高三数学(理科)第一轮复习计划 PPT 课件

合集下载

2023年高考数学(理科)一轮复习课件——复数

2023年高考数学(理科)一轮复习课件——复数

索引
3.(2021·西安调研)下面关于复数z=-1+i(其中i为虚数单位)的结论正确的是
(D)
A.1z对应的点在第一象限
C.z 的虚部为 I
B.|z|<|z+1| D.z+-z<0
解析 ∵z=-1+i,∴1z=-11+i=(-1+-i)1(--i 1-i)=-12-2i .则1z对应的
点在第三象限,故 A 错误; |z|= 2,|z+1|=1,故 B 错误; z的虚部为1,故C错误; z+-z=-2<0,故 D 正确.
索引
(3)复数相等:a+bi=c+di⇔___a_=__c_且__b_=__d____(a,b,c,d∈R). (4)共轭复数:a+bi 与 c+di 共轭⇔__a_=__c_,__b_=__-__d___ (a,b,c,d∈R). (5)模:向量O→Z的模叫做复数 z=a+bi 的模,记作|a+bi|或|z|,即|z|=|a+bi| =____a_2+__b_2__(a,b∈R).
索引
训练2 (1)(1+2i)(2+i)=( B )
A.-5iB.5iFra bibliotekC.-5
D.5
解析 (1+2i)(2+i)=2+i+4i+2i2=2+5i-2=5i,故选B.
索引
(2)(2022·乌鲁木齐模拟)已知复数 z=1+i(i 是虚数单位),则zz2-+12等于( B )
A.2+2i
B.2-2i
C.2i
解析 z1=22- +ii=(2+(i2)-(i)2-2 i)=53-54i,所以 A35,-45, 设复数 z2 对应的点 B(x0,y0),则A→B=x0-35,y0+45. 又向量A→B与虚轴垂直,∴y0+45=0,故 z2 的虚部 y0=-45.

2023年高考数学(理科)一轮复习课件——圆锥曲线的综合问题 第二课时 定值问题

2023年高考数学(理科)一轮复习课件——圆锥曲线的综合问题 第二课时 定值问题
联立①②,得b=1. 又 S△AOB=12ab=23,得 a=3,所以椭圆 E 的标准方程为x92+y2=1.
索引
(2)若直线 l 交椭圆 E 于 M,N 两点,直线 OM 的斜率为 k1,直线 ON 的斜率 为 k2,且 k1k2=-19,证明:△OMN 的面积是定值,并求此定值.
证明 当直线l的斜率不存在时,
索引
答题模板
第一步 求圆锥曲线的方程 第二步 特殊情况分类讨论 第三步 联立直线和圆锥曲线的方程 第四步 应用根与系数的关系用参数表示点的坐标 第五步 根据相关条件计算推证 第六步 明确结论
索引
训练 2 (2021·大同调研)如图,在平面直角坐标系 xOy 中, 椭圆 C:xa22+by22=1(a>b>0)的左、右顶点分别为 A,B,
已知|AB|=4,且点e,345在椭圆上,其中 e 是椭圆的
离心率.
(1)求椭圆 C 的方程;
解 ∵|AB|=4,∴2a=4,即a=2. 又点e,345在椭圆上,∴ae22+1465b2=1,即1c62 +1465b2=1, 又b2+c2=a2=4,联立方程解得b2=3, ∴椭圆 C 的方程为x42+y32=1.
(1)求动点 M 的轨迹 E 的方程;
[规范解答]
解 设M(x,y),P(x0,y0), 由(1- 3)O→Q=O→P- 3O→M, 得O→Q-O→P= 3O→Q- 3O→M, 即P→Q= 3M→Q,2 分
索引
∴xy00==x,3y,又点 P(x0,y0)在圆 O:x2+y2=6 上, ∴x20+y20=6,∴x2+3y2=6, ∴轨迹 E 的方程为x62+y22=1.4 分
索引
感悟提升
解此类题的要点有两个:一是计算面积,二是恒等变形.如本题,要求△OMN 的面积,则需要计算弦长|MN|和原点 O 到直线 l 的距离 d,然后由面积公式 表达出 S△OMN(如果是其他凸多边形,一般需要分割成三角形分别求解),再 将由已知得到的变量之间的等量关系代入面积关系式中,进行恒等变形, 即得 S△OMN 为定值23.

2025届高中数学一轮复习课件《 集合》ppt

2025届高中数学一轮复习课件《 集合》ppt

高考一轮总复习•数学
第15页
解析:(1)方法一(列举法):A=…,-12,12,32,52,72,…, 列举法形象、直观.
B=…,-12,0,12,1,32,2,52,3,72,…. 显然 A B.
方法二(描述法):集合
A = xx=k+12,k∈Z

xx=2k+2 1,k∈Z
,B=
xx=2k,k∈Z
高考一轮总复习•数学
第18页
对点练 1(1)已知集合 A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则 A 中元素的个数为( )
A.9
B.8
C.5
D.4
(2)(2024·湖南长沙月考)如果集合 A={x|ax2+4x+1=0}中只有一个元素,则实数 a 的
值是( )
A.0
B.4
C.0 或 4
(2)解:①由 x2-8x+15=0, 得 x=3 或 x=5,∴A={3,5}. 若 a=15,由 ax-1=0,得15x-1=0,即 x=5. ∴B={5}.∴B A. ②∵A={3,5},又 B A, 故若 B=∅,则方程 ax-1=0 无解,有 a=0; 若 B≠∅,则 a≠0,由 ax-1=0,得 x=1a. ∴1a=3 或1a=5,即 a=13或 a=15. 故 C=0,13,15.
高考一轮总复习•数学
第23页
集合间的关系问题的注意点 (1)空集是任何集合的子集,在涉及集合关系问题时,必须考虑是否存在空集的情况, 勤思考,多练习这一特殊情形. 否则易造成漏解. (2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系, 集合的包含关系,转化为区间端点的大小关系,这是一个难点,主要是对端点值的取舍, 尤其注意区别开区间和闭区间. 例如:[-1,2)⊆(2a-3,a+2]⇒a2+a-2≥3<2-. 1, 进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.求得参数 后,可以把端点值代入进行验证,以免增解或漏解.

专题 平行-2023年高考数学一轮复习课件(全国通用) 课件

专题 平行-2023年高考数学一轮复习课件(全国通用) 课件

取 BP的中点T ,连接 AT,TN .
由 N 为 PC 中点知TN // BC ,TN 1 BC 2 .
N
2
又 AD// BC,故TN 平行且等于 AM ,
AM
四边形 AMNT 为平行四边形,于是 MN // AT .
D ∵ AT 平面 PAB, MN 平面 PAB,
B
C
∴ MN // 平面 PAB.
2023年高考第一轮复习
专题31:平行问题
平行关系中的三个重要结论 (1)垂直于同一条直线的两个平面平行, 即若 a⊥α,a⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行, 即若 a⊥α,b⊥α,则 a∥b. (3)平行于同一个平面的两个平面平行, 即若α∥β,β∥γ,则α∥γ.
一、易错易误辨析(正确的打“√”,错误的打“×”) (1)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.( ) (2)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( ) (3)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( ) (4)若直线 a 与平面α内无数条直线平行,则 a∥α.( )
∴平面 BDM //平面 EFC ;
考向三:点在面内
19.2020 全国 3 卷)
如图,在长方体 ABCD A1B1C1D1 中,点 E ,F 分
别在棱 DD1 , BB1 上且 2DE ED1 , BF 2FB1 .
(1)证明:点 C1 在平面 AEF 内;
C
B
D
A
E
F
C1
B1
D1
A1
证明:(1)在 AA1 上取一点 M ,使得 A1M 2AM , 分别连接 EM , B1M , EC1 , FC1 . 在长方体 ABCD A1B1C1D1 中,有 DD1∥AA1∥BB1 , 且 DD1 AA1 BB1 , 又 2DE ED1 , A1M 2AM , BF 2FB1 , ∴ DE AM FB1 , ∴四边形 B1FAM 和四边形 EDAM 都是平行四边形. ∴ AF∥MB1 且 AF MB1 , AD∥ME 且 AD ME , 又在长方体 ABCD A1B1C1D1 中,有 AD∥B1C1 且 AD B1C1 , ∴ B1C1∥ME 且 B1C1 ME ,则四边形 B1C1EM 为平行四边形, ∴ EC1∥MB1 且 EC1 MB1 ,又 AF∥MB1 且 AF MB1 , ∴ AF∥EC1 且 AF EC1 ,则四边形 AFC1E 为平行四边形, ∴点 C1 在平面 AEF 内.

2024年高考数学一轮复习(新高考版)《数列求和》课件ppt

2024年高考数学一轮复习(新高考版)《数列求和》课件ppt

跟踪训练2 (2023·重庆模拟)在①a1=1,nan+1=(n+1)·an,② 2a1 + 2a2 +…+2an =2n+1-2这两个条件中任选一个,补充在下面的问题中并作答. 问题:在数列{an}中,已知________. 注:如果选择多个条件分别解答,按第一个解答计分. (1)求{an}的通项公式;
(2)若bn=
2an 1 3an
,求数列{bn}的前n项和Sn.
由(1)可知 bn=2n3-n 1,
则 Sn=311+332+…+2n3-n 1,

13Sn=312+333+…+2n3-n 3+23nn-+11.

两式相减得23Sn=13+322+323+…+32n-23nn-+11=13+2911--313n1-1-23nn-+11
教材改编题
2.数列{an}的前 n 项和为 Sn.若 an=nn1+1,则 S5 等于
A.1
√B.56
C.16
D.310
因为 an=nn1+1=1n-n+1 1, 所以 S5=a1+a2+…+a5=1-12+12-13+…-16=56.
教材改编题
3.Sn=12+12+38+…+2nn等于
2n-n-1 A. 2n
第六章 数 列
§6.5 数列求和
考试要求
1.熟练掌握等差、等比数列的前n项和公式. 2.掌握非等差数列、非等比数列求和的几种常用方法.
内容索引
第一部分
落实主干知识
第二部分
探究核心题型
第三部分
课时精练

一 部 分
落实主干知识
知识梳理
数列求和的几种常用方法
1.公式法
直接利用等差数列、等比数列的前n项和公式求和.

新课标2023版高考数学一轮总复习第1章预备知识第1节集合课件

新课标2023版高考数学一轮总复习第1章预备知识第1节集合课件

根据集合的运算结果求参数的值或范围的方法 (1)将集合中的运算关系转化为两个集合之间的关系.若集合中 的元素能一一列举,则用观察法得到不同集合中元素之间的关系;若 是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取 到. (2)将集合之间的关系转化为解方程(组)或不等式(组)问题求解.
1.设集合 A={(x,y)|x2+y2=1},B={(x,y)|x+y=1},则 A∩B
(5,6] 解析:因为 P 中恰有 3 个元素,所以 P={3,4,5},故 k 的取值范围为(5,6].
与集合中的元素有关问题的求解思路 (1)确定集合中元素的特征,即集合是数集还是点集或其他集合. (2)看清元素的限制条件. (3)根据限制条件求参数的值或确定集合中元素的个数,但要检 验参数是否满足集合元素的互异性.
1.A∪B=A⇔B⊆A. 2.A∩B=A⇔A⊆B. 3.∁U(∁UA)=A.
4.常用结论 (1)若有限集 A 中有 n 个元素,则 A 的子集有 2n 个,真子集有(2n -1)个,非空真子集有(2n-2)个. (2)子集的传递性:A⊆B,B⊆C⇒A⊆C. (3)∁U(A∩B)=(∁UA)∪(∁UB), ∁U(A∪B)=(∁UA)∩(∁UB).
(4)集合与集合间的基本关系 ①子集:集合A中任意一个元素都是集合B中的元素.用符号表 示为 A⊆B (或 B⊇A ). Venn图如图所示:
②真子集:集合 A⊆B,但存在元素 x∈B,且 x A.用符号表示 为:A B(或 B A).
Venn 图如图所示:
③集合相等:集合A的任何一个元素都是集合B的元素,同时集 合B的任何一个元素都是集合A的元素.用符号表示为 A=B .
1.设全集 U=R,则集合 M={0,1,2}和 N={x|x·(x-2)·log2x=0} 的关系可表示为( )

新课标2023版高考数学一轮总复习第1章预备知识第2节充分条件与必要条件课件

新课标2023版高考数学一轮总复习第1章预备知识第2节充分条件与必要条件课件

03
一题N解·深化综合提“素养”
已知 p:x>1 或 x<-3,q:5x-6>x2,则 p 是 q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
[四字程序]




1.充分条件、必要
判断充分条 条件的概念. 件、必要条件 2.判断充分条件、
解不等式
转化与化归
(1)若已知p:x>1和q:x≥1,则p是q的充分不必要条件.
(√)
(2)当q是p的必要条件时,p是+b2≠0”是“a,b不全为0”的充要条
件.
(√)
(4)若“x∈A”是“x∈B”的充分不必要条件,则B是A的真子
集.
(√)
2.(2021·惠州市二调)“θ=0”是“sin θ=0”的( )
A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
B 解析:设等比数列{an}的公比为 q, 充分性:当 a1>0,q<0 时,Sn+1-Sn=an+1=a1qn,无法判断其正 负,显然数列{Sn}不一定是递增数列,充分性不成立; 必要性:当数列{Sn}为递增数列时,Sn-Sn-1=an>0,可得 a1>0, 必要性成立.
A 解析:由题意,若 a>6,则 a2>36,故充分性成立;若 a2>36, 则 a>6 或 a<-6,推不出 a>6,故必要性不成立.所以“a>6”是 “a2>36”的充分不必要条件.
2.已知 a,b,c∈R,则“abbc>>00, ”是“b-a c<b+a c”的(
)
A.充分不必要条件

2020年高考人教A版理科数学一轮复习(全册PPT课件 1520张)

2020年高考人教A版理科数学一轮复习(全册PPT课件 1520张)
人教A版数学(理科)一轮
2020版高考 全册精品 PPT课件
第1章 集合与常用逻辑用语 第一节 集 合 第二节 命题及其关系、充分条件与必要条件 第三节 简单的逻辑联结词、全称量词与存在量词
第2章 函数、导数及其应用 第一节 函数及其表示 第二节 函数的单调性与最值 第三节 函数的奇偶性与周期性 第四节 二次函数与幂函数 第五节 指数与指数函数 第六节 对数与对数函数 第七节 函数的图象
[答案] (1)× (2)× (3)× (4)×
23 答案
2 . ( 教 材 改 编 ) 若 集 合 A = D [由题意知 A={0,1,2},由 a= {x∈N|x≤2 2},a= 2,则下列结 2,知 a∉A.] 论正确的是( ) A.{a}⊆A B.a⊆A C.{a}∈A D.a∉A
解2析4 答案
22
[基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打 “×”) (1)任何一个集合都至少有两个子集.( ) (2){x|y=x2}={y|y=x2}={(x,y)|y=x2}.( ) (3)若{x2,1}={0,1},则 x=0,1.( ) (4)直线 y=x+3 与 y=-2x+6 的交点组成的集合是{1,4}.( )
第8章 平面解析几何 第一节 直线的倾斜角与斜率、直线的方程 第二节 两条直线的位置关系 第三节 圆的方程 第四节 直线与圆、圆与圆的位置关系 第五节 椭 圆
第1课时 椭圆的定义、标准方程及其性质 第2课时 直线与椭圆的位置关系
第六节 双曲线 第七节 抛物线 第八节 曲线与方程 第九节 圆锥曲线中的定点、定值、范围、最值问题 高考大题增分课(五) 平面解析几何中的高考热点问题
第9章 算法初步、统计与统计案例 第一节 算法与程序框图 第二节 随机抽样 第三节 用样本估计总体 第四节 变量间的相关关系与统计案例
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5、立足课本,迅速激活已学过的各个知 识点。
“回归”课本,夯实基础,熟练掌握解题的 通性、通法,提高解题速度;明确课本从 前到后的知识结构,将整个知识体系框架 化、网络化;
6 、资料选取以《导与练》和课本为主, 制定精品学案为辅;
高考复习要结合高考的实际,也要结合自 己的实际,要了解自己的全面情况,实行 综合复习。 对于自己好的方面,重在保持和提高; 对于自己差的地方,重在补缺。
第一轮复习时还应注意:
① 保持良好的心态-不骄不躁 ② 循序渐进原则 ③ 要有针对性突破 ④ 提高成绩是硬道理
• 一、复习的进度:
• 按教研室下发的计划为准,结合本校实际,材料 以教研室下发材料为主,进行集体备课,坚决剔 除偏、难、怪题。每章进行一次单元过关考试和 一次补偿练习,统考前进行一次模拟考试练习。
• 二、复习的原则
• 1. 夯实基础
• 数学中的基本概念、定义、公式及数学中一些隐 含的知识点,基本的解题思想和方法,是第一轮 复习的重点。基础是能力的载体,没有基础,能 力就是无源之水。无论高考题的难易,考生成绩 的高低,基础仍旧起决定性作用,这是经过多年 高考证明了的。基础包括基本知识、基本理论和 基本方法。因此,复习过程要严格按照考纲要求 ,对需要掌握的知识进行梳理和强化应用。
2、重视“通性、通法”的落实。(通法就 是针对某一类题型所用的一贯套路进行求 解)
要把复习的重点放在教材中典型例题、习 题上;放在体现通性、通法的例题、习题 上;放在各部分知识网络之间的内在联系 上。
3、渗透数学思想方法, 培养数学学科能力。 《考试说明》明确指出要考查数学思想方 法, 要加强学科能力的考查。 我们在复习中要加强数学思想方法的复习, 对于这些数学基本方法都要有意识地根据 自己学习实际予以复习及落实。
ห้องสมุดไป่ตู้ 高三数学(理科)第一轮复习计划
1、高度重视基础知识,基本技能和基本 方法的复习。(基础是重中之重!) “基础知识,基本技能和基本方法”是高 考复习的重点。 在复习课中要认真落实双基,并注意蕴涵 在基础知识中的能力因素,注意基本问题 中的能力培养. 特别是要学会把基础知识 放在新情景中去分析,应用。
7 、规范答题。 切实做到对基础训练限时完成,加强运算能 力的训练,严格答题的规范化,特别是那些书 写“像雾像雨又像风”的同学要加强训练,确 保基本得分。 要求:平时训练,一律不得用铅笔书写。
第一轮复习重在全面打好基础
复习主要是全面梳理知识,夯实基础, 建立了以知识板块为体系的知识和方法 系统。要实现这一目标,首先是要充分 调动自己学习的积极性! • 强调基础,注重通性、通法 • 抓住细节,注重落实
4、结合实际,分类复习。 第一轮复习从7月开始,基础知识复习阶段。 在这一阶段,重温高中阶段所学的课程,但这绝 不只是对以前所学知识的简单重复,而是站在 更高的角度,对旧知识产生全新认识和整合的 重要过程。
主线索是知识的纵向联系与横向联系相结合, 以章节为单位,将那些零碎的、散乱的知识点 串联起来,并将它们系统化、综合化,侧重点在 各个知识点之间的融会贯通。
相关文档
最新文档