高二上学期文科数学期末试卷-附答案

合集下载

陕西省西安市鄠邑区2022-2023学年高二上学期期末文科数学试题(含答案解析)

陕西省西安市鄠邑区2022-2023学年高二上学期期末文科数学试题(含答案解析)

陕西省西安市鄠邑区2022-2023学年高二上学期期末文科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知实数a 、b ,那么||||||a b a b +=-是0ab <的()条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要2.若实数x ,y 满足约束条件020x y x y -≥⎧⎨+-≤⎩,则2z x y =-的最小值为()A .1-B .1C .2-D .23.已知数列{}n a 与{}n b 均为等差数列,且354a b +=,598a b +=,则47a b +=()A .5B .6C .7D .84.已知()110m a a a=++>,()31xn x =<,则m ,n 之间的大小关系是()A .m n >B .m n <C .m n=D .m n≤5.在ABC 中,内角A ,B ,C 所对的边为a ,b ,c ,若4,30a b A ===︒,则B =()A .30︒B .30︒或150︒C .60︒D .60︒或120︒6.若曲线2y x ax b =++在点()0,b 处的切线方程为10x y -+=,则a b +=()A .2B .0C .1-D .2-7.抛物线()220x py p =>上一点M 的坐标为()2,1-,则点M 到焦点的距离为()A .3B .2C .1D .17168.函数()y f x =的图象如图所示,()f x '是函数()f x 的导函数,令(2)a f =',(4)b f =',(4)(2)2f f c -=,则下列数值排序正确的是()A .b a c <<B .a b c <<C .a c b <<D .c b a<<9.已知椭圆221(0)y x m m+=>的焦点在y 轴上,长轴长是短轴长的2倍,则m =()A .2B .1C .14D .410.已知函数()f x 的导函数()f x '的图像如图所示,以下结论:①()f x 在区间(2,3)-上有2个极值点②()f x '在=1x -处取得极小值③()f x 在区间(2,3)-上单调递减④()f x 的图像在0x =处的切线斜率小于0正确的序号是()A .①④B .②③④C .②③D .①②④11.函数()sin e xxf x =在[],ππ-上大致的图象为()A .B .C .D .12.已知定义在R 上的函数()f x 的导函数为()f x ',若()e xf x '<,且()22e 2f =+,则不等式()ln 2f x x >+的解集是()A .()20,eB .()0,2C .()2,e-∞D .(),2-∞二、填空题13.若命题“x ∃∈R ,22x m ->”是真命题,则实数m 的取值范围是______.14.已知直线1l :()2100mx y m ++=>,与双曲线C :2214x y -=的一条渐近线垂直,则m =__________.15.设{}n a 是公差不为0的等差数列,11a =且248,,a a a 成等比数列,则1291011a a a a ++= ___16.已知钝角三角形的三边a =k ,b =k +2,c =k +4,则k 的取值范围是___________.三、解答题17.设2:3,:11180p a x a q x x <<-+≤.(1)若1a =,“p 且q ”为真,求实数x 的取值范围;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.18.已知函数()29f x x x =+-.(1)解不等式()15f x <;(2)若关于x 的不等式()f x a <有解,求实数a 的取值范围.19.如图,已知平面四边形ABCD ,45A ∠=︒,75ABC ∠=︒,30BDC ∠=︒,2BD =,CD =(1)求CBD ∠;(2)求AB 的值.20.已知函数()2()4(),R f x x x a a =--∈且(1)0f '-=.(1)求a 的值;(2)讨论函数()f x 的单调性;(3)求函数()f x 在[2,2]-上的最大值和最小值.21.已知椭圆2222:1(0)x y C a b a b+=>>的一个顶点为(0,1)A -,椭圆上任一点到两个焦点的距离之和(1)求椭圆C 的方程;(2)是否存在实数m ,使直线:l y x m =+与椭圆有两个不同的交点M 、N ,并使||||AM AN =,若存在,求出m 的值;若不存在,请说明理由.22.已知函数()31f x x ax =-+.(1)当1a =时,过点()1,0作曲线()y f x =的切线l ,求l 的方程;(2)当0a ≤时,对于任意0x >,证明:()cos f x x >.参考答案:1.D【分析】等式两边平方结合反例即可判断.【详解】因为2222||||||2|2|||0a b a b a ab b a ab b ab ab ab +=-⇒++=-+⇒=-⇒≤,所以必要性不成立;当1,2a b ==-时,满足0ab <,但||||||a b a b +≠-,所以必要性不成立;所以||||||a b a b +=-是0ab <的既不充分也不必要条件.故选:D .2.A【分析】画出可行域,平移基准直线20x y -=到可行域边界位置,由此来求得z 的最小值.【详解】020x y x y -=⎧⎨+-=⎩,解得1x y ==,设()1,1A ,平移基准直线20x y -=到可行域边界()1,1A 处时,2z x y =-取得最小值1211-⨯=-.故选:A3.B【分析】根据等差数列的性质即可求解.【详解】因为354a b +=,598a b +=,所以355912a b a b ++=+,即355912a a b b ++=+,根据等差数列的性质可知3559472212a a b b a b ++=+=+,所以476a b +=.故选:B.4.A【分析】利用基本不等式及其指数函数的单调性即可求解.【详解】∵0a >,∴1113m a a=++≥=,当且仅当1a =时,等号成立,即3m ≥,又∵1x <,∴1333x n =<=,即3n <,则m n >,故选:A .5.D【分析】根据4,30a b A ===︒,利用正弦定理求解.【详解】解:在ABC 中,4,30a b A ===︒,由正弦定理得sin sin a bA B=,所以sin sin 30sin 42b A B a ⋅===,所以B =60︒或120︒,故选:D 6.A【分析】求出导数,将0x =代入后,可得1a =,将()0,b 代入10x y -+=后可得1b =,进而得到a b +.【详解】由2y x ax b =++得2y x a '=+,又曲线2y x ax b =++在点()0,b 处的切线方程为10x y -+=,故当0x =时,1y a '==又点()0,b 在10x y -+=上,则1b =,故2a+b =.故选:A .7.B【分析】将点M 坐标代入抛物线可得p ,则所求距离为12p+.【详解】()2,1M - 在抛物线上,42p ∴=,解得:2p =,∴点M 到焦点的距离为122p+=.故选:B.8.C【分析】利用导数的几何意义判断.【详解】由函数图象知:()()()42(2)442f f f f -''<<-,所以a c b <<,故选:C 9.D【分析】根据椭圆的方程,结合椭圆的几何性质,列式求解.【详解】由条件可知,2a m =,21b =,且22=⨯,解得:4m =.故选:D 10.B【分析】根据导函数()f x '的图像,求出函数的单调区间,求出函数的极值点,分析判断①②③,对于④:由于()f x 的图像在0x =处的切线斜率为()0f ',从而可由导函数的图像判断.【详解】根据()f x '的图像可得,在()2,3-上,()0f x '≤,所以()f x 在()2,3-上单调递减,所以()f x 在区间()2,3-上没有极值点,故①错误,③正确;由()f x '的图像可知,()f x '在()2,1--单调递减,在()1,1-单调递增,故②正确;根据()f x '的图像可得()00f '<,即()f x 的图像在0x =处的切线斜率小于0,故④正确.故选:B.11.B【分析】分析函数()f x 的奇偶性及其在[]0,π上的单调性,结合排除法可得出合适的选项.【详解】对任意的[]π,πx ∈-,()()()sin sin eexxx x f x f x ---==-=-,所以,函数()sin ex xf x =在[],ππ-上的图象关于原点对称,排除AC 选项,当0πx ≤≤时,()sin ex xf x =,则()πcos sin 4e e xxx x xf x ⎛⎫- ⎪-⎝⎭'==-,因为ππ3π444x -≤-≤,由()0f x '<可得π3π044x <-≤,则ππ4x <≤,由()0f x ¢>可得ππ044x -≤-<,则π04x ≤<,所以,函数()f x 在π0,4⎡⎫⎪⎢⎣⎭上单调递增,在π,π4⎛⎤ ⎥⎝⎦上单调递减,排除D 选项.故选:B.12.A【分析】设()()e 2xg x f x =-+,求导可得()g x 在R 上单调递减,再根据()ln 2f x x >+转化为()ln 4g x >,再结合()g x 的单调性求解即可.【详解】设()()e 2x g x f x =-+,则()()e xg x f x '-'=.因为()e xf x '<,所以()e 0x f x '-<,即()0g x '<,所以()g x 在R 上单调递减.不等式()ln 2f x x >+等价于不等式()ln 24f x x -+>,即()ln 4g x >.因为()22e 2f =+,所以()()222e 24g f =-+=,所以()()ln 2g x g >.因为()g x 在R 上单调递减,所以ln 2x <,解得20e x <<故选:A 13.(),2-∞【分析】求得22y x =-的最大值,结合题意,即可求得结果.【详解】22y x =-的最大值为2,根据题意,2m >,即m 的取值范围是(),2-∞.故答案为:(),2-∞.14.4【分析】求得双曲线C 的渐近线方程,根据直线垂直列出等量关系,即可求得结果.【详解】对双曲线C :2214x y -=,其渐近线方程为12y x =±,对直线1l :()2100mx y m ++=>,且斜率为02m-<,根据题意可得1122m -⨯=-,解得4m =.故答案为:4.15.910【详解】分析:由题意先求出{}n a 的通项公式,再利用裂项相消法求和即可.详解:∵数列{a n }是公差不为0的等差数列,a 1=1,且a 2,a 4,a 8成等比数列,∴(1+3d )2=(1+d )(1+7d ),解得d=1,或d=0(舍),∴a n =1+(n ﹣1)×1=n .∴129101111111111191112239102239101010a a a a ++=+++=-+-++-=-=⨯⨯⨯故答案为910点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=;(3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.16.26k <<【分析】先解不等式cos 0C <,再结合两边之和大于第三边求解.【详解】解:∵c b a >>,且ABC 为钝角三角形,∴C ∠为钝角,∴()()()()222222224412cos 022222k k k a b c k k C ab k k k k ++-++---===<++,∴24120k k --<,解得26k -<<,由两边之和大于第三边得24k k k ++>+,∴2k >.∴26k <<.故答案为:26k <<17.(1){23}x x ≤<(2){0a a ≤或23}a ≤≤【分析】(1)先分别求得P 为真命题和q 为真命题的实数x 的取值范围,再根据p 且q 为真命题,利用集合的交集运算求解;(2)记{3}C x a x a =<<,根据p 是q 的充分不必要条件,由C B Ü求解.【详解】(1)解:当1a =时,P 为真命题,实数x 的取值范围为{13}A x x =<<,211180(2)(9)029x x x x x -+≤⇒--≤⇒≤≤,q 为真命题,实数x 的取值范围为{}29B x x =≤≤,∵p 且q 为真命题所以实数x 的取值范围为{23}A B x x ⋂=≤<;(2)记{3}C x a x a =<<∵p 是q 的充分不必要条件所以C BÜ当0a ≤时,C =∅,满足题意;当0a >时,239a a ≥⎧⎨≤⎩解得23a ≤≤;综上所述:实数a 的取值范围为{0a a ≤或23}a ≤≤18.(1){}311x x <<;(2)9a >.【分析】(1)根据零点分段法可得()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,然后分段解不等式,即得;(2)由题可得()min a f x >,然后求函数的最小值即得.【详解】(1)因为函数()29f x x x =+-,所以()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,∵()15f x <,所以931815x x ≥⎧⎨-<⎩或091815x x ≤<⎧⎨-<⎩或018315x x <⎧⎨-<⎩,解得311x <<,所以原不等式的解集为{}311x x <<;(2)由()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,可得函数()f x 在(),9-∞上单调递减,在()9,+∞上单调递增,当9x =时,函数()f x 有最小值为9,∴9a >.19.(1)60︒;(2.【分析】(1)由余弦定理求2BC ,根据勾股逆定理知90DCB ∠=︒,即可求CBD ∠.(2)由(1)得120ADB ∠=︒,应用正弦定理即可求AB 的值.【详解】(1)在△BCD 中,由余弦定理,有2222cos301BC BD CD BD CD =+-⋅︒=,222BC CD BD ∴+=,即90DCB ∠=︒,60CBD ∴∠=︒.(1)在四边形ABCD 中,756015ABD ∠=︒-︒=︒,∴120ADB ∠=︒,在△ABD 中,由正弦定理sin120sin 45AB BD =︒︒,则sin120sin 45BD AB ⋅︒=︒20.(1)12a =(2)调递增区间为4(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭,单调递减区间为41,3⎛⎫- ⎪⎝⎭(3)最大值为92,最小值为5027-【分析】(1)求导得2()324f x x ax '=--,代入(1)0f '-=,得可得答案;(2)由题意可得()(34)(1)f x x x '=-+,分别解()0f x '>,()0f x '<,即可得函数的单调递增、减区间;(3)根据导数的正负,判断函数在[2,2]-上的单调性,即可得答案.【详解】(1)解:因为函数()2()4(),R f x x x a a =--∈,∴()22()2()4324f x x x a x x ax =-+-=--',由(1)0f '-=,得3240a +-=,解得12a =;(2)解:由(1)可知2()34(34)(1)f x x x x x ==-'--+,解不等式()0f x '>,得43x >或1x <-,所以函数()f x 的单调递增区间为4(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭,解不等式()0f x '<,得413x -<<,所以函数()f x 的单调递减区间为41,3⎛⎫- ⎪⎝⎭;(3)解:当22x -≤≤时,函数()f x 与()f x '的变化如下表所示:令()0f x '=,解得43x =或=1x -,x[)2,1--=1x -41,3⎛⎫- ⎪⎝⎭43x =4,23⎛⎤ ⎥⎝⎦()f x '+0-0+()f x 单调递增极大值单调递减极小值单调递增因为9(1)2f -=,(2)0f =;所以当=1x -时,函数()f x 取得极大值9(1)2f -=;又因为(2)0f -=,450327f ⎛⎫=- ⎪⎝⎭,所以当43x =时,函数()f x 取得极小值450327f ⎛⎫=- ⎪⎝⎭,∴函数()f x 的最大值为92,最小值为5027-.21.(1)2213x y +=(2)不存在,理由见解析【分析】(1)结合椭圆的定义,结合顶点坐标,即可求椭圆方程;(2)首先求线段MN 的中垂线方程,根据点A 在中垂线上,求m ,并判断是否满足0∆>.【详解】(1)椭圆2222:1(0)x y C a b a b+=>>的一个顶点为(0,1)A -得1b =椭圆上任一点到两个焦点的距离之和2a =a =所以椭圆的方程为2213x y +=(2)设直线l 与椭圆C 两个不同的交点()()1122,,,M x y N x y ∵||||AM AN =所以,点A 在线段MN 的中垂线l ',下面求l '的方程联立方程2233y x m x y =+⎧⎨+=⎩去y ,可得2246330x mx m ++-=由()222(6)443312480m m m ∆=-⨯⨯-=-+>,解得22m -<<1232mx x +=-设MN 的中点为()00,P x y ,有120003244x x m m x y x m +==-=+=则l '的方程为344m m y x ⎛⎫-=-+ ⎪⎝⎭即2m y x =--由于点A 在直线MN 的中垂线l '上,解得2m =又∵22m -<<所以不存在实数m 满足题意.22.(1)1y x =-+或()2314y x =-(2)证明见解析【分析】(1)易知()1,0不在()f x 上,设切点()3000,1x x x -+,由导数的几何意义求出切线方程,将()1,0代入求出对应0x ,即可求解对应切线方程;(2)构造()()31cos 0g x x ax x x =-+->,求得()23sin g x x a x '=-+,再令()()u x g x '=,通过研究()u x '正负确定()g x '单调性,再由()g x '正负研究()g x 最值,进而得证.【详解】(1)由题,1a =时,()31f x x x =-+,()231f x x '=-,设切点()3000,1x x x -+,则切线方程为()()()320000131y x x x x x --+=--,该切线过点()1,0,则()()3200001311x x x x -+-=--,即3200230x x -=,所以00x =或032x =.又()01f =;()01f '=-;32328f ⎛⎫= ⎪⎝⎭,32324f ⎛⎫'= ⎪⎝⎭.所以,切线方程为1y x =-+或()2314y x =-;(2)设()()31cos 0g x x ax x x =-+->,则()23sin g x x a x '=-+,令()()()23sin 0u x g x x a x x '==-+>,则()6cos u x x x '=+,可知π02x <<,时,()0u x '>;π2x ≥时,()0u x '>,故0x >时均有()0u x '>,则()u x 即()g x '在()0,∞+上单调递增,()0g a '=-,因为0a ≤时,则()00g a '=-≥,()()00g x g ''>≥,故()g x 在()0,∞+上单调递增,此时,()()00g x g >=.所以,当0a ≤时,对于任意0x >,均有()cos f x x >.。

2022-2023学年高二上学期期末考试数学(文)试题

2022-2023学年高二上学期期末考试数学(文)试题

2022-2023学年度上学期期末考试高二数学试卷(文科)第Ⅰ卷(选择题,满分60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设a ∈R ,则“1a >”是“21a >”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件2.直线1:30l x ay ++=和直线()2:230l a x y a -++=互相平行,则a 的值为( ). A .1-或3B .3-或1C .1-D .3-3、设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ). A .若m α∥,n α∥,则m n ∥B .若αβ∥,m α⊂,n β⊂,则m n ∥C .若m αβ⋂=,n α⊂,n m ⊥,则n β⊥D .若m α⊥,m n ∥,n β⊂,则αβ⊥4.已知圆的方程为2260x y x +-=,则过点()1,2的该圆的所有弦中,最短弦长为( ).A .12B .1C .2D .45.函数()1sin f x x =+,其导函数为()f x ',则π3f ⎛⎫'=⎪⎝⎭( ). A .12B .12-C .32 D 36.已知抛物线24x y =上一点M 到焦点的距离为3,则点M 到x 轴的距离为( ). A .12B .1C .2D .47.已知命题:p x ∀∈R ,210ax ax ++>;命题:q x ∃∈R ,20x x a -+=.若p q ∧是真命题,则a 的取值范围是( ).A .(),4-∞B .[]0,4C .10,4⎛⎫ ⎪⎝⎭D .10,4⎡⎤⎢⎥⎣⎦8.若函数()219ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是( ). A .12a <≤B .4a ≥C .2a ≤D .03a <≤9.已知长方体1111ABCD A B C D -中,4AB BC ==,12CC =,则直线1BC 和平面1DBBD 所成角的正弦值等于( ). A .32B .52C .105D .101010.已知三棱锥P ABC -的三条侧棱两两互相垂直,且5AB =,7BC =,2AC =.则此三棱锥的外接球的体积为( ). A .8π3B .82π3C .16π3D .32π311.已知函数()21,12,1ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是( ). A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-12.已知1F ,2F 是椭圆与双曲线的公共焦点,P 是它们一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则2122e e +的最小值为( ). A .6B .3C .6D .3第Ⅱ卷(非选择题,满分90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上) 13.曲线21y x x=+在点()1,2处的切线方程为__________. 14.当直线()24y k x =-+和曲线24y x =-有公点时,实数k 的取值范围是__________. 15.点P 是椭圆221169x y +=上一点,1F ,2F 分别是椭圆的左,右焦点,若1212PF PF ⋅=.则12F PF ∠的大小为__________.16.若方程22112x y m m+=+-所表示曲线为C ,则有以下几个命题: ①当()1,2m ∈-时,曲线C 表示焦点在x 轴上的椭圆; ②当()2,m ∈+∞时,曲线C 表示双曲线; ③当12m =时,曲线C 表示圆; ④存在m ∈R ,使得曲线C 为等轴双曲线. 以上命题中正确的命题的序号是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题10分)已知2:280p x x --+≥,()22:2100q x x m m -+=≤>.(1)若p 是q 的充分条件,求实数m 的取值范围.(2)若“p ⌝”是“q ⌝”的充分条件,求实数m 的取值范围. 18.(本小题12分)求下列函数的导数:(1)sin xy e x =; (2)2311y x x x x ⎛⎫=++ ⎪⎝⎭; (3)(3)sin cos 22x xy x =-. 19.(本小题12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=︒.(1)证明:直线BC ∥平面PAD ;(2)若PCD △的面积为7P ABCD -的体积. 20.(本小题12分)已知抛物线()21:20C y px p =>过点()1,1A . (1)求抛物线C 的方程;(2)过点()3,1P -的直线与抛物线C 交于M ,N 两个不同的点(均与点A 不重合),设直线AM ,AN 的斜率分别为12k k ,求证:12k k 为定值. 21.(本小题12分)已知若函数()34f x ax bx =-+,当2x =时,函数()f x 有极值43-. (1)求函数解析式; (2)求函数的极值;(3)若关于x 的方程()f x k =有三个零点,求实数k 的取值范围. 22.(本小题12分)已知椭圆()2222:10x y C a b a b+=>>3. (1)求椭圆C 的离心率;(2)点33,M ⎭在椭圆C 上,不过原点O 与直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求OAB △的最大值.四平市第一高级中学2019-2020学年度上学期期末考试高二数学试卷(文科)参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDCACDACBCC13.10x y -+= 14.3,4⎡⎫+∞⎪⎢⎣⎭15.π316.②③ 三、解答题17.解:(1)因为2:280p x x --+≥,()22:2100q x x m m -+-≤>.故:42p x -≤≤,:11q m x m -≤≤+.若p 是q 的充分条件,则[][]4,21,1m m --⊆-+, 故4121mm-≥-⎧⎨≤+⎩,解得5m ≥.(2)若“p ⌝”是“q ⌝”的充分条件,即q 是p 的充分条件,则[][]1,14,2m m -+⊆-,即14120m m m -≥-⎧⎪+≤⎨⎪>⎩,解得01m <≤.即实数m 的取值范围为(]0,1.18.解:(1)()()sin sin sin cos xxxx y ex e x ex e x '''=+=+.(2)因为3211y x x =++,所以2323y x x '=-. (3)因为1sin 2y x x =-,所以11cos 2y x '=-. 19.解:(1)四棱锥P ABCD -中,因为90BAD ABC ∠=∠=︒,所以BC AD ∥. 因为AD ⊂平面PAD ,BC ⊄平面PAD , 所以直线BC ∥平面PAD . (2)由12AB BC AD ==,90BAD ABC ∠=∠=︒. 设2AD x =,则AB BC x ==,2CD x =.设O 是AD 的中点,连接PO ,OC . 设CD 的中点为E ,连接OE ,则22OE x =.由侧面PAD 为等边三角形,则3PO x =,且PO AD ⊥.平面PAD ⊥底面ABCD ,平面PAD ⋂底面ABCD ,且PO ⊂平面PAD . 故PO ⊥底面ABCD .又OE ⊂底面ABCD ,故PO OE ⊥,则2272x PE PO OE =+=, 又由题意可知PC PD =,故PE CD ⊥.PCD △面积为271272PE CD ⋅=,即:1722722x x =, 解得2x =,则3PO = 则()()111124223433232P ABCD V BC AD AB PO -=⨯+⨯⨯=⨯⨯+⨯⨯=. 20.解:(1)由题意抛物线22y px =过点()1,1A ,所以12p =. 所以抛物线的方程为2y x =.(2)设过点()3,1P -的直线l 的方程为()31x m y -=+, 即3x my m =++,代入2y x =得230y my m ---=,设()11,M x y ,()22,N x y ,则12y y m +=,123y y m =-, 所以()()1212122212121211111111111y y y y k k x x y y y y ----⋅=⋅=⋅=----++ ()()12121111312y y y y m m ===-++++--+.所以12k k ⋅为定值.21.解:(1)()23f x ax b '=-.由题意知()()2120428243f a b f a b '=-=⎧⎪⎨=-+=-⎪⎩,解得134a b ⎧=⎪⎨⎪=⎩. 所以所求的解析式为()31443f x x x =-+. (2)由(1)可得()()()2422f x x x x '=-=+-. 令()0f x '=得2x =或2x =-.当x 变化时,()f x ',()f x 随x 的变化情况如下表:x(),2-∞-2-()2,2-2 ()2,+∞()f x ' + 0 - 0 + ()f x↑极大值↓极小值↑所以当2x =-时,函数()f x 有极大值()23f -=; 当2x =时,函数()f x 有极小值()423f =-. (3)由(2)知,可得当2x <-或2x >时,函数()f x 为增函数; 当22x -<<时,函数()f x 为减函数. 所以函数()31443f x x x =-+的图象大致如图,由图可知当42833k -<<时,()f x 与y k =有三个交点,所以实数k 的取值范围为428,33⎛⎫-⎪⎝⎭. 22.解:(1)由题意,得3a c -=,则()2213a cb -=. 结合222b ac =-,得()()22213a c a c -=-,即22230c ac a -+=. 亦即22310e e -+=,结合01e <<,解得12e =. 所以椭圆C 的离心率为12. (2)由(1)得2a c =,则223b c =.将33,2M ⎭代入椭圆方程2222143x y c c +=,解得1c =. 所以椭圆方程为22143x y +=. 易得直线OM 的方程为12y x =. 当直线l 的斜率不存在时,AB 的中点不在直线12y x =上, 故直线l 的斜率存在.设直线l 的方程为()0y kx m m =+≠,与22143x y +=联立, 消y 得()2223484120k x kmx m +++-=, 所以()()()2222226443441248340k m k mk m ∆=-+-=+->.设()11,A x y ,()22,B x y ,则122834kmx x k +=-+,212241234m x x k -=+.由()121226234m y y k x x m k +=++=+,得AB 的中点2243,3434km m N k k ⎛⎫- ⎪++⎝⎭, 因为N 在直线12y x =上,所以224323434km m k k -=⨯++,解得32k =. 所以()248120m ∆=->,得1212m -<<,且0m ≠.则()222212121313412394122236m AB x x x x m m -=+-=-=-又原点O 到直线l 的距离213m d =所以()2222221393312121232666213AOBm m m S m m m -+=-=-⋅=△. 当且仅当2212m m -=,即6m =时等号成立,符合1212m -<<0m ≠.所以AOB △3。

(word完整版)人教版高二数学上册期末考试文科数学模拟试卷(附答案)

(word完整版)人教版高二数学上册期末考试文科数学模拟试卷(附答案)

学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -高中二年级第一学期期末考试模拟试题高二数学(文)(全卷共8页,满分150分,120分钟完成)题号 一 二 三总分 15 16 17 18 19 20 得分一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1. 直线30x y -+=的倾斜角为( ).(A )30o (B )45o (C )60o (D )135o 2. 命题“对任意3x >,都有ln 1x >”的否定是( )(A )存在3x >,使得ln 1x > (B )对任意3x >,都有ln 1x ≤ (C )存在3x >,使得ln 1x ≤ (D )对任意3x ≤,都有ln 1x > 3. 双曲线221xy -=的焦点到其渐近线的距离为( )(A )1 (B )2 (C )2 (D )224. 设,αβ是两个不同的平面,,,a b c 是三条不同的直线,( )(A )若a b ⊥,b c ⊥,则//a c (B )若//a α,//b α,则//a b (C )若a b ⊥,a α⊥,则//b α (D )若a α⊥,a β⊥,则//αβ 5. “方程221x ym n+=表示的曲线为椭圆”是“0m n >>”的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 6. 设,αβ是两个不同的平面,l 是一条直线,若//l α,//l β,m αβ=I ,则( ) (A )l 与m 平行 (B )l 与m 相交 (C )l 与m 异面 (D )l 与m 垂直7. 设抛物线24C yx =:的焦点为F ,直线3=2l x -:,若过焦点F 的直线与抛物线C 相交于,A B 两点,则以线段AB 为直径的圆与直线l 的位置关系为( ).(A )相交(B )相切(C )相离(D )以上三个答案均有可能8. 设a 为空间中的一条直线,记直线a 与正方体1111ABCD A B C D -的六个面所在 的平面相交的平面个数为m ,则m 的所有可能取值构成的集合为( ) (A ){2,4} (B ){2,6} (C ){4,6} (D ){2,4,6} 二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9. 命题“若220a b -=,则a b =”的逆否命题为_____.10. 经过点(2,1)M 且与直线380x y -+=垂直的直线方程为_____. 11. 一个四棱锥的三视图如图所示,那么这个四棱锥的体积为_____.12. 在ABC ∆中,3AB =,4BC =,AB BC ⊥. 以BC 所在的直线为轴将ABC ∆旋转一周,则旋转所得圆锥的侧面积为_____.13. 若双曲线C 的一个焦点在直线43+20=0l x y -:上,一条渐近线与l 平行,且双曲线C 的焦点在x 轴上,则双曲线C 的标准方程为_____;离心率为_____. 14. 在平面直角坐标系中,曲线C 是由到两个定点(1,0)A 和点(1,0)B -的距离之积等于2的所有点组成的. 对于曲线C ,有下列四个结论:○1 曲线C 是轴对称图形; 侧(左)视图正(主)视图 俯视图22 1 11 11○2 曲线C 是中心对称图形;○3 曲线C 上所有的点都在单位圆221x y +=内;○4 曲线C 上所有的点的纵坐标11[,]22y ∈-. 其中,所有正确结论的序号是_____.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)如图,在正三棱柱111ABC A B C -中,D 为AB 的中点.(Ⅰ) 求证:CD ⊥平面11ABB A ; (Ⅰ) 求证:1//BC 平面1A CD .16.(本小题满分13分)已知圆22680C x y x y m +--+=:,其中m ∈R .(Ⅰ)如果圆C 与圆221x y +=相外切,求m 的值;(Ⅰ)如果直线30x y +-=与圆C 相交所得的弦长为27,求m 的值.17.(本小题满分13分)BA CA 1 C 1B 1D如图,在四棱柱1111ABCD A B C D -中,1AA ⊥平面ABCD ,//AB CD ,AB AD ⊥,1AD CD ==,12AA AB ==,E 为1AA 的中点.(Ⅰ)求四棱锥1C AEB B -的体积; (Ⅱ)求证:1BC C E ⊥;(Ⅲ)判断线段1B C 上是否存在一点M (与点C 不重合),使得,,,C D E M 四点共面? (结论不要求证明)18.(本小题满分13分)设F 为抛物线22C y x =:的焦点,,A B 是抛物线C 上的两个动点. (Ⅰ)若直线AB 经过焦点F ,且斜率为2,求||AB ;(Ⅱ)若直线40l x y -+=:,求点A 到直线l 的距离的最小值.19.(本小题满分14分)A E C C 1B B 1D D A 1如图,在多面体ABCDEF中,底面ABCD为正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD.(Ⅰ)求证:平面ACF⊥平面BDEF;(Ⅱ)若过直线BD的一个平面与线段AE和AF分别相交于点G和H(点G 与点,A E均不重合),求证://EF GH;(Ⅲ)判断线段CE上是否存在一点M,使得平面//BDM平面AEF?若存在,求EMEC的值;若不存在,请说明理由.20.(本小题满分14分)已知椭圆22221 (0)x yC a ba b+=>>:的一个焦点为(5,0),离心率为53. 点P为圆2213M x y+=:上任意一点,O为坐标原点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设直线l经过点P且与椭圆C相切,l与圆M相交于另一点A,点A关于原点O的对称点为B,证明:直线PB与椭圆C相切.参考答案:FBCGEAHDBA C A 1 C 1B 1D O一、选择题:本大题共8小题,每小题5分,共40分. 1. B2. C3. A4. D5. B6. A7. C8. D二、填空题:本大题共6小题,每小题5分,共30分. 9. 若a b ≠,则220a b -≠ 10. 350x y +-=11. 1 12. 15π13. 221916x y -=,5314. ○1○2注:第13题第一空3分,第二空2分;第14题多选、少选或错选均不得分. 三、解答题:本大题共6小题,共80分. 15.(本小题满分13分)(Ⅰ)证明:因为正三棱柱111ABC A B C -,D 为AB 的中点,所以CD AB ⊥,1AA ⊥底面ABC .……1分 又因为CD ⊂底面ABC , 所以1AA CD ⊥.……3分又因为1AA AB A =I ,AB ⊂平面11ABB A ,1AA ⊂平面11ABB A , 所以CD ⊥平面11ABB A .…6分(Ⅱ)证明:连接1AC ,设11AC AC O =I ,连接OD , …7分 由正三棱柱111ABC A B C -,得1AO OC =,又因为在1ABC ∆中,AD DB =, 所以1//OD BC ,…10分又因为1BC ⊄平面1A CD ,OD ⊂平面1A CD , 所以1//BC 平面1A CD .……13分16.(本小题满分13分)(Ⅰ)解:将圆C 的方程配方,得22(3)(4)25x y m -+-=-,…1分 所以圆C 的圆心为(3,4),半径2525)r m m =-<.……3分因为圆C 与圆221x y +=相外切,22(30)(40)125m -+-=+-…5分解得9m =.……7分(Ⅱ)解:圆C 的圆心到直线30x y +-=的距离222d ==.…9分因为直线30x y +-=与圆C 相交所得的弦长为27 所以由垂径定理,可得22225(22)(7)r m =-=+,…11分 解得10m =.…13分17.(本小题满分13分)(Ⅰ)解:因为1AA ⊥平面ABCD ,AD ⊂平面ABCD , 所以1AA AD ⊥.又因为AB AD ⊥,1AA AB A =I , 所以AD ⊥平面11ABB A .…1分 因为//AB CD ,所以四棱锥1C AEB B -的体积1113C AEB B AEB B V S AD -=⋅⋅四边形……2分11[(12)2]1132=⨯⨯+⨯⨯=. ……4分 (Ⅱ)证明:在底面ABCD 中,因为//AB CD ,AB AD ⊥,1AD CD ==,2AB =,所以AC =BC =,所以222AB AC BC =+,即BC AC ⊥.……6分因为在四棱柱1111ABCD A B C D -中,1AA ⊥平面ABCD , 所以1CC BC ⊥, 又因为1CC AC C =I ,所以BC ⊥平面1CAEC ,……8分 又因为1C E ⊂平面1CAEC , 所以1BC C E ⊥.……10分(Ⅲ)答:对于线段1B C 上任意一点M (与点C 不重合),,,,C D E M 四点都不共面.…13分18.(本小题满分13分)(Ⅰ)解:由题意,得1(,0)2F ,则直线AB 的方程为12()2y x =-.…2分由2212(),2,y x y x ⎧⎪⎨⎪⎩=-= 消去y ,得24610x x -+=. …3分 设点11(,)A x y ,22(,)B x y ,则0∆>,且1232x x +=,1214x x =, …5分所以125|||2AB x x =-=. ……7分 (Ⅱ)解:设00(,)A x y ,则点A 到直线l距离d =.……8分由A 是抛物线C 上的动点,得202y x =,…9分所以220001|4|(1)7|2d y y y =-+=-+,…11分 所以当01y =时,min 4d =. 即点A 到直线l.……13分19.(本小题满分14分)(Ⅰ)证明:因为四边形ABCD 是正方形,所以AC BD ⊥.… 1分又因为平面BDEF ⊥平面ABCD ,平面BDEF I 平面ABCD BD =, 且AC ⊂平面ABCD ,所以AC ⊥平面BDEF .… 3分 又因为AC ⊂平面ACF ,所以平面ACF ⊥平面BDEF . … 5分(Ⅱ)证明:由题意,//EF BD ,EF ⊄平面BDGH ,BD ⊂平面BDGH , 所以//EF 平面BDGH ,… 7分又因为EF ⊂平面AEF ,平面AEF I 平面BDGH GH =, 所以//EF GH . … 9分(Ⅲ)答:线段CE 上存在一点M ,使得平面//BDM 平面AEF ,此时12EM EC =.…10分以下给出证明过程.证明:设CE 的中点为M ,连接DM ,BM , 因为//BD EF ,BD ⊄平面AEF ,EF ⊂平面AEF ,所以//BD 平面AEF . …… 11分设AC BD O =I ,连接OM ,在ACE ∆中,因为OA OC =,EM MC =,所以//OM AE ,又因为OM ⊄平面AEF ,AE ⊂平面AEF , 所以//OM 平面AEF . …… 13分又因为OM BD O =I ,,OM BD ⊂平面BDM , 所以平面//BDM 平面AEF .…14分20.(本小题满分14分) (Ⅰ)解:由题意,知5c =,53c a=,…1分所以3a =,222b a c =-=,……3分所以椭圆C 的标准方程为22 1 94x y +=.…4分(Ⅱ)证明:由题意,点B 在圆M 上,且线段AB 为圆M 的直径,所以PA PB ⊥. …5分当直线PA x ⊥轴时,易得直线PA 的方程为3x =±, 由题意,得直线PB 的方程为2y =±,显然直线PB 与椭圆C 相切.同理当直线//PA x 轴时,直线PB 也与椭圆C 相切.…7分 当直线PA 与x 轴既不平行也不垂直时,设点00(),P x y ,直线PA 的斜率为k ,则0k ≠,直线PB 的斜率1k-,所以直线PA :00()y y k x x -=-,直线PB :00()1y y x x k-=--,…9分 由0022(),1,94y y k x x x y -=-+=⎧⎪⎨⎪⎩ 消去y ,得2220000(94)18()9()360k x y kx kx y kx ++-+--=.…11分因为直线PA 与椭圆C 相切,所以22210000[18()]4(94)[9()36]0y kx k k y kx ∆=--+--=,整理,得22210000144[(9)24]0x k x y k y ∆=---+-=. (1) …12分 同理,由直线PB 与椭圆C 的方程联立,得2220000211144[(9)24]x x y y k k∆=--++-. (2) 因为点P 为圆22 13M x y +=:上任意一点,所以220013x y +=,即220013y x =-.代入(1)式,得2220000(9)2(9)0x k x y k x --+-=, 代入(2)式,得222200002144[(9)2(4)]x x y k y k k∆=--++- 22200002144[(9)2(9)]x x y k x k k =--++- 2220002144[(9)2(9)]x k x y k x k=--+- 0=.FB CM EAHD OG所以此时直线PB与椭圆C相切.综上,直线PB与椭圆C相切. …14分。

高二数学上学期期末考试试卷(文科)(共5套,含参考答案)

高二数学上学期期末考试试卷(文科)(共5套,含参考答案)

高二上学期期末考试数学试题(文)第I 卷(选择题)一、选择题(本题共12道小题,每小题5分,共60分)1. 已知,,a b c 满足a b c <<,且0ac <,则下列选项中一定成立的是( )A.ab ac <B.()0c a b ->C.22ab cb <D.()220a cac ->2.若不等式202mx mx ++>恒成立,则实数m 的取值范围是( ) A.2m > B.2m < C. 0m <或2m >D.02m <<3.2014是等差数列4,7,10,13,…的第几项( ). A .669B .670C .671D .6724.△ABC 中,a=80,b=100,A=450则三角形解的情况是( ) A .一解B .两解C .一解或两解D .无解5.一元二次不等式ax 2+bx +2>0的解集为(-12,13),则a +b 的值是( ). A .10B .-10C .14D .-146.等差数列{an}中s 5=7,s 10=11,则s 30=( ) A 13 B 18 C 24 D 317.△ABC 中a=6,A=600 c=6 则C=( ) A 450, B 1350C 1350,450D 6008.点(1,1)在直线ax+by-1=0上,a,b 都是正实数,则ba 11+的最小值是( )A 2B 2+22C 2-22D 4 9.若a ∈R ,则“a =1”是“|a|=1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件10.下列有关命题的说法正确的是 ( ) A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”; B .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈,均有210x x ++<”; C .在ABC ∆中,“B A >”是“B A 22cos cos <”的充要条件; D .“2x ≠或1y ≠”是“3x y +≠”的非充分非必要条件.11中心在原点、焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( )A . +=1B . +=1C .+=1 D .+=112.抛物线x 2=4y 的焦点坐标为( )A .(1,0)B .(﹣1,0)C .(0,1)D .(0,﹣1)第II 卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分) 13. 不等式31≤+xx 的解集是_____________ 14. 已知直线21=+y x 与曲线3y x ax b =++相切于点(1,3),则实数b 的值为_____. 15.在等比数列{a n }中,a 3a 7=4,则log 2(a 2a 4a 6a 8)=________.16.ABC ∆中,a 2-b 2 =c 2+bc 则A= .三、解答题17.已知函数()(2)()f x x x m =-+-(其中m>-2). ()22x g x =-. (I )若命题“2log ()1g x ≥”是假命题,求x 的取值范围;(II )设命题p :∀x ∈R ,f(x)<0或g(x)<0;命题q :∃x ∈(-1,0),f(x)g(x)<0. 若p q ∧是真命题,求m 的取值范围.18函数f(x)=3lnx-x 2-bx.在点(1,f (1))处的切线的斜率是0 (1)求b ,(2)求函数的单调减区间19.锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知()2cos 2sin .2C B A -=(Ⅰ)求sin sin A B 的值;(Ⅱ)若3,2a b ==,求ABC ∆的面积.20. (本小题满分12分)数列{n a }的前n 项和为n S ,2131(N )22n n S a n n n *+=--+∈ (Ⅰ)设n n b a n =+,证明:数列{n b }是等比数列; (Ⅱ)求数列{}n nb 的前n 项和n T ;21已知椭圆C :=1(a >b >0)的短半轴长为1,离心率为(1)求椭圆C 的方程(2)直线l 与椭圆C 有唯一公共点M ,设直线l 的斜率为k ,M 在椭圆C 上移动时,作OH ⊥l 于H (O 为坐标原点),当|OH|=|OM|时,求k 的值. 22.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值. (Ⅰ)求,a b 的值;(Ⅱ)当[03]x ∈,时,函数()y f x = 的图像恒在直线2y c =的下方,求c 的取值范围.答案一选择题、D D C B . D D C B A .D A C二、填空题. {|0x x <或1}2x ≥ .3 4. 120017、.解:(I )若命题“2log ()1g x ≥”是假命题,则()2log 1g x <即()2log 221,0222x x -<<-<,解得1<x <2;(II )因为p q ∧是真命题,则p,q 都为真命题,当x >1时,()22x g x =->0,因为P 是真命题,则f(x)<0,所以f(1)= ﹣(1+2)(1﹣m) <0,即m <1;当﹣1<x <0时,()22x g x =-<0,因为q 是真命题,则∃x ∈(-1,0),使f(x) >0,所以f(﹣1)= ﹣(﹣1+2)( ﹣1﹣m) >0,即m >﹣1,综上所述,﹣1<m <1. 18,(1)b=1 (2)(1,∞)19. 解:(Ⅰ)由条件得cos(B -A)=1-cosC=1+cos(B+A), 所以cosBcosA+sinBsinA=1+cosBcosA -sinBsinA,即sinAsinB=12;(Ⅱ)sin 3sin 2A aB b ==,又1sin sin 2A B =,解得:sin 23A B ==,因为是锐角三角形,1cos ,cos 23A B ∴==,()sin sin sin cos cos sin C A B A B A B =+=+=11sin 322262S ab C ∆+==⨯⨯⨯=. 略20.【答案】解:(Ⅰ)∵ 213122n n a S n n +=--+,…………………………①∴ 当1=n 时,121-=a ,则112a =-, …………………1分当2n ≥时,21113(1)(1)122n n a S n n --+=----+,……………………②则由①-②得121n n a a n --=--,即12()1n n a n a n -+=+-,…………………3分∴ 11(2)2n n b b n -=≥,又 11112b a =+=, ∴ 数列{}n b 是首项为12,公比为12的等比数列,…………………4分 ∴ 1()2n n b =. ……………………5分(Ⅱ)由(Ⅰ)得2n nn nb =. ∴ n n n nn T 221..........242322211432+-+++++=-,……………③ 1232221..........24232212--+-+++++=n n n nn T ,……………④……………8分 由④-③得n n n nT 221......2121112-++++=- 1122212212nn n n n ⎛⎫- ⎪+⎝⎭=-=--.……………………12分21、【解答】解:(1)椭圆C:=1(a >b >0)焦点在x 轴上,由题意可知b=1,由椭圆的离心率e==,a 2=b 2+c 2,则a=2∴椭圆的方程为;﹣﹣﹣﹣﹣﹣﹣(2)设直线l :y=kx+m ,M (x 0,y 0).﹣﹣﹣﹣﹣﹣﹣,整理得:(1+4k 2)x 2+8kmx+4m 2﹣4=0,﹣﹣﹣﹣﹣﹣﹣令△=0,得m 2=4k 2+1,﹣﹣﹣﹣﹣﹣﹣由韦达定理得:2x0=﹣,x02=,﹣﹣﹣﹣﹣﹣﹣∴丨OM丨2=x02+y02=x02+(kx+m)2=①﹣﹣﹣﹣﹣﹣﹣又|OH|2==,②﹣﹣﹣﹣﹣﹣﹣由|OH|=|OM|,①②联立整理得:16k4﹣8k2+1=0﹣﹣﹣﹣﹣﹣﹣∴k2=,解得:k=±,k的值±.﹣﹣﹣﹣﹣﹣﹣22.(Ⅰ)a=-3,b=4(Ⅱ)(-∞,-1)∪(9,+∞)(Ⅰ)f'(x)=6x2+6ax+3b,因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.即6630241230a ba b++=⎧⎨++=⎩解得a=-3,b=4.(Ⅱ)由(Ⅰ)可知,f(x)=2x3-9x2+12x+8c,f'(x)=6x2-18x+12=6(x-1)(x-2).当x∈(0,1)时,f'(x)>0;当x∈(1,2)时,f'(x)<0;当x∈(2,3)时,f'(x)>0.所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x∈[0,3],有f(x)<c2恒成立,所以9+8c<c2,解得c<-1或c>9,第一学期期末调研考试高中数学(必修⑤、选修1-1)试卷说明:本卷满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若p q ∧是假命题,则A .p 是真命题,q 是假命题B .,p q 均为假命题C .,p q 至少有一个是假命题D .,p q 至少有一个是真命题 2.一个等比数列的第3项和第4项分别是12和18,则该数列的第1项等于 A .27 B .163 C .812D .8 3.已知ABC ∆中,角A 、B 的对边为a 、b ,1a =,b = 120=B ,则A 等于 A .30或150 B .60或120 C .30 D .60 4.曲线xy e =在点(1,)e 处的切线方程为(注:e 是自然对数的底)A . (1)x y e e x -=-B . 1y x e =+-C .2y ex e =-D .y ex =5.不等式组⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,表示的平面区域的面积是A .41 B .49 C .29 D .236.已知{}n a 为等差数列,1010=a ,前10项和7010=S ,则公差=d A .32- B .31- C . 31 D . 327.函数()f x 的导函数...()'f x 的图象如图所示,则 A .1x =是()f x 的最小值点xB .0x =是()f x 的极小值点C .2x =是()f x 的极小值点D .函数()f x 在()1,2上单调递增8. 双曲线22221(0,0)x y a bb a -=>>的一条渐近线方程是y =,则双曲线的离心率是A .B .2C . 3D .9.函数3()1f x ax x =++有极值的充分但不必要条件是 A . 1a <-B . 1a <C . 0a <D . 0a >10.已知点F 是抛物线x y =2的焦点,A 、B 是抛物线上的两点,且3||||=+BF AF ,则线段AB 的中点到y 轴的距离为 A .43 B .1 C .45 D .4711.已知直线2+=kx y 与椭圆1922=+my x 总有公共点,则m 的取值范围是 A .4≥m B .90<<m C .94<≤mD .4≥m 且9≠m12.已知定义域为R 的函数)(x f 的导函数是)(x f ',且4)(2)(>-'x f x f ,若1)0(-=f ,则不等式x e x f 22)(>+的解集为A .),0(+∞B .),1(+∞-C .)0,(-∞D .)1,(--∞二、填空题:本大题共4小题,每小题5分,满分20分.13.命题“若24x =,则2x =”的逆否命题为__________.14.ABC ∆中,若AB =1AC =,且23C π∠=,则BC =__________.15.若1x >,__________. 16.设椭圆()2222:10x y C a b a b+=>>的左右焦点为12F F ,,过2F 作x 轴的垂线与C 交于A B ,两点,若1ABF ∆是等边三角形,则椭圆C 的离心率等于________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知ABC ∆的三个内角A ,B ,C 的对边长分别为a ,b ,c ,60B =︒. (Ⅰ)若2b ac =,请判断三角形ABC 的形状;(Ⅱ)若54cos =A ,3c =+,求ABC ∆的边b 的大小.18.(本小题满分12分)等比数列{}n a 的各项均为正数,且11a =,4332=+a a (*n N ∈). (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)已知(21)n n b n a =-⋅,求数列{}n b 的前n 项和n T .19.(本小题满分12分)已知椭圆的中心在坐标原点O ,长轴长为离心率e =,过右焦点F 的直线l 交椭圆于P ,Q 两点.(Ⅰ)求椭圆的方程; (Ⅱ)当直线l 的倾斜角为4π时,求POQ ∆的面积.20.(本小题满分12分)某农场计划种植甲、乙两个品种的水果,总面积不超过300亩,总成本不超过9万元.甲、乙两种水果的成本分别是每亩600元和每亩200元.假设种植这两个品种的水果,能为该农场带来的收益分别为每亩0.3万元和每亩0.2万元.问该农场如何分配甲、乙两种水果的种植面积,可使农场的总收益最大?最大收益是多少万元?21.(本小题满分12分)设函数329()62f x x x x a =-+-. 在 (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)若方程()0f x =有且仅有三个实根,求实数a 的取值范围.22.(本小题满分12分)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于||1AF -. (Ⅰ)求p 的值;(Ⅱ)若直线AF 交抛物线于另一点B ,过B 与x 轴平行 的直线和过F 与AB 垂直的直线交于点N ,求N 的横坐标 的取值范围.x第一学期期末调研考试高中数学(必修⑤、选修1-1)参考答案与评分标准一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分.13.若2x ≠,则24x ≠; 14.1 ; 15.15 ; 16. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17. 解:(Ⅰ)由2222cos b a c ac B ac =+-⋅=,1cos cos 602B =︒=,……………………2分得0)(2=-c a ,即:c a =.………………………………………………………5分 又60B =︒,∴ 三角形ABC 是等边三角形. ……………………………………………………5分(Ⅱ)由4cos 5A =,得3sin 5A =,…………………………………………………………6分 又60B =︒,∴ sin sin()sin cos cos sin C A B A B A B =+=⋅+⋅314525=⨯+7分 由正弦定理得(3sin sin c Bb C+⋅===10分18.解:(Ⅰ)设等比数列{}n a 的公比为q ,∴43)(2132=+=+q q a a a ……………………………………………………1分 由432=+q q 解得:21=q 或23-(舍去).…………………………………3分∴所求通项公式11121--⎪⎭⎫ ⎝⎛==n n n q a a .………………………………………5分(Ⅱ)123n n T b b b b =++++即()0112123252212n n T n -=⋅+⋅+⋅+⋅⋅⋅+-⋅------------①…………………………………6分①⨯2得 2()132123252212nn T n =⋅+⋅+⋅+⋅⋅⋅+-⋅ -----②……………………7分①-②:()1121222222212n n n T n --=+⋅+⋅+⋅⋅⋅+⋅--…………………………………8分9分()3223n n =--,……………………………………………………………………………11分 ()3232n n T n ∴=-+.………………………………………………………………………12分19. 解:(Ⅰ)由题得:22222c a a b c a ===+..................................................................2分 解得1a b ==, (4)分椭圆的方程为2212x y +=. (5)分(Ⅱ)(1,0)F ,直线l 的方程是tan (1)14y x y x π=-⇒=- (6)分由2222232101x y y y x y ⎧+=⇒+-=⎨=+⎩(*)…………………………………………………………………………7分设1122(,),(,)P xy Q x y ,(*)2243(1)160∆=-⨯⨯-=>………………………………………………………8分124||3y y ∴-===……………………………………………………10分121142||||12233OPQ S OF y y ∆∴=-=⨯⨯= POQ ∆的面积是23……………………………………………………….…………………………………………12分20. 解:设甲、乙两种水果的种植面积分别为x ,y 亩,农场的总收益为z 万元,则 ………1分300,0.060.029,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩………① …………4分 目标函数为0.30.2z x y =+, ……………5分不等式组①等价于300,3450,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩可行域如图所示,……………………………7分 目标函数0.30.2z x y =+可化为z x y 523+-= 由此可知当目标函数对应的直线经过点M 时,目标函数z 取最大值.…………………9分 解方程组300,3450,x y x y +=⎧⎨+=⎩ 得75,225,x y =⎧⎨=⎩M 的坐标为(75,225).……………………………………………………………………10分所以max 0.3750.222567.5z =⨯+⨯=.…………………………………………………11分 答:分别种植甲乙两种水果75亩和225亩,可使农场的总收益最大,最大收益为67.5万元. ………………………………………………………………………………12分21. 解:(Ⅰ)/2()3963(1)(2)f x x x x x =-+=--,………………………………………2分令/()0f x >,得2x >或1x <;/()0f x <,得12x <<, …………………………4分∴()f x 增区间()1,∞-和()+∞,2;减区间是()2,1.………………………………………6分(Ⅱ)由(I )知 当1x =时,()f x 取极大值5(1)2f a =-,………………………………7分 当2x =时,()f x 取极小值 (2)2f a =-,………………………………………………8分因为方程()0f x =仅有三个实根.所以⎩⎨⎧<>0)2(0)1(f f …………………………………………10分解得:252<<a , 实数a 的取值范围是5(2,)2.………………………………………………………………12分22.解:(Ⅰ)由题意可得抛物线上点A 到焦点F 的距离等于点A 到直线1x =-的距离.……………………2分由抛物线的定义得12p=,即p =2. …………………………………………………………………………………4分(Ⅱ)由(Ⅰ)得抛物线的方程为()24,F 1,0y x =,可设()2,2,0,1A t t t t ≠≠± (5)分由题知AF 不垂直于y 轴,可设直线:1(0)AF x sy s =+≠,()0s ≠,由241y x x sy ⎧=⎨=+⎩消去x 得2440y sy --=,………………………………6分 故124y y =-,所以212,B tt ⎛⎫- ⎪⎝⎭.…………………………………………………………………………………7分又直线AB 的斜率为221tt -,故直线FN 的斜率为212t t --,从而的直线FN :()2112t y x t -=--,直线BN :2y t=-, (9)分由21(1)22t y x t y t ⎧-=--⎪⎪⎨⎪=-⎪⎩解得N 的横坐标是2411N x t =+-,其中220,1t t >≠…………………………………10分1N x ∴>或3N x <-.综上,点N 的横坐标的取值范围是()(),31,-∞-+∞.…………………………………………………12分注:如上各题若有其它解法,请评卷老师酌情给分.x绝密★启用前第一学期期末考试高二年级(文科数学)试题卷 本试卷共22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生先检查试卷与答题卷是否整洁无缺损,并用黑色字迹的签字笔在答题卷指定位置填写自己的班级、姓名、学号和座位号。

高二上学期文科数学期末试卷,附答案

高二上学期文科数学期末试卷,附答案

高二上学期数学期末试卷(新课标)文 科 数 学本试卷分基础检测与能力检测两部分,共4页.满分为150分,考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答卷和答题卡上,并用2B 铅笔在答题卡上填涂学号.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将答题卷交回.第一部分 基础检测(共100分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“,xx e x ∀∈>R ”的否定是( ) A .x eR x x <∈∃0,0B .,xx e x ∀∈<R C .,xx e x ∀∈≤RD .x eR x x ≤∈∃0,0.2.设实数x 和y 满足约束条件1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y =+的最小值为( )A .26B .24C .16D .14新$课$标$第$一$网3.抛物线22y x =的准线方程为( ) w w w .x k b 1.c o mA .14y =-B .18y =-C .1y =D .12y =4.“α为锐角”是“0sin >α”的( )A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件5.设双曲线)0(19222>=-a y ax 的渐近线方程为023=±y x ,则a 的值为( ) A .4 B .3 C .2 D .16. 在空间直角坐标系中,已知点P (x ,y ,z ),给出下列四条叙述: ①点P 关于x 轴的对称点的坐标是(x ,-y ,z ) ②点P 关于yOz 平面的对称点的坐标是(x ,-y ,-z ) ③点P 关于y 轴的对称点的坐标是(x ,-y ,z )④点P 关于原点的对称点的坐标是(-x ,-y ,-z ) 其中正确的个数是( )A .3B .2C .1D .07.给定下列四个命题:①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.[来源:学&科&网Z&X&X&K]其中,为真命题的是( )A .①和②B .②和③C .③和④D .②和④8.若双曲线193622=-y x 的弦被点(4,2)平分,则此弦所在的直线方程是( ) A .02=-y x B .042=-+y x C .014132=-+y x D .082=-+y x9.设1F ,2F 是椭圆E :2222x y a b +=1(a >b >0)的左、右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为( )A .12B .23C .34 D .4510.椭圆221259x y +=的左焦点为1F , 点P 在椭圆上, 若线段1PF 的中点M 在y 轴上, 则1PF =( ) A .415B .95C .6D .7二、填空题:本大题共3小题,每小题5分,共15分.11.若圆心在x 轴上、半径为2的圆O 位于y 轴左侧,且与直线0x y +=相切,则圆O 的方程是.12.某三棱锥的三视图如图所示,该三棱锥的体积是。

湖北省高二上册期末数学文科试题与答案

湖北省高二上册期末数学文科试题与答案

湖北省高二上册期末数学文科试题与答案一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.用秦九韶算法求多项式当时的值,有如下说法:①要用到6次乘法;②要用到6次加法和15次乘法;③v3=12;④v0=11.其中说法正确的是A. ①③B. ①④C. ②④D. ①③④【答案】A根据秦九韶算法求多项式的规则变化其形式,把等到价转化为,就能求出结果.解:需做加法与乘法的次数都是6次,,,,,的值为12;其中正确的是①④故选:A.本题考查算法的多样性,正确理解秦九韶算法求多项式的原理是解题的关键,属于基础题.2.把[0,1]内的均匀随机数x分别转化为[0,2]和内的均匀随机数y1,y2,需实施的变换分别为( )A. ,B. ,C. ,D. ,【答案】C先看区间长度之间的关系:故可设或,再用区间中点之间的对应关系得到,解出,问题得以解决.解:将[0,1]内的随机数x转化为[0,2]内的均匀随机数,区间长度变为原来的2倍,因此设=2x+(是常数),再用两个区间中点的对应值,得当时,=1,所以,可得=0,因此x与的关系为:=2x;将[0,1]内的随机数x转化为[-2,1]内的均匀随机数,区间长度变为原来的2倍,因此设=3x+(是常数),再用两个区间中点的对应值,得当时,=,所以,可得,因此x与的关系为:=3x-2;故选C.本题考查均匀随机数的含义与应用,属于基础题.解决本题解题的关键是理解均匀随机数的定义,以及两个均匀随机数之间的线性关系.3.抛物线的准线方程是,则的值为()A. B. C. 8 D. -8【答案】B方程表示的是抛物线,,,抛物线的准线方程是,解得,故选A.4.执行如图所示的程序框图,若输出n的值为9,则判断框中可填入( )A. B. C. D.【答案】D执行程序框图,根据输出,可计算的值,由此得出判断框中应填入的条件.解:执行程序框图,可得该程序运行后是计算,满足条件后,输出,由此得出判断框中的横线上可以填入?.故选:D.本题主要考查了程序框图的应用问题,正确判断退出循环的条件是解题的关键,属于基础题.5.将二进制数110 101(2)转化为十进制数为( )A. 106B. 53C. 55D. 108【答案】B由题意可得110101(2)=1×25+1×24+0×23+1×22+0×21+1×20=53.选B。

【试卷】高二数学上学期期末试卷(文科)及答案

【试卷】高二数学上学期期末试卷(文科)及答案

高二数学试卷(文科)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、如果等差数列{}n a 中,3a +4a +5a =12,那么1a +2a +•…+7a =_________(A )14 (B) 21 (C) 28 (D) 352、有分别满足下列条件的两个三角形:①∠B =30°,a =14,b =7;②∠B =60°,a =10,b =9,那么下面判断正确的是 ( ) A.①只有一解,②也只有一解 B.①、②都有两解C.①有两解,②有一解D.①只有一解,②有两解 3、命题p :“有些三角形是等腰三角形”,则┐p 是( ) A .有些三角形不是等腰三角形 B .所有三角形是等腰三角形 C .所有三角形不是等腰三角形D .所有三角形是等腰三角形4、函数3y x x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞5、设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( ) A.24y x =± B.28y x =± C. 24y x = D. 28y x =6、32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319B .316C .313 D .310 7、如果b a >>0且0>+b a ,那么以下不等式正确的个数是 ( )①b a 11< ②b a 11> ③33ab b a <④23ab a < ⑤32b b a <A .2B .3C .4D .58、在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或9、下列曲线中离心率为的是 ( )A.B. C. D.10、函数y =x 3+x3在(0,+∞)上的最小值为 ( )A.4B.5C.3D.1二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。

高二上学期期末考试数学(文科)试卷(共3套,含参考答案)

高二上学期期末考试数学(文科)试卷(共3套,含参考答案)

第一学期期末联考试题高二数学(文科)本试卷共6页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的学校、考号、姓名填写在答题卡相应的位置,将条型码粘在相应的条形码区。

2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.椭圆22143x y +=的离心率是A B .12 C D .142.已知命题:p x y <若,则22x y <;命题:q x y >若,则x y -<-;在命题:①p q ∧;②p q ∨;③()p q ⌝∧;④()p q ∨⌝中,真命题是A .①③B . ①④C .②③D . ②④3. 设平面α、β,直线a 、b ,a α⊂,b α⊂,则“//a β,//b β”是“//αβ”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.若函数()()0,1xf x a a a =>≠且是定义域为R 的减函数,则函数()()log 1a f x x =-的图象大致是5. 为了了解本市居民的生活成本,甲、乙、丙3名同学利用假期分别对3个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为123,,s s s ,则它们的大小关系为A .321s s s <<B .231s s s <<C .312s s s <<D .213s s s <<6. 已知向量()=cos ,1x a ,()cos ,1x -b =设函数()f x =⋅a b ,则A .()f x 为偶函数且最小正周期为πB .()f x 为奇函数且最小正周期为πC .()f x 为偶函数且最小正周期为2π D .()f x 为奇函数且最小正周期为2π 7. 已知数列{}n a 满足13132n n a a ++=+,且11a=,则5a = A. 52-B. 125C. 61D. 238- 8. 如图所示的茎叶图记录了甲、乙 两组各5名学生在一次英语听力测 试中的成绩.已知甲组数据的中位 数为15,乙组数据的平均数为16.8, 则,x y 的值分别为A .25,B .5,5C .5,8D .88,9.如图所示,圆锥的底面半径为1,母线长为2,在圆锥上方嵌入一个半径为r 的球,使圆锥的母线与球面相切,切点为圆锥母线的端点,则该球的表面积为 A .23πB .3πC .4πD .163π第8题图 第9题图元丙第5题图10. 若正整数N 除以正整数m 后的余数为r ,则记为()mod N r m =,例如()102mod4= .下列程序框图的算法源于我国古代算术《中国剩余定理》,则执行该程序框图输出的i 等于 A .2 B .4C .8D .11 11.已知正三棱柱111ABC A B C -中,12AB BB ==,则异面直线1AB 与1BC所成角的余弦值为AB .12C .14-D .1412.已知函数()1,02ln ,0xx f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩,若函 数()()g x f x k =-有两个零点, 则实数k 的取值范围为A .()0+∞,B .[)1+∞,C .()01,D .()1+∞,第Ⅱ卷 (非选择题 共90分二、填空题: 本大题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二上学期数学期末试卷(新课标)数 学本试卷分基础检测与能力检测两部分,共4页.满分为150分,考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答卷和答题卡上,并用2B 铅笔在答题卡上填涂学号.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将答题卷交回.第一部分 基础检测(共100分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“,xx e x ∀∈>R ”的否定是( ) A .x eR x x <∈∃0,0B .,xx e x ∀∈<R C .,xx e x ∀∈≤RD .x eR x x ≤∈∃0,0.2.设实数x 和y 满足约束条件1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y =+的最小值为( )A .26B .24C .16D .143.抛物线22y x =的准线方程为( )A .14y =- B .18y =- C .1y = D .12y =4.“α为锐角”是“0sin >α”的( )A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件5.设双曲线)0(19222>=-a y ax 的渐近线方程为023=±y x ,则a 的值为( ) A .4 B .3 C .2 D .16. 在空间直角坐标系中,已知点P (x ,y ,z ),给出下列四条叙述: ①点P 关于x 轴的对称点的坐标是(x ,-y ,z ) ②点P 关于yOz 平面的对称点的坐标是(x ,-y ,-z ) ③点P 关于y 轴的对称点的坐标是(x ,-y ,z )④点P 关于原点的对称点的坐标是(-x ,-y ,-z ) 其中正确的个数是( )A .3B .2C .1D .07.给定下列四个命题:①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( )A .①和②B .②和③C .③和④D .②和④8.若双曲线193622=-y x 的弦被点(4,2)平分,则此弦所在的直线方程是( ) A .02=-y x B .042=-+y x C .014132=-+y x D .082=-+y x9.设1F ,2F 是椭圆E :2222x y a b +=1(a >b >0)的左、右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为( )A .12B .23C .34 D .4510.椭圆221259x y +=的左焦点为1F , 点P 在椭圆上, 若线段1PF 的中点M 在y 轴上, 则1PF =( ) A .415B .95 C .6 D .7二、填空题:本大题共3小题,每小题5分,共15分.11.若圆心在x 轴上、半径为2的圆O 位于y 轴左侧,且与直线0x y +=相切,则圆O 的方程是.12.某三棱锥的三视图如图所示,该三棱锥的体积是。

13.抛物线)0(22>=p px y 上一点M 到焦点F 的距离.2p MF =则M 的坐标是 .三、解答题:本大题共3小题,共35分.解答应写出文字说明、证明过程或演算 14.(本题满分10分) 已知圆C 方程为:224x y +=.(1)直线l 过点()1,2P ,且与圆C 交于A 、B 两点,若||23AB =,求直线l 的方程;(2)过圆C 上一动点M 作平行于x 轴(与x 轴不重合)的直线m ,设m 与y 轴的交点为N ,若向量OQ OM ON =+,求动点Q 的轨迹方程.15.(本题满分12分) 设椭圆)0(12222>>=+b a by a x C :经过点)4,0(,离心率为53(1)求C 的方程; (2)求过点)0,3(且斜率为54的直线被C 所截线段的中点坐标. 16.(本小题满分13分) 如图,已知AB ⊥平面ACD ,DE ∥AB ,2AD AC DE AB ====2,且F 是CD 的中点.3AF =(1)求证:AF ∥平面BCE ; (2)求证:平面BCE ⊥平面CDE ; (3) 求此多面体的体积.ABCDEF第二部分 能力检测(共50分)四、填空题:本大题共2小题,每小题5分,共10分.17.下列有关命题的说法正确有_________________________(填写序号)① “若b a bm am <<则,22”的逆命题为真;② 命题“若1,0232==+-x x x 则”的逆否命题为:“若023,12≠+-≠x x x 则”; ③ “命题q p ∨为真”是“命题q p ∧为真”的必要不充分条件;④ 对于常数n m ,,“0>mn ”是“方程122=+ny mx 的曲线是椭圆”的充分不必要条件.18.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是____.五、解答题:本大题共3小题,共40分.解答应写出文字说明、证明过程或演算步骤. 19.(本小题满分14分)如图,等边三角形OAB 的边长为83,且其三个顶点均在抛物线)0(22>=p py x C :上. (1)求抛物线C 的方程;(2)设圆M 过)2,0(D ,且圆心M 在抛物线C 上,EG 是圆M 在x 轴上截得的弦,试探究当M 运动时,弦长EG 是否为定值?为什么?20.(本小题满分12分) 已知数列}{n a 的前n 项和)1,0(≠≠+=p p q p S nn ,求证数列}{n a 是等比数列的充要条件是.1-=q21.(本小题满分14分) 一动圆与圆221:(1)1O x y -+=外切,与圆222:(1)9O x y ++=内切.(1)求动圆圆心M 的轨迹L 的方程;(2)设过圆心1O 的直线:1l x my =+与轨迹L 相交于A 、B 两点,请问2ABO ∆(2O 为圆2O 的圆心)的面积是否存在最大值?若存在,求出这个最大值及直线l 的方程,若不存在,请说明理由.高二文科数学解答:一.选择题1 2 3 4 5 6 7 8 9 10 DDBACCDACA11.22(2)2x y ++=;12.340;13.)3,23(p p ±; 17.②③; 18. 34 14.解(Ⅰ)①当直线l 垂直于x 轴时,则此时直线方程为1=x ,l 与圆的两个交点坐标为()3,1和()3,1-,其距离为32满足题意 ……… 1分新 课 标 第 一 网②若直线l 不垂直于x 轴,设其方程为()12-=-x k y ,即02=+--k y kx 设圆心到此直线的距离为d ,则24232d -=,得1=d …………3分 ∴1|2|12++-=k k ,34k =,故所求直线方程为3450x y -+= 综上所述,所求直线为3450x y -+=或1=x …………5分 (Ⅱ)设点M 的坐标为()00,y x (00y ≠),Q 点坐标为()y x , 则N 点坐标是()0,0y …7分 ∵OQ OM ON =+, ∴()()00,,2x y x y = 即x x =0,20yy =…………9分 xkb1 ∵4202=+y x ,∴224(0)4y x y +=≠ ∴Q 点的轨迹方程是221(0)416x y y +=≠ 10分 15. (1)将(0,4)代入椭圆C 的方程得16b2=1,∴b =4. …… 2分又e =c a =35得a 2-b 2a 2=925,即1-16a 2=925,∴a =5,…… 5分∴C 的方程为x 225+y216=1. …… 6分(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),…… 7分 x k b 1 . c o m设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入C 的方程,得x 225+(x -3)225=1 …… 8分 ,即x 2-3x -8=0. …… 10分 解得x 1=3-412,x 2=3+412,∴AB 的中点坐标x =x 1+x 22=32,y =y 1+y 22=25(x 1+x 2-6)=-65.y2=4y即中点为⎝ ⎛⎭⎪⎫32,-65. …… 12分16.解:(1)取CE 中点P ,连结FP 、BP , ∵F 为CD 的中点, ∴FP ∥DE ,且FP=.21DE 又AB ∥DE ,且AB=.21DE ∴AB ∥FP ,且AB=FP ,∴ABPF 为平行四边形,∴AF ∥BP .…2分新*课*标*第*一*网]又∵AF ⊄平面BCE ,BP ⊂ ∴AF ∥平面BCE …………4分(2)∵2AF CD ==,所以△ACD 为正三角形,∴AF ⊥CD …………5分 ∵AB ⊥平面ACD ,DE//AB ∴DE ⊥平面ACD 又AF ⊂平面ACD ∴DE ⊥AF 又AF ⊥CD ,CD ∩DE=D ∴AF ⊥平面CDE …………7分 又BP ∥AF ∴BP ⊥平面CDE又∵BP ⊂平面BCE ∴平面BCE ⊥平面CDE ………9分 (3)此多面体是一个以C 为定点,以四边形ABED 为底边的四棱锥,(12)232ABED S +⨯==,………10分 ABDE ADC⊥∴面面等边三角形AD 边上的高就是四棱锥的高………12分133C ABDE V -=⨯= …………13分19.解: (1)由题意知)1234,(B ………3分 抛物线C 方程是24x y =………5分(2)设圆的圆心为(,)M a b ,∵圆M 过D (0,2),∴圆的方程为 2222()()(2)x a y b a b -+-=+- ……………………………7分 令0y =得:22440x ax b -+-= 设圆与x 轴的两交点分别为1(,0)x ,2(,0)x 方法1:不妨设12x x >,由求根公式得122a x +=222ax =………9分∴12x x -=O 211O 111A1BxyO 1 又∵点(,)M a b 在抛物线24x y =上,∴24a b =,………10分∴ 12164x x -==,即EG =4---------------------------------13分∴当M 运动时,弦长EG 为定值4…………………………………………………14分 〔方法2:∵122x x a +=,1244x x b ⋅=- ∴22121212()()4x x x x x x -=+-⋅22(2)4(44)41616a b a b =--=-+又∵点(,)M a b 在抛物线24x y =上,∴24a b =, ∴ 212()16x x -= 124x x -=∴当M 运动时,弦长EG 为定值4〕 20.证明:①必要性:a 1=S 1=p +q . …………1分当n ≥2时,a n =S n -S n -1=p n -1(p -1)∵p ≠0,p ≠1,∴)1()1(1---p p p p n n =p …………3分若{a n }为等比数列,则nn a a a a 112+==p ∴q p p p +-)1(=p , …………5分 ∵p ≠0,∴p -1=p +q ,∴q =-1…………6分②充分性当q =-1时,∴S n =p n -1(p ≠0,p ≠1),a 1=S 1=p -1…………7分当n ≥2时,a n =S n -S n -1=p n -p n -1=p n -1(p -1)∴a n =(p -1)p n -1 (p ≠0,p ≠1) …………9分211)1()1(-----=n n n n p p p p a a =p 为常数…………11分 ∴q =-1时,数列{a n }为等比数列.即数列{a n }是等比数列的充要条件为q =-1. …12分 21.解:(1)设动圆圆心为()M x y ,,半径为R .由题意,得11MO R =+,23MO R =-, 124MO MO +=∴. …………3分 由椭圆定义知M 在以12O O ,为焦点的椭圆上,且21a c ==,,222413b a c =-=-=∴.∴动圆圆心M 的轨迹L 的方程为22143x y +=. ……6分 (2) 设11(,)A x y 、22(,)B x y (120,0y y ><), 则2121122121122ABO S O O y O O y y y =⋅+⋅=-△, ……8分由221143x my x y =+⎧⎪⎨+=⎪⎩,得22(34)690m y my ++-=,解得21236134m m y m -++=+,22236134m m y m --+=+, …………10分 ∴22212134ABO m S m +=+△,令21t m =+,则1t ≥,且221m t =-, 有22212121213(1)4313ABO t t S t t t t===-+++△,令1()3f t t t =+, 0)13)((1313)()(,1211211221221>--=--+=-<≤t t t t t t t t t f t f t t 设 )()(12t f t f >∴ )(t f ∴在[1,)+∞上单调递增,有()(1)4f t f ≥=,21234ABO S ≤=△, 此时1t =,0m = ∴存在直线:1l x =,2ABO ∆的面积最大值为3. …………14分 [来源:学|科|网]======*以上是由明师教育编辑整理======。

相关文档
最新文档