数学专业毕业论文开题报告范文
数学与应用数学毕业论文开题报告

数学与应用数学毕业论文开题报告“Hapionl”投稿了18篇数学与应用数学毕业论文开题报告,以下是我为大家准备了数学与应用数学毕业论文开题报告,欢迎参阅。
篇1:数学与应用数学毕业论文开题报告数学与应用数学毕业论文开题报告模板论文题目不定积分的计算方法文献综述:不定积分是大学数学中非常重要的知识,但是当今许多大学生学习不定积分的时候,感觉学习和理解的难度很大,所以不定积分有一定的研究价值。
不定积分是导数运算的逆运算,要想学好不定积分,必须要理解原函数f(x)的意义,知道原函数的性质,学会求简单的原函数。
然后就是理解不定积分的概念,掌握不定积分的线性性质,学会定义求简单函数的不定积分。
本文研究了不定积分的几种解题方法,在前人的研究成果上作进一步的探索与探究。
社会在不断的进步,许多高科技的技术,都涉及到不定积分,研究不定积分也是社会发展的需要。
人类在17世纪的时候就发现了微积分,当时被誉为人类精神上的重大发现。
后来人类创立了微积分学,专门研究微积分,是数学有了重大发展和进步,解决了许多以前人们无法解决的数学问题,可见微积分在数学中的重要地位,而不定积分是微积分中最基础的知识之一,也是最重要的知识之一、人们常用的不定积分的解题方法有:一.利用不定积分的定义性质和基本积分公式求不定积分;二.利用换元积分法求不定积分;三.利用分部积分的方法求不定积分;有时有一些特殊函数也有一些特殊的解题方法,例如有理函数和无理函数,可以用有理函数的积分法和无理函数的积分法。
由此可见前人对不定积分的解题方法和思路有了一定的研究成果,但是后人也不会停下脚步,继续研究下去。
不定积分的解题方法和思路有很多种,这就要求学生有很高的抽象思维和逻辑理解能力,而且学生在学习不定积分的过程中计算和理解的难度比较大,很多老师讲课的时候,学生根本就没听懂,所以对不定积分和不定积分的计算方法的'研究,不管是从客观需求还是客观实际上都有着必然的研究需求。
数学毕业论文开题报告

数学毕业论文开题报告一、选题的背景和意义数学是一门广泛应用于自然科学、社会科学、技术科学和管理科学等领域的基础学科。
数学的发展促进了世界科学技术进步,正深刻地影响着各行各业的发展。
在现代社会中,数学的应用越来越广泛,不断涌现新领域和新问题,数学学科也需要不断地更新和挑战。
因此,以数学为研究对象的毕业论文具有重要意义。
本文选取的题目是“矩阵理论在图像处理中的应用研究”,该题目结合了矩阵理论和图像处理两大学科,探讨了它们之间的联系、应用和发展,并可在图像识别、图像增强、数码信号等领域中得到广泛应用和推广。
因此,本文选题具有较高的实践意义、社会影响力和学术价值。
二、研究的内容和目的本文主要研究矩阵理论在图像处理中的应用,包括矩阵代数、线性代数、矩阵分解等基础理论在图像处理中的应用,以及矩阵运算、图像压缩、图像增强、图像识别等方面的研究。
论文的目的是深入研究矩阵与图像处理的联系,探讨其中的数学原理和方法,为图像处理提供数学基础和理论支持,同时创新性地利用矩阵理论,对图像处理中存在的问题进行解决,提出一些新的算法和方法,达到提高图像处理质量和效率的目的。
三、研究方法和步骤1. 文献阅读和综述。
首先,对相关的矩阵理论和图像处理领域进行深入的文献调查和资料收集,对于研究领域的发展趋势、最新技术和方法有必要的了解和掌握。
2. 矩阵理论在图像处理中的应用研究。
通过对矩阵理论的数学原理、基本概念和运算方法的分析,深入研究矩阵在图像处理中的应用,并探讨矩阵算法,并以矩阵分解为主要方法研究图像的数据压缩与重建,以及图像的降噪与增强。
3. 图像处理中的应用研究。
在数学理论的基础上,探讨图像处理中存在的问题,例如分辨率、噪声、光照等问题,提出解决问题的方法,并在MATLAB或其他数学软件中进行模拟实验。
4. 结果分析和总结。
对于矩阵理论在图像处理中的应用研究进行实验分析和总结,提出新的算法和技术,并对实验结果进行分析和比较,探究成果的局限性和未来发展方向。
数学与应用数学分析开题报告

数学与应用数学分析开题报告下面是小编为您准备的数学与应用数学分析开题报告,供大家参考和借鉴噢!希望能对您有所帮助。
后续精彩不断,敬请关注!本科毕业论文(设计)开题报告论文题目:一类非线性积分方程解的存在唯一性学院:数学与信息科学学院专业:数学与应用数学一、国内外研究现状述评(文献综述)1.国内外研究现状微分方程和积分方程本身具有很重要的工程、振动等实际背景,在实际应用中相当重要,而积分方程解的存在性和唯一性问题一直以来都是微分方程研究的重点、热点和难点问题,现查阅到的国内外资料[1-20]中,只是给出了教材中积分方程的证明,而对于更具一般性的积分方程解的存在唯一性没有证明,本文就是研究此类方程解的存在唯一性。
2.国内外研究现状评述在查阅到的国内外文献[1-20]中,都是针对积分方程进行研究,而对于积分方程还没有触及,但此类方程更具有一般性,对其解的存在唯一性进行研究具有比较重要的理论价值和实际意义。
二、选题的意义和价值积分方程解的存在性和唯一性一直都是微分方程研究的重点问题、热点问题和难点问题,该文研究一类更具一般性的非线性积分方程解的存在唯一性问题,并采用三种方法进行证明,以弥补积分方程研究中的不足,其研究成果恰好是常微分方程基本理论中著名的Picard存在唯一性定理及Peano在定理的推广,因此,本选题具有十分重要的理论价值和实际意义。
三、研究内容本文从常微分方程教材的积分方程出发,研究一类更具一般性的积分方程解的存在唯一性问题,分别采用Picard证明方法、Banach 压缩映象原理、不动点等三种方法证明了这类积分方程的解的存在唯一性,并运用Schauder 不动点方法又证明这类方程在另一条件下连续解的存在性,它们是常微分方程基本理论中著名的Picard存在唯一性定理及Peano在定理的推广,使我们对积分方程有了更加深刻的认识。
四、研究方案和技术路线(或思路与方法)研究方案:本文通过查阅相关资料,研究一类更具一般性的积分方程,用三种方法给出了证明。
数学硕士论文开题报告

数学硕士论文开题报告数学硕士论文开题报告数学是一门博大高深的学科,要想学好数学必需进行艰苦的讨论与学问的积淀。
数学硕士撰写论文可以提高学术水平,在写作之前需要提交开题报告。
下面和我一起来看数学硕士论文开题报告,盼望有所关心!一、数学文化的内涵数学作为一种科学的语言、工具和技术渗透在现代科技的方方面面早已是不争的事实,但是现代数学在人们心中的地位却远远没有达到它应当达到的高度。
随着数学专业化程度的提高,它仿佛离人们越来越远了。
专业的学问由于艰涩和高深仅仅把握在少数人手中而无法被大众共享,这直接导致了新的成果无人理解,获得的奖项无人关注,所以数学人是“孤独的”.孤独造成傲岸,傲岸造成疏远,这其中有误会也有无奈。
所以我们强调文化,由于脱离了文化基础的数学只能离人们越来越远。
受目前学校教育状况的影响,许多人认为数学是高高在上的,除了作为升学的工具,毫无用处。
这样一来,对于数学这样一门富有深刻文化内涵的学科,就连一些受过良好教育的人也持无视的态度,对数学的无知成了一种很普遍的社会现象,这是一个令人非常担忧的事实。
就像漂亮的图画并非只是线条和颜色,动人的乐曲并非只是音符和节拍,数学也不是只有数字、符号和运算。
了解数学的人都知道,运算只是数学微不足道的方面,数学的精神、思想、方法都隐藏着无比深刻的内涵,渗透到科学的每个角落。
假如将数学比作一棵大树,那么这棵大树的生命力是旺盛的,这种生命力体现在数学起源、进展、完善和应用的每一个过程当中,而数学文化就像土壤一样几百几千年来滋养这棵大树,使它繁衍生息,长盛不衰。
因此,扎根于文化土壤的数学教育是非常必要的,也是我们目前非常需要的,这一点将在第五章进行具体论述。
19世纪末到20世纪初的几十年是数学哲学讨论领域的黄金时代,关于数学基础的争论非常活跃,也形成了不同的学派,包括规律主义学派、形式主义学派、直觉主义学派、集合论公理化学派等,大家都在筹划为数学建立坚固的哲学基础。
数学与应用数学毕业设计开题报告

数学与应用数学毕业设计开题报告一、选题背景在当今社会,数学作为一门基础学科,对于各行各业都有着深远的影响。
数学与应用数学专业作为培养数学人才的重要专业之一,旨在培养具备扎实的数学理论基础和较强的数学建模与问题解决能力的高级数学人才。
因此,本次毕业设计选题旨在通过深入研究某一具体数学问题,结合实际应用背景,探讨数学在现实生活中的应用,为毕业生提供一个展示自己所学知识和能力的平台。
二、选题意义本次毕业设计选题旨在通过研究某一具体数学问题,探讨其在实际应用中的意义和作用,进一步拓展学生对数学知识的理解和运用能力。
同时,通过毕业设计的完成,可以锻炼学生的动手能力、团队协作能力和解决实际问题的能力,为其未来从事相关领域工作打下坚实基础。
三、选题内容本次毕业设计选题为《某某数学问题的建模与分析》,主要包括以下几个方面内容:问题背景分析:介绍选定数学问题的来源和背景,阐明研究意义。
相关理论知识:梳理与选定数学问题相关的理论知识,包括但不限于微积分、线性代数等内容。
建模方法:探讨选定数学问题的建模方法,分析建模过程中可能遇到的困难和挑战。
模型求解:运用所学数学知识和方法,对建立的数学模型进行求解,并分析结果的合理性和可行性。
实际应用与展望:将研究结果与实际应用结合起来,展望该数学问题在未来的发展方向和应用前景。
四、预期目标通过本次毕业设计,希朥达到以下几个预期目标:深入理解所选定数学问题及其相关理论知识;熟练掌握数学建模与分析方法;提高动手能力和团队协作能力;培养解决实际问题的能力;为将来从事相关领域工作做好准备。
五、总结本次毕业设计选题旨在通过深入研究某一具体数学问题,结合实际应用背景,探讨数学在现实生活中的应用。
通过对该数学问题进行建模与分析,希望能够培养学生扎实的数学理论基础和较强的问题解决能力,为其未来职业发展打下坚实基础。
希望同学们能够认真对待本次毕业设计,并取得优异成绩!以上为本次毕业设计开题报告内容,请指导!。
数学专业毕业论文开题报告

数学专业毕业论文开题报告数学专业毕业论文开题报告一、引言数学作为一门基础学科,对于现代科学和技术的发展起着重要的推动作用。
随着社会的进步和科技的发展,数学专业的研究也日益深入和广泛。
本文旨在探讨数学专业毕业论文的开题报告,介绍研究的背景、目的和方法,以及预期的研究结果和意义。
二、研究背景数学作为一门抽象的学科,与现实世界密切相关。
在物理学、经济学、计算机科学等领域中,数学方法被广泛应用。
然而,尽管数学在实践中具有巨大的价值,但在教育中,数学的教学效果却不尽如人意。
许多学生对数学的学习兴趣和能力不高,导致数学教育的效果不佳。
因此,研究如何提高数学教育的质量和效果成为了一个重要的课题。
三、研究目的本研究的目的是探究如何提高数学教育的质量和效果。
具体来说,我们将通过以下几个方面进行研究:1. 分析数学教育中存在的问题和挑战;2. 探讨现有的数学教育方法和策略;3. 提出改进数学教育的新方法和策略;4. 实施并评估新方法和策略的有效性。
四、研究方法本研究将采用综合性的研究方法,包括文献综述、问卷调查和实证研究。
首先,我们将对数学教育领域的相关文献进行综述,了解现有的研究成果和观点。
然后,我们将设计并分发一份问卷,收集学生和教师对数学教育的看法和建议。
最后,我们将设计并实施一套新的数学教育方法,并通过实证研究来评估其有效性。
五、预期结果我们预期本研究将有以下几个方面的结果:1. 对数学教育中存在的问题和挑战进行全面的分析和总结;2. 对现有的数学教育方法和策略进行全面的评估和归纳;3. 提出一套新的数学教育方法和策略,以提高学生的学习兴趣和能力;4. 通过实证研究,评估新方法和策略的有效性,并提出改进的建议。
六、研究意义本研究的意义在于提高数学教育的质量和效果,促进学生对数学的学习兴趣和能力的提升。
通过研究和改进数学教育的方法和策略,我们可以更好地满足社会对数学人才的需求,推动数学在实践中的应用,促进科学和技术的发展。
数学专业毕业论文开题报告模板_开题报告_

数学专业毕业论文开题报告模板
题目:数学美在中学数学教育中的应用
一、选题的背景与意义
背景:社会的不断发展,人文素质的不断提高,人们对数学也有了更高的要求,所以就产生了数学美。
意义:培养学生的审美心理和数学美感,增强教材的亲和力,唤起学生求知的好奇心,提高解题能力。
二、研究的主要内容和预期目标
主要内容:本文就中学数学教学中所蕴含的数学美的形式特点及其在教学中应用做初步的探讨。
预期目标:让学生体会数学美,进而促使学生形成正确的审美意识。
更好的解决数学问题。
三、拟采用的研究方法、步骤
研究方法:文献研究法、归纳法、举例法。
研究步骤:1、查阅文献,收集资料
2、拟定大纲,形成初稿
3、根据指导教师的意见,对初稿进行修改
4、定稿、排版、打印
四、研究的总体安排与进度
第1周:查阅文献,整理资料
第2周:按要求指导学生填写
第3周:拟订论文纲要,形成论文初稿
第4、5周:进行论文修改
第6周:定稿、排版、打印
五、已查阅参考文献
[1]《毕达哥拉斯与毕达哥拉斯学派》大庆师范学院图书馆
[2]《论美与数学》江纯浙江大学学报(社会科学版)XX年第七卷第3期
[3]《数学中的对称美与应用》《中国科学信息》XX年05期
[4]《谈谈数学的奇异美》汤波《教育大学学报》XX年02期
[5]《浅谈高中数学中的数学美》王引观《嘉兴学院学报》XX年第14卷。
数学专业毕业论文开题报告

数学专业毕业论文开题报告一、研究背景数学作为一门基础学科,具有广泛的应用领域和重要的理论基础,为各行各业的发展和创新提供了强大的支持。
随着社会的不断进步和科技的快速发展,对数学专业研究的需求也日益增加。
因此,本文打算从数学专业的相关知识与应用出发,展开研究,为数学专业的发展提供新的思路和方法。
二、研究目的和意义本研究的目的是探索数学专业的相关知识与应用,分析其发展现状和存在的问题,并提出相应的解决方案,以促进数学专业的进一步发展和创新。
数学专业作为一门基础学科,对其他学科的发展具有重要而深远的影响。
通过对数学专业的研究,我们可以更好地理解和应用数学知识,提高数学专业人才的培养质量,为社会各行业的发展提供强有力的数学支撑。
另外,还可以推动数学专业的创新,促进数学理论与实践的结合,培养更多具有实践能力和创新精神的数学专业人才。
三、研究内容和方法本研究将围绕数学专业的相关知识与应用展开,主要包括以下内容:1. 数学专业知识的总结与分析:对数学专业的核心知识进行总结和分析,深入研究各个领域的理论基础和应用方法。
2. 数学专业发展现状的调研:通过调查问卷、实地考察等方法,了解数学专业的发展现状和存在的问题,为后续的研究提供依据。
3. 数学专业问题的解决方案:针对数学专业存在的问题,结合理论和实践,提出相应的解决方案,并进行实证研究和验证。
4. 数学专业人才培养的探索与实践:通过与相关高校和企事业单位的合作,探索数学专业人才培养的新模式和方法,并进行实践和案例分析。
本研究将采用文献研究、实证研究、案例分析等方法,综合运用定性和定量的研究手段,以全面、系统地探索数学专业知识与应用的发展规律和创新方法。
四、论文结构本论文将分为以下几个部分:1.绪论:介绍数学专业的背景和研究目的,阐述研究的意义和价值。
2.相关理论与方法:系统总结和分析与数学专业相关的理论知识和研究方法。
3.数学专业发展现状分析:通过调研和实证研究,对数学专业的发展现状和存在的问题进行分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学专业毕业论文开题报告范文----WORD文档,下载后可编辑修改----下面是小编收集整理的范本,欢迎您借鉴参考阅读和下载,侵删。
您的努力学习是为了更美好的未来!数学专业毕业论文开题报告范文篇1:题目利用数学模型预测未来50年的丁克人口1、研究目的和意义未来学家曾尖锐地指出二十一世纪人类将面临三大问题:首先是人口膨胀,第二是就业困难,第三是环境污染。
这三大问题的焦点和后面两大问题产生的根源在于人口问题。
人口系统是一个复杂的动态系统,人口变化对未来经济,社会发展有着直接的影响。
人口年龄结构是人口研究的重要指标之一,人口年龄结构的发展趋势的预报对人口政策的制定有着非常重要的作用。
而现在随着国家对大学的扩招,大学生越来越多,而大学生的就业现状并不看好,刚刚毕业的大学生或者在踏入社会时间不太长的毕业生经济水平不高,有了孩子负担会更重,而作为受过高等教育的大学生本身就具有较强的接受新事物的能力,自然而然的就成了丁克一族的后备军,这类的大学生越来越多,现的大学生大多是80后人,更具有发展成为丁克一族的可能,因此,丁克现象在最近二十年之内必将发展非常迅速,直接影响着人口老龄化的加快。
面对这样的形势,为抑制丁克人口增长过快的趋势,减小人口老龄化速度的加快,又要使人口的年龄结构有一个合理的分布,就必须建立丁克人口预测和控制的数学模型,为正确的人口政策提供科学的依据。
2、国内外发展情况(文献综述)今天,世界的人口危机不是因为家庭中有比过去更多的孩子,实际上家庭规模并未扩大,而丁克家庭就在这样的时代背景下涌现。
丁克的名称来自英文Double Income No Kids四个单词首字母D、I、N、K的组合----DINK的谐音,Double Income No Kids有时也写成Double Income and No Kid(Kids)。
仅从单词字面意义解释,意思是:双收入,没有孩子。
据美国人口调查局公布的年度分析报告表明:1993年美国丁克家庭已超过家庭总数的51%,致使总和生育率下降,人口出现负增长;而意大利、希腊和西班牙由于受丁克现象影响较为严重,已加入全球出生率最低的国家之列。
自上个世纪80年代起,丁克现象悄悄在中国出现。
丁克家庭的增长直接影响人口的老龄化速度加快,导致生产力水平下降,制约着社会经济发展。
中国是世界上人口最多的国家。
1999年底中国大陆上居住着125909万人(不包括港澳台) 约占世界总人口的22%。
自1990年起,丁克家庭开始在我国很多大城市涌现,近几年我国的丁克家庭的比例有着上涨的趋势。
走上“丁克”之路的夫妻各有各的理由,总体来说可以归结为两大类:一类是自然无耐型,一类是主动接受型。
丁克家庭作为一种新兴的特殊家庭类型不仅已在我国扎根定位,成为我国核心家庭、主干家庭、联合家庭、单亲家庭等众多家庭类型中新的一员,而且呈继续发展之势。
现在社会,“养儿防老”早已过时,防老养老终老,只能靠我们自身的能力与组织管理了。
现在,又有了一个新的设想--构想“丁克”社区,这个设想对一般人而言又是一次观念更新的起源。
人口众多是我国基本的国情,中国在世纪之交的2000年进行了全国第五次人口普查,国家许多重大社会、政治,经济问题的研究都要依据人口的数量。
为此,进行人口预测是有效地控制人口发展与资源关系不可缺少的手段之一,同时也是人口决策的重要依据.作为新兴群体的预测也是人口预测中必不可少的环节。
人类可以作为一个单物种的群体,早在1978年由英国的人口统计学家Malthus根据一百多年人口统计资料提出了著名的人口指数增长模型(Malthus 模型),荷兰生物数学家Verhulst也于19世纪中叶提出阻滞增长模型,能够大体上描述丁克人口的增长趋势。
各国对于人口的研究是本论文对丁克人口研究的基础。
国内关于人口预测方法大致分为两类:一是邓聚龙的灰色GM(1,1)预测模型,但是该模型只能对中国的总人数作中短期的预测,可以很明显的体现出人口总数上的趋势变化。
二是宋健理论的中长期人口发展方程的人口预测模型,其分为人口发展方程的离散形式与人口发展方程的连续形式。
但模型中需要确定大量参数,需要比较多较准确的数据,而这些数据的获取又有一定难度,且数据也多少有些误差,故导致在人口预测上存在较大困难,且预测方法较难实施在国内外关于人口预测方法的研究中,用到人口发展方程的连续形式来求人口总数还是存在着很大的缺陷,至今还未解决这一难题。
这些都是预测丁克人口的有效方法。
3、研究的主要方法、手段:本文主要内容是对丁克现象进行具体分析,通过已知中国总人口数局并利用马尔萨斯(Malthus)模型(指数增长模型)预测未来丁克人口,与通过已知丁克人口数据并利用GM(1,1)灰色预测模型预测的未来丁克人口进行比较分析。
用已有数据对预测结果进行检验,比较分析误差,以达到预测的准确性。
4、可行性分析:通过系统的学习和查阅大量的有关方面的书籍,我已经对影响丁克现象的原因有所了解和掌握;并且在导师张鸿艳教授的帮助和精心指导下,对于丁克现象的人口模型以及人口预测模型的建立、求解方法和求解过程等基本理论有了了解。
这些都为论文做了充分的准备,本论文的题目可行。
5、论文提纲:(略)6、时间进程1月至3月:查阅相关资料了解丁克人口预测模型;3月18日:完成开题报告。
3月18日至5月10日:完成论文的理论部分;5月11日至5月15日:用MATLAB和相应的工具箱编写程序,完成初稿。
5月16日至6月3日:校稿,整理论文。
7、参考文献:1 中国统计年鉴2 王永全,刘琴.专业统计与信息系统[M].北京:北京大学出版社,2007.3 姜启源,邢文训,谢金星,杨顶挥.大学数学实验[M].北京:清华大学出版社,2005.4 谭永基,蔡志杰.数学模型(博学-;数学系列).上海:复旦大学出版社,2004.5 Charles H. Zastrow著,孙唐水译.社会工作与社会福利导论.中国人民大学出版社,2005.6 白凤山,么换民,李春玲,沈继红,施久玉.数学建模(上册).哈尔滨工业大学出版社,2003.4.7 边肇祺等.模型识别[M].北京:清华大学出版社,1998.8 Vladimir N.Vapnik著,张学工译.统计、学习理论的本质[M].北京:清华大学出版社,2000.9 Mark M.Meerschaert.数学建模方法与分析.机械工业出版社,2005.10 刘卫国.Matlab程序设计与应用.高等教育出版社,2008.11 刘思峰.灰色系统理论及其应用(第2版).北京:科学出版社,1999.12 宋健,田雪原.人口控制与人口预测.北京:人民出版社.1982.13 徐国祥.统计预测和决策。
上海:上海财经大学出版社,2005.14 邹自立.人口预测方法及可靠性探讨.华东地质学院学报.15 李勇胜.人口预测中的模型选择与参数认定.财经科学出版社,2004.数学专业毕业论文开题报告范文篇2:题目:数学美在中学数学教育中的应用一、选题的背景与意义背景:社会的不断发展,人文素质的不断提高,人们对数学也有了更高的要求,所以就产生了数学美。
意义:培养学生的审美心理和数学美感,增强教材的亲和力,唤起学生求知的好奇心,提高解题能力。
二、研究的主要内容和预期目标主要内容:本文就中学数学教学中所蕴含的数学美的形式特点及其在教学中应用做初步的探讨。
预期目标:让学生体会数学美,进而促使学生形成正确的审美意识。
更好的解决数学问题。
三、拟采用的研究方法、步骤研究方法:文献研究法、归纳法、举例法。
研究步骤:1、查阅文献,收集资料2、拟定大纲,形成初稿3、根据指导教师的意见,对初稿进行修改4、定稿、排版、打印四、研究的总体安排与进度第1周:查阅文献,整理资料第2周:按要求指导学生填写开题报告第3周:拟订论文纲要,形成论文初稿第4、5周:进行论文修改第6周:定稿、排版、打印五、已查阅参考文献[1]《毕达哥拉斯与毕达哥拉斯学派》大庆师范学院图书馆[2]《论美与数学》江纯浙江大学学报(社会科学版)2001年第七卷第3期[3]《数学中的对称美与应用》《中国科学信息》2006年05期[4]《谈谈数学的奇异美》汤波《教育大学学报》2008年02期[5]《浅谈高中数学中的数学美》王引观《嘉兴学院学报》2002年第14卷数学专业毕业论文开题报告范文篇3: 1.研究背景与研究目的:函数的一致连续性是在使用连续函数的过程中发展起来的一个概念,它是比函数在区间上连续更强的的一种连续性。
而关于函数一致连续性与函数在区间上连续这两个概念令许多人容易混淆。
本文通过对函数一致连续性的概念、判别方法进行较为系统和全面的论述,并在二元函数上加以推广,使得对函数一致连续的内涵有了更全面更深刻的理解和认识。
最后结合一些具体实例,对其判别条件和方法加以应用。
2.研究内容与进度安排:研究内容:一元函数一致连续性的概念(与函数连续进行对比)函数一致连续性的几种判别条件和方法一致连续性推广到二元函数一致连续性的应用(具体例题)进度安排:(1) 12月初至12月25日查阅资料,讨论论文题目;(2) 12月26日至12月31日阅读文献,最终确定论文选题,完成开题报告;(3) 1月1日至3月31日论文写作,完成论文的初稿;(4) 4月1日至4月29日对论文的格式及内容进行修改;(5)4月3日论文最后定稿。
3.拟采取的研究方法:查阅文献确定一元函数一致连续性的定义、判别方法、性质等概念,并与“函数在区间上连续”进行对比;将一致连续性推广到二元函数的情形;最后选用一些例题,应用一致连续性的判别法、性质等概念解决4.已完成的准备工作(含文献资料查阅与调研情况):[1] 复旦大学数学系(第二版)上册. 数学分析[M]. 高等教育出版社,1983[2] 贺自树,刘学文,杜昌友,朱大钧. 数学分析习题课选讲[M]. 重庆大学出版社,27[3] 邱德华,李水田. 函数一致连续的几个充分条件[J].大学数学,26,22(3):136~138.[4] 高智明,刘慧瑾,蒋佩佩.关于连续性和一致连续性的一个定理[J]. 高等数学研究,28,11(4)[5] 钱吉林.数学分析题解精粹[M].武汉:崇文书局,23[6] 陈文灯,黄先开. 211版考研数学复习指南:经济类[M]. 世界图书出版公司,21[7] 裴礼文.数学分析中的典型问题与方法[M].北京:高等教育数出版社,21[8] 刘勇. 关于一元函数一致连续性的讨论[J]. 赤峰学院学报:自然科学版,29,25(11)[9] 翟明清. 浅析二元函数的一致连续性[J]. 滁州学院学报,24,6(3)[1] 常明. 一元函数一致连续性的判定及性质[J]. 数学教学,29,75.指导教师意见:指导教师(签名):xxx20**年**月**日6.学院意见:学院(盖章)20**年**月**日看了数学专业毕业论文开题报告范文的人还看了:1.数学毕业论文开题报告2.本科数学论文开题报告3.数学教育专业毕业论文范文4.本科毕业论文开题报告范文3篇5.本科数学系毕业论文6.汉语言文学毕业论文开题报告范文7.关于本科毕业设计开题报告范文。