyme reactor using graphene oxide as support via layer by layer electrostatic assembly期刊:Microchimica Acta 2014 影响因子: 3.434文章Fluorescent aptasensor for the determination of Salmonella typhimurium based on a graphene oxide platform期刊:Talanta 2014 影响因子:3.498文章Tannic acid functionalized N-doped graphene modified glassy carbon electrode for the determination of bisphenol A in food package期刊:Composites Science and Technology 2013 影响因子: 3.328文章Fabrication of graphene/polylactide nanocomposites with improved properties期刊:Microporous and Mesoporous Materials 2014 影响因子: 3.365文章Synthesis, characterization and CO2 capture of mesoporous SBA-15 adsorbents functionalized with melamine-based and acrylate-based amine dendrimers期刊:Analyst 2013 影响因子: 3.969文章Graphene based electrochemical biosensor for label-free measuring the activity and inhibition of protein tyrosine kinase期刊:Electrochimica Acta 2013 影响因子: 3.777文章Preparation and charaterization of Pt/functionalized graphene and its electrocatalysis for methanol oxidation期刊:Plos One 2013 影响因子: 3.73文章Synergistic Removal of Pb(II), Cd(II) and Humic Acid by Fe3O4@Mesoporous Silica-Graphene Oxide Composites期刊:Electrochimica Acta 2013 影响因子: 3.777文章Electrocatalytic oxidation and detection of N-acetylcysteine based on magnetite/reduced graphene oxide composite-modified glassy carbon electrode期刊:Catalysis Science & Technology 2013 影响因子: 3.753文章The role of reducing agent in perylene tetracarboxylic acid coating on graphene sheets enhances Pd nanoparticles-electrocalytic ethanol oxidation期刊:Acta Materialia 2013 影响因子: 3.941文章Nanoconfinement significantly improves the thermodynamics and kinetics of co-infiltrated 2LiBH4–LiAlH4 composites: Stable reversibility of hydrogen absorption/resorption期刊:Microchimica Acta 2013 影响因子:3.434文章Highly sensitive and selective voltammetric detection of mercury(II) using an ITO electrode modified with 5-methyl-2-thiouracil, graphene oxide and gold nanoparticles期刊:Composites Science and Technology 2013 影响因子:3.328文章Porous graphene sandwich/poly(vinylidene fluoride) composites with high dielectric properties 期刊:Electrochimica Acta 2013 影响因子: 3.777文章Cu2O/NiOx/graphene oxide modified glassy carbon electrode for the enhanced electrochemical oxidation of reduced glutathione and nonenzyme glucose sensor南京先丰纳米材料科技有限公司Nanjing XFNANO Materials Tech Co.,Ltd 地址:南京市鼓楼区南京大学国家大学科技园Add:Nanjing Jiangsu Province China期刊:Electrochimica Acta 2013 影响因子: 3.777文章Direct electrodeposion of reduced graphene oxide and dendritic copper nanoclusters on glassy carbon electrode for electrochemical detection of nitrite期刊:Analyst 2013 影响因子: 3.969文章Realization of on-tissue protein identification by highly efficient in situ digestion with graphene-immobilized trypsin for MALDI imaging analysis期刊:Food Chemistry 2014 影响因子:3.334文章Electrochemical determination of toxic ractopamine at an ordered mesoporous carbon modified electrode期刊:Talanta 2013 影响因子:3.498文章Simultaneous Determination of Dopamine and Uric Acid Using Layer-by-Layer Graphene and Chitosan Assembled Multilayer Films期刊:Electrochimica Acta 2013 影响因子:3.777文章Electrochemically Cathodic Exfoliation of Graphene Sheets in Room Temperature Ionic Liquids N-Butyl, methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide and Their Electrochemical Properties 期刊:Journal of Applied Physics 2013 影响因子:2.21文章An experimental investigation on fluidic behaviors in a two-dimensional nanoenvironment期刊:Journal of Molecular Catalysis A: Chemical 2013 影响因子:3.187文章Enhancing the photocatalytic activity of lead molybdate by modifying with fullerene期刊:Physical Chemistry Chemical Physics 2013 影响因子:3.829文章Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated graphene oxide期刊:Sensors and Actuators B: Chemical 2013 影响因子:3.535文章Electrochemical modification of graphene oxide bearing different types of oxygen functional species for the electro-catalytic oxidation of reduced glutathione期刊:Sensors and Actuators B: Chemical 2013 影响因子:3.535文章A novel graphene oxide-based fluorescence assay for RNA endonuclease activity of mammalian Argonaute2 protein期刊:Sensors and Actuators B: Chemical 2013 影响因子:3.535文章Enhanced room temperature sensing of Co3O4-intercalated reduced graphene oxide based gas sensors期刊:Talanta 2013 影响因子:3.498文章Graphene matrix for signal enhancement in ambient plasma assisted laser desorption ionization mass spectrometry期刊:Sensors and Actuators B: Chemical 2013影响因子:3.535文章Electrodeposition of electroreduced graphene oxide-Au nanoparticles composite film at glassy carbon electrode for anodic stripping voltammetric analysis of trace arsenic(III)期刊:Physical Chemistry Chemical Physics 2013 影响因子:3.829文章Enhanced reverse saturable absorption in graphene/Ag2S organic glasses期刊:Electrochimica Acta 2013 影响因子:3.777南京先丰纳米材料科技有限公司Nanjing XFNANO Materials Tech Co.,Ltd 地址:南京市鼓楼区南京大学国家大学科技园Add:Nanjing Jiangsu Province China文章Electrochemical immunoassay platform for high sensitivity detection of indole-3-acetic acid期刊:Analyst 2013 影响因子:3.969文章Aptamer-linked biosensor for thrombin based on AuNPs/Thionine-graphene nanocomposite期刊:Journal of Colloid and Interface Science 2013 影响因子:3.172文章Green Synthesis and Photo-catalytic Performances for ZnO-Reduced Graphene Oxide Nanocomposites期刊:Electrochimica Acta 2013 影响因子:3.832文章: Insight into effects of graphene in Li4Ti5O12/carbon composite with high rate capability as anode materials for lithium ion batteries期刊:Dalton Transactions 2013 影响因子:3.838文章:Remarkable improvements in the stability and thermal conductivity of graphite/ethylene glycol nanofluids caused by a graphene oxide percolation structure期刊:Talanta 2013 影响因子:3.794文章:Selective and sensitive determination of uric acid in the presence of ascorbic acid and dopamine by PDDA functionalized graphene/graphite composite electrode期刊:ELECTROPHORESIS 2013 影响因子:3.303文章:Graphene oxide and reduced graphene oxide as novel stationary phases via electrostatic assembly for open-tubular capillary electrochromatography期刊:Sensors and Actuators B 2013 影响因子:3.898文章:A reduced graphene oxide based biosensor for high-sensitive detection of phenols in water samples期刊:Sensors and Actuators B: Chemical 2013 影响因子:3.898文章:Amperometric biosensor for NADH and ethanol based on electroreduced graphene oxide–polythionine nanocomposite film南京先丰纳米材料科技有限公司Nanjing XFNANO Materials Tech Co.,Ltd 地址:南京市鼓楼区南京大学国家大学科技园Add:Nanjing Jiangsu Province China。

核磁共振在与壳聚糖有关的一些复合体系中的应用的开题报告

核磁共振在与壳聚糖有关的一些复合体系中的应用的开题报告题目:核磁共振在与壳聚糖有关的一些复合体系中的应用一、研究背景壳聚糖是一种天然高分子聚合物,具有多种重要的生物医用和工业应用。

在制备壳聚糖复合材料时,核磁共振技术可用于表征壳聚糖分子在材料中的分布情况、与其他功能材料的相互作用、反应动力学和状态变化等。

二、研究内容1. 使用核磁共振技术对壳聚糖与胶原蛋白等复合体系进行表征。

2. 探究核磁共振技术在壳聚糖基材料中的应用,如壳聚糖-石墨烯复合材料等。

3. 使用核磁共振技术进行溶液中壳聚糖分子结构和构象的分析与表征。

三、研究意义1. 通过核磁共振技术对壳聚糖复合材料进行表征,可以深入了解其分子结构和相互作用,为大规模制备优质的壳聚糖复合材料提供基础数据。

2. 探究核磁共振技术在壳聚糖基材料中的应用,可帮助实现其在柔性电子、药物交付等领域的具体应用。

3. 基于核磁共振技术对壳聚糖分子结构的表征,可以直接推导其质量特征和物理性质,为壳聚糖基材料的研究提供更精准的方法和理论。

四、研究方法1. 收集相关文献,了解壳聚糖复合体系的研究进展和核磁共振技术的应用方法。

2. 根据研究中的目标,制备壳聚糖复合材料,并使用核磁共振技术对复合材料进行表征。

3. 使用核磁共振技术对溶液中壳聚糖分子的结构和构象进行分析和表征。

五、预期成果1. 对壳聚糖复合材料的分子结构和相互作用进行表征,并获得相关的数据结果。

2. 探究核磁共振技术在壳聚糖基材料中的应用,为其实际应用提供技术支持。

3. 掌握壳聚糖分子结构的表征方法,为其进一步的研究提供基础数据。

六、研究时间表1. 第一周:收集相关文献,进一步明确研究内容和方法。

2. 第二周:制备壳聚糖复合材料,进行材料表征。

3. 第三周:使用核磁共振技术对复合材料进行分析和表征。

4. 第四周:使用核磁共振技术分析溶液中壳聚糖分子的结构和构象。

5. 第五周:数据处理和结果分析。

6. 第六周:完成开题报告的撰写和提交。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Colloids and Surfaces B:Biointerfaces 96 (2012) 75–79Contents lists available at SciVerse ScienceDirectColloids and Surfaces B:Biointerfacesj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c o l s u r fbShort communicationDirect synthesis of graphene–chitosan composite and its application as an enzymeless methyl parathion sensorShanli Yang,Shenglian Luo ∗,Chengbin Liu,Wanzhi WeiState Key Laboratory of Chemo/Biosensing and Chemometrics,College of Chemistry and Chemical Engineering,Hunan University,Hunan,Changsha 410082,PR Chinaa r t i c l ei n f oArticle history:Received 11October 2011Received in revised form 14February 2012Accepted 13March 2012Available online 28 March 2012Keywords:One-step electrodeposition Graphene–chitosan filmOrganophosphorus pesticides Methyl parathiona b s t r a c tThis paper proposed a direct electrodeposition approach to synthesis of graphene–chitosan (GR–CS)composite onto glassy carbon electrode (GCE)under controlled potential.This direct electrodeposition approach for the construction of GR-based hybrid was environmentally friendly,which would not involve the chemical reduction of graphene oxide (GO)and therefore result in no further contamination.The whole procedure was simply and cost only several minutes.Moreover,Combining the advantages of GR (large surface-to-volume ratio and high conductivity)and CS (good and adsorption),GR–CS composite could be highly efficient to capture OPs and used as solid phase extraction (SPE).The GR–CS/GCE was used to detect organophosphate pesticides (OPs),using methyl parathion (MP)as a model analyte.The significantly redox response of MP on the GR–CS/GCE was proved.The linear range was wide from 4.0ng mL −1to 400ng mL −1,and a low detection limit of 0.8ng mL −1for MP was achieved.Moreover,the proposed sensor exhibited high reproducibility,long-time storage stability and satisfactory anti-interference ability.The proposed GR–CS/GCE opens new opportunity for green,fast,simple,and sensitive analysis of OP compounds.© 2012 Elsevier B.V. All rights reserved.1.IntroductionOrganophosphorus pesticides (OPs)have been widely used in agriculture for pest control and shown undoubted benefits.How-ever,due to their large persistence and high toxicity,the extensive use of OPs can cause environmental pollution and ecological prob-lem,and their presence in water and food poses hazard to human health [1–4].Determination of these toxic agents are important for public health and environmental security [5–7].A number of methods for OPs determination have been proposed [8–13],among which electrochemical technique,i.e.,solid phase extraction (SPE)of OPs combined with square-wave voltammetric analysis,has the advantages such as simplicity and convenience,and high sensitiv-ity.But electrochemical reactions of most of these pesticides show sluggish electrode kinetics,as they are very large organic molecules,resulting electrode fouling [14,15].This affects the performance of the electrode during electrochemical measurements.There-fore,it is important to discover appropriate electrode materials to improve the performance of the OPs sensing.Among the OPs,the nitro aromatic OPs,such as methyl parathion (O,O-dimethyl O-(4-nitrophenyl)phosphorothioate,MP)exhibits good redox activities at the electrode surface [3,14,16].∗Corresponding author.Tel.:+867318823805;fax:+867318823805.E-mail address:sllou@ (S.Luo).As a “rising star”material,graphene (GR)has attracted much attention since its first experimentally produced in 2004[17–20].GR possesses many novel properties,such as well bio-compatibility,large surface-to-volume ratio,excellent electrical conductivity,electron mobility and flexibility.Chitosan (CS)is a linear hydrophilic polysaccharide obtained by deacetylation of nature chitin.It is an attractive biocompatible,biodegradable,and nontoxic natural biopolymer that exhibits excellent film-forming ability.CS has been widely used to disperse nanomaterials and can provide a good biocompatible microenvironment to construct sen-sors.Due to the unique properties of GR and CS,it is believed that the GR–CS composite can be highly efficient to capture OPs and can be used as SPE.The GR–CS composite would be an excellent elec-trode material for OPs sensing,which can facilitate the enrichment of OPs,enhance the surface concentration,alleviate the fouling effect and improve the sensitivity because of the low electronic noise from thermal effect [19,21–23].For sensing applications,the methods for depositing active materials on electrodes are most crucial.So far,GR films on electrodes usually have been obtained by drop-casting solution-based GR obtained from chemical reduction of graphene oxide (GO)sheets [24].In that way,the thickness of the resulting films was hardly uniform and controllable,the sensor fabrica-tion was not so reproducible,and moreover,toxic chemicals are involved.Electrochemical reduction of GO to GR has drawn much attention.Recently,our group has reported that GR nanosheets could be electrodeposited onto glassy carbon electrode through0927-7765/$–see front matter © 2012 Elsevier B.V. All rights reserved.doi:10.1016/j.colsurfb.2012.03.00776S.Yang et al./Colloids and Surfaces B:Biointerfaces 96 (2012) 75–79Fig.1.(A)SEM image and (B)TEM image of the GR–CS composite electrodeposited on the GCE surface,(C)Raman spectra of the GR–CS composite.cyclic voltammetric reduction of GO,the electrochemical reduc-tion potential of GO was about −1.0V and the obtained GR coating was very stable [25].Herein,we prepare GR–CS composite on GCE directly from GO–CS dispersion by one-step electrodeposition under controlled potential.By combining the benefits of GR and CS,the obtained GR–CS film shows strong adsorption ability of OPs,and the goal was achieved for OPs sensing.To our best knowledge,this is the first report on a green and direct electrochemical synthesis of GR–CS composite and further utilizing GR–CS composite as SPE for electrochemical determination of OPs,using MP as a model analyte.2.Experimental2.1.ReagentsGO was purchased from Beijing University.CS from crab shells (85%deacetylated)was purchased from Sigma.All other chemicals were of analytic grade and were used without further purifica-tion.Double-distilled water was used throughout the experiments.0.1M,pH 5.2acetate buffer solution was used as the electrolyte.CS solution was prepared by dissolving CS solid in 0.10M acetic acid (HAc).2.2.Apparatus and instrumentationsAll the electrochemical measurements were performed on a CHI 660A electrochemical workstation (Shanghai Chenhua Instru-ment Company,China).A conventional three electrode system was used,which consisted of a modified or bare glassy carbon elec-trode (3mm in diameter)as working electrode,a platinum foil as counter electrode,and an Ag/AgCl (3M KCl)electrode as refer-ence electrode.All potentials were measured against Ag/AgCl.All experiments were done at room temperature (∼25◦C).The micrograph of GR–CS film was investigated by transmission electron microscopy (TEM,Philips EM400ST microscopy).2.3.One-step electrodeposition of GR–CS film onto glassy carbon electrodePrior to electrodeposition,the GCE was polished with 0.3␮m and 0.05␮m ␣-Al 2O 3powder until a mirror-shiny surface was obtained,then ultrasonicated in ethanol and twice-distilled water for 10min,respectively.The prepared GCE was dried with nitrogen gas and used for modification immediately.5mg of GO was dispersed in 5mL of 0.2%(w/t)CS solution with ultrasonication to form 1mg mL −1GO–CS solution.The prepared GCE was immersed into the GO–CS solution while stirring and aS.Yang et al./Colloids and Surfaces B:Biointerfaces96 (2012) 75–7977fixed potential of−1.0V was applied for400s.After the electrode-position,the GR–CS/GCE was obtained.The GR–CS/GCE was stored at4◦C in a refrigerator under dry conditions when not in use.For comparison,CS/GCE was obtained by electrodepositing CS onto the GCE under−1.0V for400s.2.4.Measurement procedureMPs were accumulated on the GR–CS/GCE at open circuit poten-tial by immersing the GR–CS/GCE into a5mL stirred0.1M acetate buffer solution(pH5.2)containing MP for180s.The electrode was removed,rinsed with MP free0.1M acetate buffer solution and transferred into a cell of0.1M acetate buffer solution for electrochemical measurements with cyclic voltammetry(CV)and square-wave voltammetry(SWV).CV measurements were per-formed from−800to400mV with a scan rate of100mV s−1.SWV measurements were performed from−400to200mV with a step potential of4mV,an amplitude of20mV,and a frequency of25Hz.2.5.Regeneration of electrode surface.After each stripping measurement,MP was removed from the electrode by stripping at+0.5V for180s in a5mL stirred0.1M acetate buffer solution(pH5.2).3.Results and discussion3.1.Characterization of GR–CS/GCEIt is well known that chemical reduction of GO sheets in aqueous solutions results in their irreversible agglomerate[26].Therefore,it is reasonable to speculate that when the GO sheets in direct contact with an electrode accept electrons to suffer from electrochemical reduction,the resulted GR sheets will also be insoluble,and thus directly attach to the electrode surface[25].Fig.1(A and B)are the SEM and TEM images of the GR–CS composite electrodeposited on the GCE surface,revealing the typical crumpled and wrinkled GR sheet structure on the rough surface of the CSfilm.The Raman spec-tra of GR–CS composite(Fig.1(C))shows a strong diamondoid(D) band at1290cm−1and a weak graphitic(G)band at1580cm−1, which are attributed to two vibration modes of GR.The D band associates with vibrations of carbon atoms with dangling bonds in plane terminations of disordered graphite and the G band corre-sponds to an E2g mode of graphite and is related to the vibration of sp2-bonded carbon atoms in a2D hexagonal lattice,such as in a graphite layer[27].The Raman result is also similar to the previous reports[28,29].All these results indicate that GR–CS nanocompos-ite has been prepared on electrode from GO–CS dispersion by direct one-step electrodeposition.3.2.Enhanced electrochemical sensing with GR–CS/GCEFig.2showed the cyclic voltammograms obtained by three dif-ferent modified GCEs in5mM[Fe(CN)6]3−/4−containing0.1M KCl at50mV s−1.As shown,a pair of well-defined redox peaks was observed for the bare GCE(Fig.2,line a),which was due to the reversible one-electron redox behavior of ferricyanide ion.After electrodepositing CS onto the bare GCE,a largely blocked interfa-cial charge transfer between the bare GCE and ferricyanide ion was observed(Fig.2,line b),due to CSfilm could act as a -pared with CS or even the bare GCE surface,increased redox peak currents were observed on GR–CS/GCE(Fig.2,line c),indicating that GR facilitates the conductivity and the electron transfer process.Fig.3(A)showed the CV responses of GR–CS/GCE(a)in blank 0.1M acetate buffer solution,and CS/GCE(b)and GR–CS/GCE(c) for150ng mL−1MP in0.1M acetate buffer solution.No peakswere Fig.2.Cyclic voltammograms of(a)Bare GCE,(b)CS/GCE and(c)GR–CS/GCE in 5mM[Fe(CN)6]3−/4−containing0.1M KCl at50mV s−1.observed on GR–CS/GCE in blank acetate buffer(curve a).A pair of redox peaks(E pa,96mV and E pc,37mV)and irreversible reduc-tion peak(E pc,−600mV)of MP were observed on the both CS/GCE (curve b)and GR–CS/GCE(curve c).The irreversible reduction peak corresponded to the reduction of the nitro group to the hydrox-ylamine group(reaction(1))and the reversible redox peaks were attributed to a two-electron-transfer process(reactions(2)and(3)), which was well consistent with the below reaction and literature [30].Compared with CS/GCE,the peak currents of MP increased obviously on the GR–CS/GCE.Based on the results,thefollowing Fig.3.(A)CV reponses and(B)SWV signals of GR–CS/GCE in blank0.1M acetate buffer solution(a),and CS/GCE(b)and GR–CS/GCE(c)for150ng mL−1MP in0.1M acetate buffer solution.78S.Yang et al./Colloids and Surfaces B:Biointerfaces 96 (2012) 75–79Fig.4.Effects of the electrodeposition time (A),electrodeposition potential (B),pH (C)and accumulation time (D)on the SWV peak current of GR–CS/GCE for 150ng mL −1MP in 0.1M acetate buffer solution.Step potential of 4mV,an amplitude of 20mV,and a frequency of 25Hz.conclusions can be drawn:first,as the good adsorption ability of CS,MP were strongly attached to CS film;second,the sensitivity of the GR–CS sensor towards MP was greatly improved due to the excellent electric conductivity and the large surface area ofGR.(1)(2)(3)Fig.3(B)showed a comparison of the SWV signals of GR–CS/GCE (a)in blank 0.1M acetate buffer solution,and CS/GCE (b)and GR–CS/GCE (c)for 150ng mL −1MP in 0.1M acetate buffer solution.No SWV peak was observed on GR–CS/GCE in blank acetate buffer (curve a).SWV peaks were observed on the both MP/CS/GCE and MP/GR–CS/GCE (curve b and curve c).In comparison,SWV peak on MP/GR–CS/GCE was much more sharper than on MP/CS/GCE at the potential range from −400to 200mV.Since SWV analysis hashigher sensitivity than cyclic voltammetry [27].SWV was used in following detection of MP.3.3.Optimization of the GR–CS/GCE electrodeposition conditionsThe deposition time and deposition potential have significant effects on the performance of the sensor.In Fig.4(A and B)depicted effects of the electrodepositing potential and electrodeposition time on the current response of GR–CS/GCE containing 150ng mL −1MP,respectively.As can be seen,the current response increased evidently as the electrodeposition time increased from 100to 400s,and no significant improvement of the current response was observed from 400to 900s.And the peak currents raised sharply with the decreased deposition potential,and the maximum responses are approached at −1.0V.Thus,400s and −1.0V were chosen as the optimal electrodeposition conditions for the sensor.3.4.Optimization of the GR–CS/GCE determination condition0.1M acetate buffer solution as supporting electrolyte with dif-ferent pH values in the range of 2.5–7.5were compared in respect of the response for 150ng mL −1MP on the GR–CS/GCE.As described Fig.4(C),the maximum current response of MP was approached at pH 5.2.Thus,pH 5.2was chosen as the optimal pH value.The accumulation time was also one of the most influential parameters in pesticide determination.As seen in Fig.4(D),the peak currents increased rapidly with an increase of accumulation time,and then tended to be stable after 180s,indicating that the adsorp-tion of MP onto the GR–CS/GCE reached saturation.Thus,180s was chosen as the optimal accumulation time.S.Yang et al./Colloids and Surfaces B:Biointerfaces96 (2012) 75–7979Fig.5.SWV peak current in0.1M acetate buffer solution containing different con-centrations of MP:400ng mL−1(a),350ng mL−1(b),300ng mL−1(c),250ng mL−1 (d),200ng mL−1(e),150ng mL−1(f),100ng mL−1(g),34ng mL−1(h),17ng mL−1 (i),8ng mL−1(j)and4ng mL−1(k).Step potential of4mV,an amplitude of20mV, and a frequency of25Hz.(Inset)The calibration curve of GR–CS/GCE to different concentration of MP in0.1M acetate buffer solution.(pH5.2.)Table1Effect of possible interferents on the detection of MP with GR–CS/GCE. Interferents Current ratio aNitrophenol 1.13Nitrobenzene0.98Trinitrotoluene0.83PO43−0.78SO42− 1.05NO3−0.92a Current ratio=I H+I/I H.I H+I,response current to MP(150ng mL−1)in the presence of interferents(5␮g mL−1);I H,response current to MP(150ng mL−1).3.5.Analytical performance of GR–CS/GCEFig.5displayed the SWV peak current of MP under the opti-mum conditions.The GR–CS/GCE displayed an expanded linear response range of4.0–400ng mL−1with a correlation coefficient of 0.998(Fig.5,inset).The detection limit was0.8ng mL−1(S/N=3). It was significantly lower than5.7ng mL−1at a ZrO2-nanoparticles modified carbon paste electrode[31],lower than1.2ng mL−1at bismuth-film-modified glassy carbon electrode and1.0ng mL−1at carbon nanotube/Au nanocomposite[16,32].Moreover,the detec-tion limit and linear response range of the proposed sensor were also comparable with those enzyme-based electrochemical sensors [12,33].The reproducibility and stability of the sensor were evaluated. 5electrodes modified identically were investigated in the current response for50ng mL−1MP.The relative standard deviation(R.S.D.) was5.8%.For10replicate measurements of one electrode yielded at50ng mL−1MP,the R.S.D.was2.43%.These experimental results confirmed that the results were highly reproducible.The stabil-ity of the electrode was checked by performing30consecutive potential scans in0.1M,pH5.2acetate buffer solution containing 150ng mL−1MP.Only5%of the current response was lost in the signal.The anti-interference ability of the proposed sensor have also been studied.As shown in Table1,no obvious interferences were observed from the other electroactive nitrophenyl derivatives such as nitrophenol,nitrobenzene,trinitrotoluene and other inorganic ions(PO43−,SO42−,NO3−).All these interferents have littler influ-ence on the MP determination.4.ConclusionIn this work,we have prepared GR–CSfilm on GCE directly from GO–CS dispersion by one-step electrodeposition under controlled potential.As GR-based composites have never been applied for the OPs sensing,the proposed GR–CS/GCE opens new opportunity for green,fast,simple,and sensitive analysis of OPs.Wide linear concentration range,low detection limit,excellent reproducibility, long-time storage stability,and satisfactory anti-interference abil-ity are achieved on the GR–CS/GCE,indicating GR-based composites a promising sensing platform for OPs determination.AcknowledgmentsThis work was supported by the National Science Foundation for Distinguished Young Scholars(No.507258250)and the National Science Foundation of China(No.50878079,51078129). References[1]F.Arduini,F.Ricci,C.S.Tuta,D.Moscone,A.Amine,G.Palleschi,Anal.Chim.Acta580(2006)155.[2]B.X.Li,Y.Z.He,C.L.Xu,Talanta72(2007)223.[3]Y.H.Wang,H.G.Qiu,S.Q.Hu,J.H.Xu,Sens.Actuators B:Chem.147(2010)587.[4]J.Kumar,S.F.D’Souza,Biosens.Bioelectron.26(2010)1292.[5]J.Wang,Anal.Chim.Acta507(2004)145.[6]Y.Lin,E.Lu,J.Wang,Electroanalysis16(2004)3.[7]J.Wang,M.Pumera,G.Collins,A.Mulchandani,Y.Lin,K.Olsen,Anal.Chem.74(2002)1187.[8]P.S.Chen,S.D.Huang,Talanta69(2006)669.[9]L.Rotiroti,L.D.Stefano,I.Rendina,L.Moretti,Biosens.Bioelectron.20(2005)2136.[10]C.C.Leandro,P.Hancock,R.J.Fussell,B.J.Keely,J.Chromatorgr.A1103(2006)94.[11]E.M.Garrido,C.Delerue-Matos,J.L.F.C.Lima,A.M.O.Brett,Anal.Lett.37(2004)1755.[12]G.D.Liu,Y.H.Lin,mun.7(2005)339.[13]Y.N.Ni,P.Qiu,S.Kokot,Anal.Chim.Acta516(2004)7.[14]A.Kumaravel,M.Chandrasekaran,J.Electroanal.Chem.638(2010)231.[15]A.J.Bard,L.R.Falkner,Electrochemical Methods,Wiley,New York,1980.[16]D.Du,X.P.Ye,J.D.Zhang,D.L.liu,Electrochim.Acta53(2008)4478.[17]K.S.Novoselov,A.K.Geim,S.V.Morozov,D.Jiang,Y.Zhang,S.V.Dubonos,I.V.Grigorieva,A.A.Firsov,Science306(2004)666.[18]A.K.Geim,K.S.Novoselov,Nat.Mater.3(2007)83.[19]S.Stankovich,D.A.Dikin,G.H.B.Dommett,K.M.Kohlhaas,E.J.Zimney,E.A.Stach,R.D.Piner,S.T.Nguyen,R.S.Ruoff,Nature442(2006)282.[20]T.Ramanathan,A.A.Abdala,S.Stankovich,D.A.Dikin,M.Herrera-Alonso,R.D.Piner,Nat.Nanotechnol.3(2008)327.[21]Y.Y.Shao,J.Wang,H.Wu,J.Liu,I.A.Aksay,Y.H.Lina,Electroanalysis22(2010)1027.[22]Z.M.Ao,J.Yang,S.Li,Q.Jiang,Chem.Phys.Lett.461(2008)276.[23]N.M.R.Peres,F.Guinea,A.H.Castro Neto,Phys.Rev.B73(2006)125411.[24]M.Pumera,A.Ambrosi,E.L.K.Chng,H.L.Poh,Trends Anal.Chem.29(2010)954.[25]L.Y.Chen,Y.H.Tang,K.Wang,C.B.Liu,S.L.Luo,mun.13(2011)133.[26]S.Stankovich,D.A.Dikin,R.D.Piner,K.A.Kohlhaas,A.Kleinhammes,Y.Jia,Y.Wu,S.T.Nguyen,R.S.Ruoff,Carbon45(2007)1558.[27]A.C.Ferrari,Solid State Commun.143(2007)47.[28]C.B.Liu,K.Wang,S.L.Luo,Y.H.Tang,L.Y.Chen,Small7(2011)1203.[29]G.L.Xiang,J.He,T.Y.Li,J.Zhuang,X.Wang,Nanoscale3(2011)3737.[30]G.D.Liu,Y.H.Lin,Anal.Chem.77(2005)5894.[31]H.Parham,N.Rahbar,J.Hazard.Mater.177(2010)1077.[32]D.Du,W.J.Chen,W.Y.Zhang,D.L.Liu,H.B.Li,Y.H.Lin,Biosens.Bioelectron.25(2010)1370.[33]F.N.Kok,V.Hasirci,Biosens.Bioelectron.19(2004)661.。

相关文档
最新文档