分子印迹技术

合集下载

什么是分子印迹技术

什么是分子印迹技术

(1)在一定溶剂(也称致孔剂)中, 模板分子(即印迹分子)与功能 单体依靠官能团之间的共价或 非共价作用形成主客体配合物
(2)加入交联剂,通过引发剂引发 进行光或热聚合,使主客体配 合物与交联剂通过自由基共聚 合在模板分子周围形成高联的 刚性聚合物
(3)将聚合物中的印迹分子洗脱或 解离出来
这样在聚合物中便留下了与模板分 子大小和形状相匹配的立体孔穴,同 时孔穴中包含了精确排列的与模板分 子官能团互补的由功能单体提供的功 能基团,如果构建合适,这种分子印迹 聚合物就象锁一样对此钥匙具有选择 性。。这便赋予该聚合物特异的“记 忆”功能,即类似生物自然的识别系 统,这样的空穴将对模板分子及其类 似物具有选择识别特性。
目前,根据模板分子和聚合物单体之间形成多重 作用点方式的不同,分子印迹技术可以分为两类:
(1) 共价键法(预组装方式)
聚合前印迹分子与功能单体反应形成硼酸酷、西夫 碱、亚胺、缩醛等衍生物,通过交联剂聚合产生高分 子聚合物,用水解等方法除去印迹分子即得到共价结 合型分子印迹聚合物 。
天然杭体模拟
MI PS与印迹分子 之间作用的强度与选择 性在一定程度上可以和 抗原与抗体之间的作用 相媲美,因而可用于抗 体模拟,这种模拟抗体制 备简单、成本低,在高 温、酸碱及有机溶剂中 具有较好的稳定性,此 外还可以重复使用。
4.5 模拟酶催化
例如以毗哆醛为印 迹分子,用4一乙基咔哇 为单体制备出分子印迹 高聚物,它促进了氨基 酸衍生物的质子转移。
近年来,该技术已广泛应用于色谱分 离、抗体或受体模拟、生物传感器以及生 物酶模拟和催化合成等诸多领域,并由此 使其成为化学和生物学交叉的新兴领域之 一,得到世界注目并迅速发展。
当模板分子(印迹分子)与聚合物单体接触 时会形成多重作用点,通过聚合过程这种作用 就会被记忆下来,当模板分子除去后,聚合物 中就形成了与模板分子空间构型相匹配的具有 多重作用点的空穴,这样的空穴将对模板分子 及其类似物具有选择识别特性。

分子印迹技术在生物分析中的应用

分子印迹技术在生物分析中的应用

分子印迹技术在生物分析中的应用分子印迹技术是一种独特的生物分析技术,它使用分子印迹材料(MIPs)以高度特异和选择性地捕获特定分子。

这种技术可以在多个领域和应用中发挥重要作用,如生物医学、环境分析和食品安全等。

本文将探讨分子印迹技术在生物分析中的应用。

1.分子印迹技术是什么?分子印迹技术是一种在聚合物基质中通过模板分子进行选择性捕获的技术。

MIPs可以是聚合物或高分子材料,可以选择性地与目标分子相互作用,从而实现特异性捕获。

该技术包括在聚合物基质中聚集模板分子,然后通过交联聚合反应固定它们,最后去除模板分子以形成MIPs。

2. 分子印迹技术在生物分析中的应用分子印迹技术可以应用于生物分析的多个方面,如药物筛选、蛋白质分离和生物分子检测等。

药物筛选:分子印迹技术可以用于药物筛选,例如筛选具有突变蛋白的新型抗癌药。

在这个过程中,可以使用分子印迹材料,将抗癌药的分子结构与已知的突变蛋白结构进行匹配,从而选择最优化的药物。

蛋白质分离:分子印迹技术可以用于蛋白质分离。

通过选择性捕获特定蛋白质,分子印迹技术可以将混合物分离成不同的组分,以分析和识别它们。

这种技术对于精确的蛋白质鉴定和组织学研究都非常有用。

生物分子检测:分子印迹技术还可以用于生物分子的检测。

例如,可以使用MIPs捕获特定肿瘤标志物,以达到高度敏感且特异的肿瘤筛检。

在肿瘤筛检中,该技术与传统抗体检测方法相比具有较高的特异性和灵敏性。

3. 分子印迹技术与传统技术的比较与传统技术相比,分子印迹技术具有很多优势。

传统技术通常是依据成像技术、免疫技术和重组蛋白技术等来实现对生物分子的检测;而MIPs具有更广泛的应用范围和更强的特异性。

此外,MIPs可以具有很高的稳定性和重复性,因为它们在生物分析中始终具有相同的分子结构。

4. 结论分子印迹技术是一种独特的生物分析技术,在许多领域和应用中都发挥着越来越重要的作用。

在药物筛选、蛋白质分离和生物分子检测等方面,该技术不仅具有很高的特异性和灵敏性,而且还具有应用范围广、重复性和稳定性高的特点。

三种分子印迹的原理与应用

三种分子印迹的原理与应用

三种分子印迹的原理与应用1. 引言分子印迹技术是一种基于分子识别的方法,通过合成分子印迹聚合物(MIPs)来选择性识别目标分子。

根据不同的制备方法,可以分为三种分子印迹:非共价相互作用型、共价相互作用型和半共价相互作用型分子印迹。

2. 非共价相互作用型分子印迹非共价相互作用型分子印迹主要利用分子间的非共价相互作用(如氢键、范德华力等)来识别目标分子。

主要工艺包括自组装、缩合聚合法和前驱体中位取代法。

•自组装法:通过模板分子与功能单体形成一定的分子间作用力,进而在功能单体中自组装形成孔道结构来识别目标分子。

•缩合聚合法:通过在模板分子周围引入功能单体,通过缩合反应形成共价键,生成聚合物介孔结构,实现对目标分子的识别。

•前驱体中位取代法:通过将模板分子置于功能单体中间位置,然后利用引发剂诱导交联反应,形成孔道结构以识别目标分子。

3. 共价相互作用型分子印迹共价相互作用型分子印迹是利用目标分子与功能单体之间通过共价键形成的稳定连接来实现目标分子的选择性识别。

主要有两种方法:原位聚合法和后位聚合法。

•原位聚合法:在模板分子与功能单体经过共价键连接后,以功能单体为单体发起剂进行自由基聚合,最终形成孔道的聚合物结构来选择性识别目标分子。

•后位聚合法:首先将模板分子稳定连接在载体上,然后对功能单体进行自由基聚合反应,最终脱除模板分子,形成孔道结构用于识别目标分子。

4. 半共价相互作用型分子印迹半共价相互作用型分子印迹是利用目标分子与功能单体之间通过共价键和非共价键(如氢键)形成的半共价键连接来实现目标分子的选择性识别。

•比较常见的方法是利用共轭自由基诱导剂(CDRI)作为共价发起剂,引发功能单体的自由基聚合,最终形成聚合物介孔结构,实现对目标分子的识别。

5. 应用分子印迹技术在各个领域都有广泛的应用:•生物医学领域:可以用于药物分析、生物传感器等。

例如,可以使用分子印迹聚合物来选择性识别某种药物,从而实现药物检测和分离纯化。

分子印迹原理

分子印迹原理

分子印迹原理分子印迹技术(Molecular Imprinting Technology,MIT)是一种通过特定的分子模板,与功能单体形成非共价键结合,然后聚合形成高分子材料,再通过去除模板分子形成具有特异性识别功能的孔道的一种方法。

该技术是一种以生物体系为原型,通过模拟生物体系的分子识别功能,实现对特定分子的高选择性识别和吸附的方法。

分子印迹技术的原理主要包括以下几个步骤,模板分子选择、功能单体选择、聚合反应、模板分子去除。

首先是模板分子的选择,模板分子是分子印迹材料的模板,其选择直接影响到分子印迹材料的特异性识别能力。

其次是功能单体的选择,功能单体是与模板分子发生非共价作用的单体,通过与模板分子形成氢键、离子键、范德华力等相互作用,从而形成特异性识别位点。

然后是聚合反应,功能单体与交联剂在模板分子的作用下进行聚合反应,形成高分子网络结构。

最后是模板分子的去除,通过溶剂提取或其他方法将模板分子从高分子网络中去除,留下与模板分子形状相匹配的孔道。

分子印迹技术的应用范围非常广泛,包括化学分离、化学传感、药物释放、生物分析等领域。

在化学分离中,分子印迹技术可以用于固相萃取、色谱分离等,具有高选择性和高效率的特点。

在化学传感中,分子印迹材料可以作为传感元件,实现对特定分子的高灵敏度检测。

在药物释放领域,分子印迹材料可以作为药物载体,实现对药物的控制释放。

在生物分析中,分子印迹技术可以用于检测生物标志物、药物残留等,具有快速、准确的特点。

总的来说,分子印迹技术是一种非常重要的化学技术,具有广阔的应用前景。

随着对分子印迹原理的深入研究和技术的不断改进,相信分子印迹技术将在化学、生物、医药等领域发挥越来越重要的作用,为人类健康和生活品质的提高做出更大的贡献。

分子印迹技术的原理

分子印迹技术的原理

分子印迹技术的原理分子印迹技术(Molecular Imprinting Technology,MIT)是一种通过专门设计合成分子再加上聚合物化学方法生成特定空腔结构的方法,用于选择性识别和捕获特定目标分子的技术。

分子印迹技术的原理主要包括以下几个步骤:模板选择、功能单体选择、预聚合体形成以及模板分子的去除。

1. 模板选择:分子印迹技术的第一步是选择目标分子作为模板。

模板可以是一种有机小分子、蛋白质、胞内分子或其他化合物。

根据目标分子的性质和应用需求,选择合适的目标分子进行印迹。

模板的物化性质对印迹物的形成和识别能力具有很大影响。

2. 功能单体选择:在印迹物的选择方面,通常选择具有与目标分子相互作用的功能单体。

功能单体可以通过与目标分子之间的氢键键合、离子键作用、范德华力等非共价作用力或共价键作用来选择和固定目标分子。

3. 预聚合体形成:选择合适的功能单体后,需要将其与交联剂共聚合形成三维聚合物网络。

功能单体通过与交联剂的共聚合,在高分子聚合物中形成特定的空腔结构。

这些空腔与目标分子的大小、形状和化学特性相适应,可以使目标分子在聚合物中得到选择性的识别和捕获。

4. 模板分子的去除:在印迹物形成后,需要将模板分子从聚合物中去除,以形成分子印迹空腔。

常用的去模板方法包括溶剂洗提、酸碱水解、热解、微波辅助去模板等。

经过去模板后,留下了与模板分子形状和功能相匹配的空腔结构,实现了对目标分子的高度选择性识别。

分子印迹技术的原理主要基于分子的空间结构和相互作用力。

通过在高分子聚合物中形成与目标分子形状和性质相适应的空腔结构,可以实现对目标分子的高度选择性识别和捕获。

在识别过程中,分子印迹物与目标分子之间发生分子识别反应,通过非共价作用力或共价键作用,实现了对目标分子的特异性识别。

与其他识别方法相比,分子印迹技术具有选择性好、稳定性高、重复性好、操作简单等优点。

分子印迹技术在生命科学、分析化学、环境监测等领域具有广泛的应用。

分子印迹原理

分子印迹原理

分子印迹原理分子印迹技术是一种通过特定的分子模板来选择性识别目标分子的方法。

它的原理是在聚合物材料中,通过目标分子与功能单体的非共价作用形成复合物,然后再通过交联剂的作用形成固定的结构。

在去除目标分子后,留下了与目标分子的空位结构,这就是分子印迹物质。

分子印迹技术可以应用于分离、富集、检测等领域,具有广泛的应用前景。

分子印迹原理的关键在于分子模板的选择和功能单体的配比。

首先,选择合适的分子模板是分子印迹技术成功的关键。

分子模板应具有与目标分子相似的结构和功能团,以便形成稳定的复合物。

其次,功能单体的选择和配比也至关重要。

功能单体应具有与分子模板和目标分子相互作用的基团,以保证复合物的稳定性和选择性。

在聚合过程中,分子模板和功能单体形成的复合物被固定在聚合物材料中,形成了具有空位结构的固定空间。

当目标分子再次进入这个固定空间时,会与空位结构发生特异性的非共价作用,从而实现目标分子的选择性识别。

分子印迹原理的应用非常广泛。

在生物医药领域,分子印迹技术可以用于药物的分离和富集,从而提高药物的纯度和活性。

在环境监测领域,分子印迹技术可以用于水质和大气中有害物质的检测,从而保障人们的健康和安全。

在食品安全领域,分子印迹技术可以用于食品添加剂和农药残留的检测,从而保证食品的质量和安全。

此外,分子印迹技术还可以应用于化学传感器、分子识别和生物分子分析等领域。

总之,分子印迹原理是一种非常重要的分子识别技术,它通过特定的分子模板和功能单体,形成具有空位结构的固定空间,实现了对目标分子的选择性识别。

分子印迹技术在生物医药、环境监测、食品安全等领域具有广泛的应用前景,对于推动科学研究和解决实际问题具有重要意义。

随着科学技术的不断进步,相信分子印迹技术将会发挥更大的作用,为人类社会的发展做出更大的贡献。

分子印迹原理

分子印迹原理

分子印迹原理分子印迹技术是一种利用分子与分子之间的特异性相互作用来选择性识别和分离目标分子的方法。

它是一种特殊的化学合成技术,通过分子模板法制备具有特异性识别功能的高分子材料。

分子印迹原理的核心在于分子模板与功能单体之间的相互作用,以及分子模板与目标分子之间的特异性识别。

在分子印迹技术中,首先选择合适的分子模板,通常是目标分子的结构类似物,然后与功能单体通过共价键或非共价键进行聚合反应,形成具有空穴结构的高分子材料。

在聚合反应完成后,将分子模板从高分子材料中去除,留下与其结构相匹配的空穴,即形成了分子印迹材料。

分子印迹材料具有高度的选择性和特异性,这是因为在聚合反应中,分子模板与功能单体之间形成了特定的相互作用,使得形成的高分子材料具有对目标分子的特异性识别能力。

这种特异性识别能力使得分子印迹材料在化学传感、分子分离、药物释放等领域具有广泛的应用。

分子印迹原理的核心在于分子之间的相互作用。

在分子模板与功能单体之间的相互作用过程中,通常会发生氢键键合、范德华力、离子键等相互作用,这些相互作用的强弱和特异性决定了最终分子印迹材料的识别性能。

因此,在设计和合成分子印迹材料时,需要充分考虑分子模板与功能单体之间的相互作用,以及分子模板与目标分子之间的特异性识别机制。

除了分子模板与功能单体之间的相互作用外,分子印迹材料的识别性能还与其结构和形貌密切相关。

通过调控功能单体的种类和比例,可以调节分子印迹材料的孔径大小和分布,从而影响其对目标分子的识别能力。

此外,还可以通过表面修饰等手段改善分子印迹材料的识别性能,使其具有更广泛的应用前景。

总之,分子印迹原理是一种利用分子之间的特异性相互作用来选择性识别和分离目标分子的方法。

通过合理设计和合成分子印迹材料,可以实现对目标分子的高度选择性识别,具有广泛的应用前景。

随着分子印迹技术的不断发展和完善,相信它将在化学传感、分子分离、药物释放等领域发挥越来越重要的作用。

分子印迹技术名词解释

分子印迹技术名词解释

分子印迹技术名词解释「分子印迹技术」是由以色列免疫学家以色列赫尔穆特所提出的技术,称为分子印迹技术(MIPs)。

这种技术有助于研究团(组织)分子中的重要特征,以及其在生物体内的作用和它们之间的相互作用。

分子印迹技术是一种可编程的、可调节的、可选择性的分子模板,由一系列的聚合物材料组成。

聚合物材料的官能团与团簇中的分子结合,形成复杂的拓扑结构,使得分子可以被迅速地固定在不同的位置。

这些位置定义了MIPs所检测到的分子特征,是一种稳定、可控的反应环境。

分子印迹技术可用于研究各种分子特征,包括蛋白质、核酸、调节剂、修饰剂和其他生物体的细胞等等。

使用这种技术,研究者可以精确地控制分子特征,从而缩短实验时间,减少实验错误和误读,有助于研究者解决重大的生物学和医学问题。

分子印迹技术的一个重要应用是蛋白质研究。

蛋白质是生物体中最重要的物质,具有复杂的结构和功能。

使用MIPs技术,研究者可以控制环境条件,研究分子中的生物机制,如蛋白质的合成、结构变化及其功能。

此外,MIPs技术还可用于药物发现,以发现对蛋白质进行抑制或活化的生物活性分子。

MIPs技术还可用于研究其他类型的分子特征。

通过研究分子特征,可以了解生物体的行为和相互作用的机制,从而更有效地研究生物体的健康和疾病。

例如,MIPs技术可以用来研究神经元和细胞的行为,有助于研究神经系统的细胞交互作用和疾病的发病机制,并可以用来研究药物的药物作用。

此外,MIPs技术还可用于研究病毒和细菌。

分子印迹技术可以用来快速定位病毒和细菌感染的位置,有助于研究病毒和细菌的运动轨迹和其他影响感染的机制,同时也可以用来识别抗病毒治疗的新靶点。

总的来说,分子印迹技术是一种非常有用的技术,在研究生物体内分子特征的过程中可以发挥重要作用。

它可以帮助研究者准确地控制分子结构,以及分子特征和它们之间相互作用的机制,为研究药物作用和疾病发病机制等问题提供重要依据,对于后续科学研究具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人工的接受体
环糊精 冠醚
北京市植物资源研究开发重点实验室
主要内容
一、什么是分子印迹技术 二、分子印迹技术的产生和发展 三、分子印迹的基本原理 四、分子印迹的分类 五、分子印迹的步骤 六、分子印迹技术的特点 七、分子印迹技术的应用 八、展望
北京市植物资源研究开发重点实验室
二、分子印迹技术的产生和发展
北京市植物资源研究开发重点实验室
分子印迹技术
Molecularly Imprinted Technology
主要内容
一、什么是分子印迹技术 二、分子印迹技术的产生和发展 三、分子印迹的基本原理 四、分子印迹的分类 五、分子印迹的步骤 六、分子印迹技术的特点 七、分子印迹技术的应用 八、展望
北京市植物资源研究开发重点实验室
主要内容
一、什么是分子印迹技术 二、分子印迹技术的产生和发展 三、分子印迹的基本原理 四、分子印迹的分类 五、分子印迹的步骤 六、分子印迹技术的特点 七、分子印迹技术的应用 八、展望
北京市植物资源研究开发重点实验室
四、分子印迹的分类
种类
功能单体和模板分子间的作用形式
共价印迹法 杂化印迹法 非共价印迹法
北京市植物资源研究开发重点实验室
非共价印迹法
1、联结:功能单体和模板分子通过非共价的相互作用而结合; 2、聚合:联结产物在保持非共价联结不变的情况下进行聚合反应; 3、抽提:聚合后的联结产物在溶剂等的作用下(非共价键破坏)使模板
分子从聚合物中除去,得到印迹聚合物; 4、联结:印迹聚合物和客体分子相遇,重新形成非共价联结。
北京市植物资源研究开发重点实验室
三、分子印迹技术的原理
1、功能单体通过与模板分子相互作用聚集在模板分子周 围形成某种可逆的复合物;
2、功能单体与适量交 联剂在致孔剂(溶 剂)存在下发生聚 合生成交联的刚性 高聚物;
3、将模板分子从高聚 物中解离出来。
相互作用:共价或非共价(氢键、 静电作用、疏水作用、配位键等)
分子印迹的条件
客体的功能残基和接受体间必须互补; 接受体和客体的构象自由度应尽可能小; 化学环境应当是可调的。
北京市植物资源研究开发重点实验室
推荐阅读书籍
✓ 《现代化学前沿丛书:分子 印迹学——从基础到应用》
小宫山真等 著;吴世康 汪鹏飞 译 出版社:化学工业出版社 ,2019
✓ 《高新技术科普丛书(第三 批)——分子印迹技术》
受体模拟、生物传感器以及生物酶模拟和催化合 成等诸多领域;全世界至少有包括瑞典、日本、 德国、美国、中国在内的10多个国家、100个以 上的学术机构和企事业单位在从事这一技术的研 究与开发。
北京市植物资源研究开发重点实验室
主要内容
一、什么是分子印迹技术 二、分子印迹技术的产生和发展 三、分子印迹的基本原理 四、分子印迹的分类 五、分子印迹的步骤 六、分子印迹技术的特点 七、分子印迹技术的应用 八、展望
北京市植物资源研究开发重点实验室
主要内容
一、什么是分子印迹技术 二、分子印迹技术的产生和发展 三、分子印迹的基本原理 四、分子印迹的分类 五、分子印迹的步骤 六、分子印迹技术的特点 七、分子印迹技术的应用 八、展望
北京市植物资源研究开发重点实验室
主要内容
一、什么是分子印迹技术 二、分子印迹技术的产生和发展 三、分子印迹的基本原理 四、分子印迹的分类 五、分子印迹的步骤 六、分子印迹技术的特点 七、分子印迹技术的应用 八、展望
分子印迹技术的定义
分子印迹技术(MIT)是指为获得在空间结 构和结合位点上与目标分子(印迹分子)完全 匹配的聚合物并将其应用于目标分子(印迹分 子)特征识别的实验技术。
北京市植物资源研究开发重点实验室
大自然中的分子印迹现象
细胞内受体与激素 抗体-抗原 酶-底物
特征相互作用
北京市植物资源研究开发重点实验室
共价建
非共价键
(氢键、静电作用、疏水作用)
北京市植物资源研究开发重点实验室
共价印迹法
1、联结:功能单体和模板分子通过共价结合; 2、聚合:联结产物在保持共价联结不变的情况下进行聚合反应; 3、分解:聚合后的联结产物通过分解反应(共价键断裂)使模板分子从
聚合物中除去,得到印迹聚合物; 4、联结:印迹聚合物和客体分子相遇,形成共价联结。
1、分子印迹技术最初出现源 于20世纪40年代的免疫学。 Pauling首次提出抗体形成 学说。
北京市植物资源研究开发重点实验室
二、分子印迹技术的产生和发展
2、1972年,wulf研究小组首 次
成功制备出分子印迹聚合物 (MIPs),使MIT的研究产生 了突破性进展。
北京市植物资源研究开发重点实验室
北京市植物资源研究开发重点实验室
三、分子印迹技术的原理
当模板分子(印迹分子)与功能单体接触时会形 成多重作用点,通过聚合过程这种作用会被记忆 下来,当模板分子除去后,聚合物中就形成了与 模板分子空间构型相匹配的具有多重作用点的空 穴,这样的空穴将对模板分子及其类似物具有选 择识别特性。
北京市植物资源研究开发重点实验室
一、什么是分子印迹技术
分子印迹技术是二十世纪八十年代迅速
发展起来的一种化学分析技术,通常被人
们描述为创造与识别“分子钥匙”的人工
“锁”技术。
分子识别技术
分子模板技术
北京市植物资源研究开发重点实验室
弱相互作用 超分子化学
聚合、交联 高分子化学
超分子化学和高分子化学是分子印迹技术的重要基础
北京市植物资源研究开发重点实验室
主要内容
一、什么是分子印迹技术 二、分子印迹技术的产生和发展 三、分子印迹的基本原理 四、分子印迹的分类 五、分子印迹的步骤 六、分子印迹技术的特点 七、分子印迹技术的应用 八、展望
北京市植物资源研究开发重点实验室
主要内容
一、什么是分子印迹技术 二、分子印迹技术的产生和发展 三、分子印迹的基本原理 四、分子印迹的分类 五、分子印迹的步骤 六、分子印迹技术的特点 七、分子印迹技术的应用 八、展望
二、分子印迹技术的产生和发展
3、1993年,Mosbach等人报道了 有关茶碱分子印迹聚合物的研究, 分子印迹聚合物以其通用性和惊人 的立体专一识别性,越来越受到人 们的青睐,同时非共价型模板聚合 物引起了人们极大的兴趣;
北京市植物资源研究开发重点实验室
二、分子印迹技术的产生和发展
4、目前,该技术已广泛应用于色谱分离、抗体或
北京市植物资源研究开发重点实验室
共价印迹法和非共价印迹法的优缺点
共价
非共价
单体-模板配合物的合成 需要
不需要(易于实现)
聚合的条件
较自由
受限(溶剂)
制备的成本
较高低ຫໍສະໝຸດ 聚合后模板的除去较难
容易
客体的键合与释放


客体结合点的结构
较清楚(严格性更好) 较不清楚
对客体的选择性
很好
较好
北京市植物资源研究开发重点实验室
姜忠义 吴洪 编著 出版社:化学工业出版社,2019
北京市植物资源研究开发重点实验室
思考题
1、
北京市植物资源研究开发重点实验室
北京市植物资源研究开发重点实验室
主要内容
一、什么是分子印迹技术 二、分子印迹技术的产生和发展 三、分子印迹的基本原理 四、分子印迹的分类 五、分子印迹的步骤 六、分子印迹技术的特点 七、分子印迹技术的应用 八、展望
北京市植物资源研究开发重点实验室
分子模板技术
分子识别技术
北京市植物资源研究开发重点实验室
北京市植物资源研究开发重点实验室
杂化印迹法
1、联结:功能单体和模板分子通过共价的相互作用而结合; 2、聚合:联结产物在保持共价联结不变的情况下进行聚合反应; 3、分解:聚合后的联结产物在溶剂等的作用下(共价键断裂)使模板分
子从聚合物中除去,得到印迹聚合物; 4、联结:印迹聚合物和客体分子相遇,形成非共价联结。
相关文档
最新文档