阻抗继电器及其动作特性

合集下载

阻抗继电器的动作方程和动作特性解析

阻抗继电器的动作方程和动作特性解析
m
三、四边形特性
1.电抗线。避免区外阻容性附加阻抗引起的超越。 2.电阻线。躲事故过负荷时最小负荷阻抗。 3.方向线。正方向出口经阻容性阻抗短路时无死区。
Rmtg15 X m X set Rmtg X mtg15 Rm Rset X m ctg 60
m
I R U m m set 0 arg 180 j ( 90 ) e I m
• 1. θ>0°,直线2,向左倾斜
• 2. θ=0°,平行于+jx轴 • 3. θ<0°,直线3,向右倾斜。 • 躲负荷阻抗。负荷限制继电器。功率因数 角
Z m Rset 90 arg 270 R I R U 90 arg m m set 270 R I m I R U set 90 arg m m 270 j e I
• 1)圆1 • θ >0°,圆的直径在Zset的右侧。 • 圆向+R方向偏移, θ越大,偏移越多。抗过渡电 阻能力越强,在短线路上用。
• 2)圆2 • θ<0°,圆的直径在Zset的左侧。 • 圆向-R方向偏移。
• 3)θ= 0°,弦变成直径。
(四)圆特性组合2
Z m Z set 90 arg 270 Zm
Z m Z set 180 arg 360 R I Z U m m set 180 arg 360 R I m I Z U set 90 arg m jm 270 90 e I
m
实用电抗特性
经过Zset端点的直线,与R轴的夹角θ
Z m Z set 180 arg 360 R I Z U m m set 90 arg 270 j ( 90 ) e I m

阻抗继电器及其动作特性

阻抗继电器及其动作特性
功耗:阻抗继电器在工作过程中需要消耗一定的电能,要求功耗较低以提高设备的可 靠性。
PART THREE
阻抗继电器用于保护高压输电线路,防止短路和接地故障。 阻抗继电器能够区分线路故障是瞬时性还是永久性,有利于快速恢复供电。 阻抗继电器可用于高压电动机的纵差动保护,提高电机运行的可靠性。 阻抗继电器在电力系统中具有高灵敏度、高可靠性和低维护成本等优点。
相间短路保护:用于保护相间 短路故障
接地保护:用于保护单相接地 故障
方向保护:根据故障方向选择 保护方式
距离保护:根据故障距离选择 保护方式
安装环境:选择干燥、无尘、无剧烈震动的环境,确保继电器正常工作 安装步骤:按照产品手册逐步进行安装,遵循安全规范,确保人员安全 调试方法:根据实际情况调整阻抗继电器的参数,使其满足系统要求 调试注意事项:确保调试过程中遵守安全规定,避免发生意外事故
添加标题
阻抗继电器的灵敏度校验:根据系统最大运行方式 和最小运行方式下的短路故障,进行阻抗继电器的 灵敏度校验,确保其能够正确动作。
添加标题
阻抗继电器的性能参数选择:根据被保护设备的特 性、系统短路故障的特性等因素,选择合适的阻抗 继电器性能参数。
添加标题
阻抗继电器的级差配合:考虑不同阻抗继电器之间 的级差配合,避免出现越级跳闸等异常情况。
注意事项:在处理 故障时,应先切断 电源,确保安全
汇报人:XX
PART FIVE
定期检查:确保继电器外观无破损,各部件正常工作 清洁保养:保持继电器表面清洁,避免灰尘和污垢影响性能 温湿度控制:确保工作环境的温度和湿度在规定范围内,避免过热或过湿 测试功能:定期对继电器进行测试,确保其正常工作
阻抗继电器需要定 期进行外观检查, 确保无损坏和异常 情况

阻抗继电器及其动作特性

阻抗继电器及其动作特性

Z set 1
Zse1t Zm
Zm
ZmZse2t
Z set 1
Zse1t Zm
Zm
ZmZse2t
当Zm的阻抗角和Zset1的阻抗角相等时,阻抗继电器最灵敏,所以Zset1的 阻抗角也称为最灵敏角,一般取为被保护线路的阻抗角。
偏移特性的阻抗继电器在反方向 故障时有一定的动作区,因此通常 用作距离保护的后备段(III段)。
Z set 1
特性圆偏转后,直径变大, 此时要特别防止故障区外 的误动作。
Z set 2
0
2.苹果形特性和橄榄形特性
在前述的相位比较方程中,若动作的范围不等于180°,对应的特性
就不是一个圆。以方向圆特性为例,若动作边界变为 [,,即]相位比
较方程变为:
argZse1tZm
Zm
则动作区域的形状就会发生变化。
过负荷时
正常负荷时
R
苹果形特性
橄榄形特性的优点和缺点
Z set 1
优点:有较高的耐过负荷的能力 缺点:耐过渡电阻的能力差
3.直线特性的阻抗元件 (1)电抗特性 (2)电阻特性 (3)方向特性
实用文档
(1)电抗特性
动作方程: ①绝对值比较原理
ZmZmj2Xset
②相位比较原理
90arZ gmjXse t 9区域的概念 ——阻抗继电器的动作特性和动作方程 ——绝对值比较和相位比较的相互转换
实用文档
3.2.1 阻抗继电器动作区域的概念
发生短路
j 测量故障环
路上的Zm
Zm与整定
Z
Z 阻较抗Zset比k
set
2
Z set
Z k1
区内故障时动作
确定故障区 段

电力系统继电保护 —— 距离保护的基本原理、阻抗继电器及其动作特性

电力系统继电保护 —— 距离保护的基本原理、阻抗继电器及其动作特性
由于互感器误差、故障点过渡电阻等因素,继电 器实际测量到的Zm一般并不严格地落在与Zset相 同的直线上,而是落在该直线附近的一个区域中 。
二、阻抗继电器的动作特性和动作方程
动作特性:阻抗继电器在阻抗复平面动作 区域的形状。用复数的数学方程来描述, 称为动作方程。
二、阻抗继电器的动作特性和动作方程

Zm
m

Rm

jX m
金属性短路时:Um降低,Im增大,Zm变为短路点与保
护安装处之间的线路阻抗Zk=z1Lk=(r1+jx1)Lk。短路阻抗的 阻抗角就等于输电线路的阻抗角,数值较大(220kV以上不
低于75°)
二、测量阻抗及其与故障距离的关系
整定阻抗: Zset z1Lset
三、三相系统中测量电压和测量电流的选取
三、三相系统中测量电压和测量电流的选取
三相短路
三相对称性短路时,故障点处的各相电压相等,且在三相 系统对称 时均为0,此时,任何一相的电压、电流或任何 两相相间的电压、电流均可作为距离保护的测量电压和测 量电流,用来进行故障判断。
三、三相系统中测量电压和测量电流的选取
故障环路的概念及测量电压、电流的选取
零序电流补偿系数单相接地短路以a相接地为例三三三相三相系统中测量电压和测量电流的系统中测量电压和测量电流的选取选取两相接地短路1以bc两相接地为例三三三相三相系统中测量电压和测量电流的系统中测量电压和测量电流的选取选取两相接地短路2以bc两相接地为例三三三相三相系统中测量电压和测量电流的系统中测量电压和测量电流的选取选取两相不接地短路以ab两相短路为例三三三相三相系统中测量电压和测量电流的系统中测量电压和测量电流的选取选取三相短路三相对称性短路时故障点处的各相电压相等且在三相系统对称时均为0此时任何一相的电压电流或任何两相相间的电压电流均可作为距离保护的测量电压和测量电流用来进行故障判断

阻抗继电器及其动作特性共20页文档

阻抗继电器及其动作特性共20页文档
3.2.1 阻抗继电器动作区域的概念
– Zm=Rm+jXm – 阻抗复平面上,Zm
➢ 在动作区域内,区内故障 ➢ 在动作区域外,区外故障 ➢ 区域边界,临界动作
电力系统继电保护
3.2.2 阻抗继电器的动作特性和动作方程
– 动作区域的形状,称为动作特性。
➢ 动作区域为圆形,称为圆特性 ➢ 动作区域为四边形,称为四边形特性
– 动作特性用复数的数学方程描述,称为动作方程。 – 圆特性阻抗继电器
➢ 偏移圆特性 ➢ 方向圆特性 ➢ 全阻抗圆特性 ➢ 上抛圆特性
电力系统继电保护
3.2.2 阻抗继电器的动作特性和动作方程
偏移圆特性
两个整定阻抗Zset1、Zset2
圆心
1 2 (Zset1 Zset2 )
半径
1 2
(Z set1
方向圆特性

Z set2
0 , Z set1
Z

set
动作方程
Zm
1 2
Z set
1 2
Z
set
9 0 arg Z set Z m 9 0 Zm
一般用于主保护段
电力系统继电保护
3.2.2 阻抗继电器的动作特性和动作方程
全阻抗圆特性

Z set2
Z set , Z set1
Z
se

t
动作方程
Z m Z m 2 R set 9 0 arg Z m R set 9 0
R set 2.准 电 阻 特 性 - 动 作 方 程 9 0 arg Z m R set 9 0
R set
电力系统继电保护
3.2.2 阻抗继电器的动作特性和动作方程
直线特性-方向特性

3.2阻抗继电器及其动作特性

3.2阻抗继电器及其动作特性

直线特性的阻抗元件
jX
jX
R
O
O
R
电抗特性
电阻特性
直线特性的阻抗元件
jX
+j 动
作 区
R

r
sen
o
+1
方向特性
阻抗继电器动作特性的选择
方向性的要求 耐受过渡电阻能力:耐受过渡电阻的能力一般与 动作特性沿R轴正向的面积有关,面积越大,耐受 过渡电阻能力越强 对躲负荷能力:躲负荷能力一般与动作特性沿R轴 正向的面积有关,面积越大,躲负荷能力越弱 受系统振荡影响:一般而言,动作区域越大,受 振荡影响越严重
jX
圆心:
1 2
( Z set1

Z set
2
)
半径:
1 2
(Zset1

Zset2 )
Zset1 绝对值比较原理:
Zm

1 2
(Zset1

Zset
2
)

1 2
(Zset1

Zset
2
)
相位比较动作方程:
O
R
90 arg Zset1 Zm 90 Zm Zset 2
Z set 2
最灵敏角—— Zset1 的阻抗角,
相位:90 o arg Z C 90 o
ZD
或者: Z A ZC ZD ZD ZA ZB
ZB ZB
ZD ZA
ZC
ZB
ZA
ZD
ZC
ZB
ZC
ZD ZA
ZA ZD
ZC
R
90 arg Zset Zm 90
Zset Zm
O

阻抗继电器及其动作特性

阻抗继电器及其动作特性

方向圆特性在整定
阻抗的相反方向, 动作阻抗降为0。 反向故障时不会动 作,阻抗元件本身 具有方向性
方向圆特性的阻抗元
件一般用于距离保护 的主保护段(I 段II段) 中。
全阻抗圆特性各个
方向上的动作阻抗 都相同,及阻抗元 件本身不具有方向 性
全阻抗圆特性的元
件可以应用于单侧 电源的系统中;当 应用于多侧电源的 系统时应与方向元 件配合。
当测量阻抗Zm的阻抗角与正向整定阻抗Zset1的阻抗角 相等时,此时继电器最为灵敏 (Zset1的阻抗角也称为最灵敏角,一般最灵敏角取为被 保护线路的阻抗角):
(2)方向圆特性
令Z set 2 0, Z set1 Z set, 动作方程 1 1 Z m Z set Z set 2 2 Z set Z m 90 arg 90 Zm
(4)上抛圆与下抛圆特性
Zset2和Zset1都在第一象限
上抛圆特性与另一方向
圆特性组合成8字型特性
下抛圆特性的阻抗元件
可用在发电机的失磁保 护中
(5)特性圆的偏转 相位比较动作方程:
Z set Z m 90 arg 90 Z set+Z m
若α≠0°上式中的特性仍是一个 圆,但Zset1、Zset2的末端连线 不在是圆的直径,而变成了它的 一个弦,该弦对应右侧圆弧上的 圆周角变为90°+α,左侧圆弧上 的圆周角变为-90°+α
1.电抗特性-动作方程 Z m Z m j 2 X set Z m jX set 90 arg 90 jX set 2.准电抗特性-动作方程 Z jX set 90 arg m 90 jX set
(相位比较动作方程) 实际应用的电抗特性一般为图3.12中的 直线2,与直线1的夹角为α

电力系统继电保护——3.1-3.2电网的距离保护-阻抗继电器原理和动作特性

电力系统继电保护——3.1-3.2电网的距离保护-阻抗继电器原理和动作特性
电力系统继电保护原理3电网的距离保护31距离保护的作用原理32各种单相式阻抗继电器的动作特性33阻抗继电器的接线方式34方向阻抗继电器的死区和特性分析35距离保护的整定计算和评价36影响距离保护正确动作的因素及防止方法37距离保护装置框图举例31距离保护的作用原理问题的提出电流保护的优点和缺点电流保护的使用量电流只是反映了故障的一个特征实际上线路故障时除了电流增大还有电压的降低可以考虑联合使用电压的降低和电流的增加构成的保护阻抗保护距离保护1
Zset
UP 240 arg 120 U jX
Zm Zset
Z0
Zm
O
R
Z0
R
U P Um
U P Um
U =Um I m Zset
U = I m Z0
10. 具有四边形特性的阻抗继电器
jX
A
B
折线A-O-C可以由动作 范围小于1800的功率方 向继电器来实现
直线A-B可由一个电抗 型继电器实现
电力系统继电保护原理
主讲教师:范春菊
3 电网的距离保护 3.1 距离保护的作用原理 3.2 各种单相式阻抗继电器的动作特性 3.3 阻抗继电器的接线方式
3.4 方向阻抗继电器的死区和特性分析
3.5 距离保护的整定计算和评价
3.6 影响距离保护正确动作的因素及防止方法
3.7 距离保护装置框图举例
3.1 距离保护的作用原理
Z m Z set
Zm
O
m
R
Z m Z set
R
(a)
(b)
| Zm | Zset
| U m | I m Z set
幅值比较方式
Z m Z set 270 arg 90o Z m Z set
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
多边形特性的阻抗元件
jX
X set
α2
α3 α4
Rset
α1
R
有方向性; 电抗特性下倾,防止稳态超越;电阻特性倾斜,提高躲负荷能力 α1区提高出口短路耐受过渡电阻能力;α2区提高金属性短路保护 动作可靠性
.
绝对值比较与相位比较之间的相互转换
绝对值: ZB ZA
其中: ZC ZA ZB ZD ZA ZB
argZset Zm
Zm
jX
jX
Zset -Zm
Zset -Zm
Zset
Zset
Zm
Zset -Zm
Zm
Zset-Zm
Zm R
Zm R
(a)
(b)
或 与 图 3-11 苹果形和橄榄形动作特性 (a) 苹果形;. (b) 橄榄形
直线特性的阻抗元件
jX
jX
R
O
O
R
电抗特性
.
电阻特性
直线特性的阻抗元件
阻抗继电器及其动作特性
K3M 1
K1 K2 2 N
jX
ZK2
Z K1
M
ZK3
通常设计为一个区域
当测量阻抗落在这个范围内时,阻抗 Z L 元件动作;否则不动作
R 考虑到二次侧的测量阻抗受下列因素影响:
1)电流、电压互感器误差; 2)输电线路阻抗角的角度差; 3)过. 渡电阻的影响等
阻抗继电器动作区域
O
R
90oargZset1Zm90o
ZmZset2
Z set2
最灵敏角—— Z s e的t 1 阻抗角,
反方向有动作区、距离III段
一般取为被保护线路阻抗角。
.
圆特性阻抗继电器——偏移圆特性
相位比较动作方程:
Zset1 Zm
Zm
Z set1
90oargZset1Zm90o ZmZset2
左上平面:
Zm Zset2
O
Zset1 Zm
90oargZset1Zm 0o ZmZset2
右下平面:
Z set2
Zm Zset2
.
0oargZset1Zm 90o ZmZset2
圆特性阻抗继电器——方向圆特性
Zset20,Zset1Zset
jX
Z set
R
O
圆心:1 2Z源自set半径:1 2
Z
set
绝对值比较原理:
考虑到二次侧的测量阻抗受电流、电压互感器和输 电线路阻抗角的角度差等因素影响,通常将阻抗继电 器的保护范围扩大为一个区域的形式。
动作区域——整定阻抗( Z s e t)
测量阻抗落在动作区域内——区内故障 测量阻抗落在动作区域外——区外故障
.
阻抗继电器的动作特性和动作方程
动作特性——阻抗继电器在阻抗复平 面动作区域的形状 动作方程——阻抗继电器在阻抗复平 面动作区域的复数数学方程的描述
Zm1 2Zset 1 2Zset
相位比较动作方程:
90oargZset Zm90o Zm
阻抗元件本身具有方向性 用于距离保护的主保护段
.
(I、II)
圆特性阻抗继电器——全阻抗圆特性
Zset2Zset1Zset
jX
Z set
R
O
圆心:O
半径:
1 2
Z
set
绝对值比较原理:
Zm Zset
相位比较动作方程:
90oargZset Zm90o Zset Zm
正方向和反方向具有相同的动 作区,元件本身不具方向性
.
圆特性阻抗继电器——圆特性的偏转
jX
α=-30o
α=-15o
α=0o
α=0o
Zset1
α=15o
α=30o
o
R
Zset2
9o0arZ g se 1tZm9o0
ZmZse2t .
苹果形特性和橄榄形特性阻抗元件
相位:90oargZC 90o
ZD
或者: ZA ZC ZD ZD ZA ZB
ZB ZB
ZD ZA
ZC
ZB
ZA ZD
ZC . ZB
ZC
ZD ZA
ZA ZD
ZC
jX
+j 动
作 区
R
r
sen
o
+1
方向特性
.
阻抗继电器动作特性的选择
方向性的要求 耐受过渡电阻能力:耐受过渡电阻的能力一般与动 作特性沿R轴正向的面积有关,面积越大,耐受过 渡电阻能力越强 对躲负荷能力:躲负荷能力一般与动作特性沿R轴 正向的面积有关,面积越大,躲负荷能力越弱 受系统振荡影响:一般而言,动作区域越大,受振 荡影响越严重
测量阻抗、整定阻抗、动作阻抗
.
圆特性阻抗继电器——偏移圆特性
jX
圆心: 12(Zset1Zset2)
半径:
1 2
(Zset1
Zset2)
Z s e t 1 绝对值比较原理:
Z m 1 2 (Z s e t1 Z s e t2 ) 1 2 (Z s e t1 Z s e t2 )
相位比较动作方程:
相关文档
最新文档