高考复习方案(全国卷地区专用)高考物理一轮复习 第4单元 曲线运动万有引力与航天 第9讲 抛体运动作

合集下载

高考复习方案(全国卷地区专用)2021届高考物理一轮复习第4单元曲线运动万有引力与航天第10讲圆周运

高考复习方案(全国卷地区专用)2021届高考物理一轮复习第4单元曲线运动万有引力与航天第10讲圆周运

高考复习方案(全国卷地区专用)2021届高考物理一轮复习第4单元曲线运动万有引力与航天第10讲圆周运动作业手册新人教版一、单选题1.关于质点做匀速圆周运动的下列说法正确的是( )A .由a =v 2r知,a 与r 成反比B .由a =ω2r 知,a 与r 成正比 C .由ω=v r知,ω与r 成反比D .由ω=2πn 知,ω与转速n 成正比2.[2020·河北廊坊联考]如图K10­1所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动.当圆筒的角速度逐步增大时(物体不滑动),下列说法正确的是( )图K10­1A .物体所受弹力增大,摩擦力也增大了B .物体所受弹力增大,摩擦力减小了C .物体所受弹力和摩擦力都减小了D .物体所受弹力增大,摩擦力不变3.雨天野外骑车时,在自行车的后轮轮胎上常会黏附一些泥巴,行驶时感受专门“繁重”.假如将自行车后轮撑起,使后轮离开地面而悬空,然后用手匀速摇脚踏板,使后轮飞速转动,泥巴就被甩下来.如图K10­2所示,图中a 、b 、c 、d 为后轮轮胎边缘上的四个专门位置,则( )图K10­2A .泥巴在图中a 、c 位置的向心加速度大于b 、d 位置的向心加速度B .泥巴在图中的b 、d 位置时最容易被甩下来C .泥巴在图中的c 位置时最容易被甩下来D .泥巴在图中的a 位置时最容易被甩下来4.[2020·湖南长沙联考]用如图K10­3(a)所示的装置研究平抛运动,每次将质量为m 的小球从半径为R 的四分之一圆弧形轨道的不同位置由静止开释,并在弧形轨道最低点水平部分处装有压力传感器,测出小球对轨道压力的大小为F .已知斜面与水平地面之间的夹角θ=45°,实验时获得小球在斜面上的不同水平射程x ,最后作出了如图(b)所示的F ­x 图像,则由图可求得圆弧轨道的半径R为( )图K10­3A.0.125 mB.0.25 mC.0.50 mD.1.0 m5.公路急转弯处通常是交通事故多发地带.如图K10­4所示,某公路急转弯处是一圆弧,当汽车行驶的速率为v c时,汽车恰好没有向公路内外两侧滑动的趋势,则在该弯道处( )图K10­4A.路面外侧低内侧高B.车速只要低于v c,车辆便会向内侧滑动C.车速尽管高于v c,但只要不超出某一最高限度,车辆便可不能向外侧滑动D.当路面结冰时,与未结冰时相比,v c的值变小6.如图K10­5,在光滑的水平面上两个质量相等的小球A、B用两根等长的轻绳连接.现让两小球A、B以C为圆心、以相同的角速度做匀速圆周运动,A球的向心加速度为a1,B 球的向心加速度为a2,AC段绳所受拉力记为F1,AB段绳所受拉力记为F2,则下列说法中正确的是( )图K10­5A.a1∶a2=1∶1B.a1∶a2=1∶4C.F1∶F2=2∶1D.F1∶F2=3∶2二、多选题7.[2020·广东佛山高三教学质检]如图K10­6所示,木箱内有一倾斜光滑斜面,当木箱做下列运动时,处于该斜面上的物体在哪种情形下有可能与斜面保持相对静止( )图K10­6A.向左匀加速(甲图)B.向右匀加速(乙图)C.竖直向上匀加速(丙图)D.随圆盘绕竖直轴匀速转动(丁图)8.[2020·河南中原名校高三上学期期中考试]质量为m的小球由轻绳a和b分别系于一轻质木架上的A点和C点,如图K10­7所示,当木架绕轴BC以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,绳a在竖直方向,绳b在水平方向,当小球运动到如图所示位置时,绳b被烧断的同时木架停止转动,则( )图K10­7A.小球仍在水平面内做匀速圆周运动B.在绳b被烧断瞬时,a绳中张力突然增大C.若角速度ω较小,小球在垂直于平面ABC的竖直平面内摆动D.若角速度ω较大,小球可能在垂直于平面ABC的竖直平面内做圆周运动9.[2020·河南安阳第二次教学质检]如图K10­8所示,粗糙水平圆盘上,质量相等的A、B两物块叠放在一起,随圆盘一起做匀速圆周运动,则下列说法正确的是( )图K10­8A.B的向心力是A的向心力的2倍B.盘对B的摩擦力是B对A的摩擦力的2倍C.A、B都有沿半径向外滑动的趋势D.若B先滑动,则B对A的动摩擦因数μA小于盘对B的动摩擦因数μB三、运算题10.在用高级沥青铺设的高速公路上,汽车的设计时速是108 km/h.汽车在这种路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的倍.(1)假如汽车在这种高速公路的水平弯道上拐弯,假设弯道的路面是水平的,其弯道的最小半径是多少?(2)假如高速公路上设计了圆弧拱形立交桥,要使汽车能够以设计时速安全通过圆弧拱桥,那个圆弧拱形立交桥的半径至少是多少?(g取10 m/s2)11.[2020·豫东、豫北十校测试]如图K10­9所示,半径为l4、质量为m 的小球用两根不可伸长的轻绳a 、b 连接,两轻绳的另一端系在一根竖直杆的A 、B 两点上,A 、B 两点相距为l ,当两轻绳伸直后,A 、B 两点到球心的距离均为l .当竖直杆以自己为轴转动并达到稳固时(轻绳a 、b 与杆在同一竖直平面内).求:(1)竖直杆角速度ω为多大时,小球恰好离开竖直杆.(2)轻绳a 的张力F a 与竖直杆转动的角速度ω之间的关系.图K10­9课时作业(十)1.D [解析] 由a =v 2r 知,只有在v 一定时,a 才与r 成反比,假如v 不一定,则a 与r 不成反比,同理,只有当ω一定时,a 才与r 成正比;v 一定时,ω与r 成反比;因2π是定值,故ω与n 成正比.2.D [解析] 物体随圆筒一起转动时,受到三个力的作用:重力G 、筒壁对它的弹力F N 和筒壁对它的摩擦力F f (如图所示).其中G 和F f 是一对平稳力,筒壁对它的弹力F N 提供它做圆周运动的向心力.当圆筒转动时,不管其角速度多大,只要物体随圆筒一起转动而未滑动,则物体所受的(静)摩擦力F f 大小就等于其重力.而依照向心力公式,F N =mrω2,当角速度ω增大时F N 也增大,选项D 正确.3.C [解析] 当后轮匀速转动时,由a =Rω2知a 、b 、c 、d 四个位置的向心加速度大小相等,A 错误.在角速度ω相同的情形下,泥巴在a 点有F a +mg =mω2R ,在b 、d 两点有F b =F d =mω2R ,在c 点有F c -mg =mω2R .因此泥巴与轮胎在c 位置的相互作用力最大,最容易被甩下来,故B 、D 错误,C 正确.4.B [解析] 小球在水平方向做匀速直线运动,竖直方向做自由落体运动,依照平抛运动的规律可得做平抛运动竖直分位移x tan θ=12g ⎝ ⎛⎭⎪⎫x v 2,小球在弧形轨道最低点,依照牛顿第二定律可得:F ′-mg =m v 2R (F ′是F 的反作用力),由以上两式解得:F ′=mg2Rx +mg ,即图(b)中纵轴截距 N 为小球的重力,斜率k =10 N/m =mg2R ,即R =0.25 m ,选项B 正确.5.C [解析] 当汽车行驶的速率为v c 时,路面对汽车没有摩擦力,路面对汽车的支持力与汽车重力的合力提供向心力,现在要求路面外侧高内侧低,选项A 错误.当速率稍大于v c 时,汽车有向外侧滑动的趋势,因而受到向内侧的摩擦力,当摩擦力小于最大静摩擦力时,车辆可不能向外侧滑动,选项C 正确.同样,速率稍小于v c 时,车辆可不能向内侧滑动,选项B 错误.v c 的大小只与路面的倾斜程度和转弯半径有关,与路面的粗糙程度无关,选项D 错误.6.D [解析] 设CA =AB =l ,角速度相等,依照a =rω2,有:a 1∶a 2=l ∶2l =1∶2,选项A 、B 错误;对B 球有:F 2=m ·2l ω2,对A 球有:F 1-F 2=mlω2,联立两式解得:F 1∶F 2=3∶2,选项C 错误,D 正确.7.BD [解析] 斜面光滑,斜面上物体受到重力和斜面的支持力两个力的作用,加速度水平向左,依照牛顿第二定律知合力应该水平向左,斜面上物体才能相对斜面静止,而图甲中支持力和重力的合力不可能向左,故A 错误;图乙中斜面上物体受到的支持力和重力的合力可能水平向右,与加速度相同,因此可能保持相对静止,故B 正确;由于加速度方向向上,重力和支持力的合力不可能向上,可知斜面上物体与斜面不可能保持相对静止,故C 错误;木箱随圆盘做圆周运动,加速度方向水平指向转轴,斜面上物体所受的重力和支持力的合力可能水平指向转轴,因此物体和斜面可能保持相对静止,故D 正确.8.BCD [解析] 小球原先在水平面内做匀速圆周运动,绳b 被烧断后,小球在垂直于平面ABC 的竖直平面内摆动或做圆周运动,选项A 错误;绳b 被烧断前,小球在竖直方向加速度为零,a 绳中张力等于重力,在绳b 被烧断瞬时,a 绳中张力与重力的合力提供小球的向心力,而向心力竖直向上,绳a 的张力将大于重力,即张力突然增大,选项B 正确;若角速度ω较小,小球原先的速度较小,小球在垂直于平面ABC 的竖直平面内摆动,选项C 正确;若角速度ω较大,小球原先的速度较大,小球可能在垂直于平面ABC 的竖直平面内做圆周运动,选项D 正确.9.BC [解析] A 、B 两物块的角速度大小相等,依照F n =mrω2,因为两物块的角速度大小相等,转动半径相等,质量相等,因此向心力相等,选项A 错误;对AB 整体分析,f B=2mrω2,对A 分析,有:f A =mrω2,知盘对B 的摩擦力是B 对A 的摩擦力的2倍,选项B 正确;A 所受的静摩擦力方向指向圆心,可知A 有沿半径向外滑动的趋势,B 受到盘的静摩擦力方向指向圆心,可知B 有沿半径向外滑动的趋势,选项C 正确;对AB 整体分析,μB ·2mg =2mrω2B ,解得:ωB =μB g r ,对A 分析,μA mg =mrω2A ,解得ωA =μA g r,因为B 先滑动,可知B 先达到临界角速度,可知B 的临界角速度较小,即μB <μA ,选项D 错误.10.(1)150 m (2)90 m[解析] (1)汽车在水平路面上拐弯,可视为汽车做匀速圆周运动,其向心力由车与路面间的静摩擦力提供,当静摩擦力达到最大值时,由向心力公式可知这时的半径最小,有F max ==m v 2r min代入速度v =108 km/h =30 m/s 解得弯道半径r min =150 m.(2)汽车过拱桥,可看作在竖直平面内做匀速圆周运动,到达最高点时,依照向心力公式有mg -F N =m v 2R为了保证安全通过,车与路面间的弹力F N 必须大于或等于零,有mg ≥m v 2R解得R ≥90 m. 11.(1)2g15l(2)略[解析] (1)小球恰好离开竖直杆时,小球与竖直杆间的作用力为零,设现在轻绳a 与竖直杆间的夹角为α,由题意可知sin α=14, r =l4沿半径:F a sin α=mω2r垂直半径:F a cos α=mg 联立解得ω=2g15l.(2)由(1)可知0≤ω≤2g15l时,F a =415mg若角速度ω再增大,小球将离开竖直杆,在轻绳b 恰伸直前,设轻绳a 与竖直杆的夹角为β,现在小球做圆周运动的半径为r =l sin β沿半径:F a sin β=mω2r 垂直半径:F a cos β=mg联立解得F a =mω2l当轻绳b 恰伸直时,β=60°现在ω=2g l故有F a =mω2l ,现在2g15l<ω≤2gl若角速度ω再增大,轻绳b 拉直后,小球做圆周运动的半径为 r =l sin 60°沿半径:F a sin 60°+F b sin 60°=mω2r 垂直半径:F a cos 60°=F b cos 60°+mg 联立解得F a =12ml ω2+mg ,现在ω>2g l.。

(统考版)高考物理一轮复习 第四章 曲线运动 万有引力与航天 第4讲 万有引力与航天学生用书

(统考版)高考物理一轮复习 第四章 曲线运动 万有引力与航天 第4讲 万有引力与航天学生用书

第4讲万有引力与航天一、开普勒行星运动定律1.开普勒第一定律——轨道定律所有行星绕太阳运动的轨道都是________,太阳处在椭圆的一个________上.2.开普勒第二定律——面积定律对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的________.3.开普勒第三定律——周期定律所有行星的轨道的半长轴的三次方跟它的________的二次方的比值都相等.二、万有引力定律1.内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成________、与它们之间距离r的二次方成________.2.表达式F=G m1m2,G为引力常量,其值通常取G=6.67×10-11N·m2/kg2.r23.适用条件(1)公式适用于________间的相互作用,当两个物体间的距离远远大于物体本身的大小时,物体可视为质点.(2)质量分布均匀的球体可视为质点,r是________的距离.三、宇宙速度1.经典时空观(1)在经典力学中,物体的质量是不随________而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是________的.2.相对论时空观(1)在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是________的.(2)光速不变原理:不管在哪个惯性系中,测得的真空中的光速都是________的.,生活情境1.我国的“天链一号”是地球同步卫星,在发射变轨过程中有一椭圆轨道如图所示,A 、B 是“天链一号”运动的远地点和近地点.(1)根据开普勒第一定律,“天链一号”围绕地球运动的轨迹是椭圆,地球处于椭圆的一个焦点上.( )(2)根据开普勒第二定律,“天链一号”在B 点的运动速度比在A 点小.( ) (3)“天链一号”在A 点的加速度小于在B 点的加速度.( )(4)开普勒第三定律a 3T 2=k 中,k 是只与中心天体有关的物理量.( )(5)开普勒根据自己长期观察的实验数据总结出了行星运动的规律,并发现了万有引力定律.( )教材拓展2.[人教版必修2P 48T 3改编]火星的质量和半径分别约为地球的110和12,地球的第一宇宙速度为v ,则火星的第一宇宙速度约为( )A .√55v B .√5v C .√2v D .√22v关键能力·分层突破考点一 万有引力定律与开普勒定律1.万有引力与重力的关系地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力F 向,如图所示.(1)在赤道处:G MmR 2=mg 1+m ω2R .(2)在两极处:G MmR 2=mg 2.2.星体表面及上空的重力加速度(以地球为例)(1)在地球表面附近的重力加速度g (不考虑地球自转):mg =G Mm R 2,得g =GMR 2.(2)在地球上空距离地球表面h处的重力加速度为g′:mg′=G Mm(R+h)2,得g′=GM(R+h)2,所以gg′=(R+h)2R2.例1. [2021·全国甲卷,18]2021年2月,执行我国火星探测任务的“天问一号”探测器在成功实施三次近火制动后,进入运行周期约为1.8×105s的椭圆形停泊轨道,轨道与火星表面的最近距离约为2.8×105 m.已知火星半径约为3.4×106 m,火星表面处自由落体的加速度大小约为3.7 m/s2,则“天问一号”的停泊轨道与火星表面的最远距离约为( ) A.6×105 m B.6×106 mC.6×107 m D.6×108 m跟进训练1.[2021·山东卷,5]从“玉兔”登月到“祝融”探火,我国星际探测事业实现了由地月系到行星际的跨越.已知火星质量约为月球的9倍,半径约为月球的2倍,“祝融”火星车的质量约为“玉兔”月球车的2倍.在着陆前,“祝融”和“玉兔”都会经历一个由着陆平台支撑的悬停过程.悬停时,“祝融”与“玉兔”所受着陆平台的作用力大小之比为( )A.9∶1 B.9∶2C.36∶1 D.72∶12.如图所示,一颗卫星绕地球沿椭圆轨道运动,运动周期为T,图中虚线为卫星的运行轨道,A、B、C、D是轨道上的四个位置,其中A距离地球最近,C距离地球最远.B和D是弧线ABC和ADC的中点.下列说法正确的是( )A.卫星在C点的速度最大B.卫星在C点的加速度最大C.卫星从A经D到C点的运动时间为T2D .卫星从B 经A 到D 点的运动时间为T2考点二 天体质量和密度的估算1.计算中心天体的质量、密度时的两点区别(1)天体半径和卫星的轨道半径通常把天体看成一个球体,天体的半径指的是球体的半径.卫星的轨道半径指的是卫星围绕天体做圆周运动的圆的半径.卫星的轨道半径大于等于天体的半径.(2)自转周期和公转周期自转周期是指天体绕自身某轴线运动一周所用的时间,公转周期是指卫星绕中心天体做圆周运动一周所用的时间.自转周期与公转周期一般不相等.2.天体质量和密度的估算方法(1)利用天体表面的重力加速度g 和天体半径R .①由G MmR 2=mg 得天体质量M =gR 2G.②天体密度ρ=M V =M 43πR 3=3g4πGR.③GM =gR 2称为黄金代换公式.(2)测出卫星绕天体做匀速圆周运动的周期T 和半径r . ①由GMm r 2=m4π2T 2r 得天体的质量M =4π2r 3GT 2.②若已知天体的半径R ,则天体的密度ρ=M V =M43πR3=3πr 3GT 2R 3. 例2. [2021·广东卷,2]2021年4月,我国自主研发的空间站天和核心舱成功发射并入轨运行.若核心舱绕地球的运行可视为匀速圆周运动,已知引力常量,由下列物理量能计算出地球质量的是( )A .核心舱的质量和绕地半径B .核心舱的质量和绕地周期C .核心舱的绕地角速度和绕地周期D .核心舱的绕地线速度和绕地半径跟进训练 3.如图所示,“嫦娥五号”探测器包括轨道器、返回器、上升器、着陆器四部分.探测器自动完成月面样品采集,并在2020年12月17日凌晨安全着陆回家.若已知月球半径为R ,“嫦娥五号”在距月球表面为R 的圆轨道上飞行,周期为T ,万有引力常量为G ,下列说法正确的是( )A .月球的质量为4π2R 3GT 2B .月球表面的重力加速度为32π2R T 2C .月球的密度为3πGT 2D .月球第一宇宙速度为4πR T4.[2021·全国乙卷,18]科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置如图所示.科学家认为S2的运动轨迹是半长轴约为1 000 AU(太阳到地球的距离为1 AU)的椭圆,银河系中心可能存在超大质量黑洞.这项研究工作获得了2020年诺贝尔物理学奖.若认为S2所受的作用力主要为该大质量黑洞的引力,设太阳的质量为M ,可以推测出该黑洞质量约为( )A .4×104M B .4×106MC .4×108MD .4×1010M考点三 卫星运行规律及特点角度1宇宙速度的理解与计算例3. 我国首次火星探测任务被命名为“天问一号”.已知火星质量约为地球质量的10%,半径约为地球半径的50%,下列说法正确的是( )A .火星探测器的发射速度应大于地球的第二宇宙速度B .火星探测器的发射速度应介于地球的第一和第二宇宙速度之间C .火星的第一宇宙速度大于地球的第一宇宙速度D .火星表面的重力加速度大于地球表面的重力加速度角度2卫星运行参量的比较做匀速圆周运动的卫星所受万有引力完全提供其所需向心力,由GMm r 2=m v 2r =mr ω2=m4π2T 2r =ma 可推导出:v = √GMrω= √GMr 3T = √4π2r 3GM a =G M r 2}⇒当r 增大时{ v 减小ω减小T 增大a 减小例4. [2021·湖南卷,7](多选)2021年4月29日,中国空间站天和核心舱发射升空,准确进入预定轨道.根据任务安排,后续将发射问天实验舱和梦天实验舱,计划2022年完成空间站在轨建造.核心舱绕地球飞行的轨道可视为圆轨道,轨道离地面的高度约为地球半径的116,下列说法正确的是( )A .核心舱进入轨道后所受地球的万有引力大小约为它在地面时的(1617)2B .核心舱在轨道上飞行的速度大于7.9 km/sC .核心舱在轨道上飞行的周期小于24 hD角度3同步卫星问题地球同步卫星的五个“一定”例5. [2022·北京石景山模拟]研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( )A .距地面的高度变大B .向心加速度变大C .线速度变大D .角速度变大角度4卫星变轨问题例6.[2021·天津模拟]2021年5月15日,天问一号探测器着陆火星取得成功,迈出了我国星际探测征程的重要一步,在火星上首次留下中国人的印迹.天问一号探测器成功发射后,顺利被火星捕获,成为我国第一颗人造火星卫星.经过轨道调整,探测器先沿椭圆轨道Ⅰ运行,之后进入称为火星停泊轨道的椭圆轨道Ⅱ运行,如图所示,两轨道相切于近火点P ,则天问一号探测器( )A .在轨道Ⅱ上处于受力平衡状态B .在轨道Ⅰ运行周期比在Ⅱ时短C .从轨道Ⅰ进入Ⅱ在P 处要加速D .沿轨道Ⅰ向P 飞近时速度增大[思维方法]人造卫星问题的解题技巧(1)一个模型卫星的运动可简化为质点的匀速圆周运动模型. (2)两组公式①GMm r 2=m v 2r =m ω2r =m4π2T 2r =ma n .②mg =G MmR 2(g 为星体表面处的重力加速度).(3)a n 、v 、ω、T 均与卫星的质量无关,只由轨道半径和中心天体质量共同决定,所有参量的比较最终归结到半径的比较.跟进训练5.(多选)2021年6月17日,神舟十二号载人飞船采用自主快速交会对接模式成功对接于天和核心舱前向端口,与此前已对接的天舟二号货运飞船一起构成三舱组合体.组合体绕地球飞行的轨道可视为圆轨道,该轨道离地面的高度约为389 km.下列说法正确的是( )A .组合体在轨道上飞行的周期小于24 hB .组合体在轨道上飞行的速度大于7.9 km/sC .若已知地球半径和表面重力加速度,则可算出组合体的角速度D .神舟十二号先到达天和核心舱所在圆轨道,然后加速完成对接6.[2021·浙江6月,10]空间站在地球外层的稀薄大气中绕行,因气体阻力的影响,轨道高度会发生变化.空间站安装有发动机,可对轨道进行修正.图中给出了国际空间站在2020.02~2020.08期间离地高度随时间变化的曲线,则空间站( )A.绕地运行速度约为2.0 km/sB.绕地运行速度约为8.0 km/sC.在4月份绕行的任意两小时内机械能可视为守恒D.在5月份绕行的任意两小时内机械能可视为守恒考点四双星或多星模型素养提升1.双星模型(1)结构图(2)特点:①各自所需向心力由彼此间的万有引力提供,即G m1m2L2=m1ω12r1,G m1m2L2=m2ω22r2.②两颗星运行的周期及角速度相同,即T1=T2,ω1=ω2.③两颗星的运行轨道半径与它们之间的距离关系为r1+r2=L.2.多星系统(1)多星的特征:所研究星体间的万有引力的合力提供其做圆周运动的向心力.除中央星体外,各星体的周期相同.(2)多星的形式(如三星模型)例7. [2022·潍坊模拟](多选)在宇宙中,当一颗恒星靠近黑洞时,黑洞和恒星可以相互绕行,从而组成双星系统.在相互绕行的过程中,质量较大的恒星上的物质会逐渐被吸入到质量较小的黑洞中,从而被吞噬掉,黑洞吞噬恒星的过程也被称之为“潮汐瓦解事件”.天鹅座X ­ 1就是这样一个由黑洞和恒星组成的双星系统,它们以两者连线上的某一点为圆心做匀速圆周运动,如图所示.在刚开始吞噬的较短时间内,恒星和黑洞的距离不变,则在这段时间内,下列说法正确的是( )A .它们间的万有引力大小变大B .它们间的万有引力大小不变C .恒星做圆周运动的线速度变大D .恒星做圆周运动的角速度变大跟进训练7.宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用,分别围绕其连线上的某一点做周期相同的匀速圆周运动,称之为双星系统.由恒星A 与恒星B 组成的双星系统绕其连线上的O 点做匀速圆周运动,如图所示.已知它们的运行周期为T ,恒星A 的质量为M ,恒星B 的质量为3M ,引力常量为G ,则下列判断正确的是( )A .两颗恒星相距 √GMT 2π23B .恒星A 与恒星B 的向心力之比为3∶1C .恒星A 与恒星B 的线速度之比为1∶3D .恒星A 与恒星B 的轨道半径之比为√3∶18.宇宙间存在一些离其他恒星较远的三星系统.其中有一种三星系统如图所示,三颗质量均为M 的星位于等边三角形的三个顶点上,任意两颗星的距离均为R ,并绕其中心O 做匀速圆周运动.如果忽略其他星体对它们的引力作用,引力常量为G ,以下对该三星系统的说法中正确的( )A .每颗星做圆周运动的角速度为3√GMR 3B .每颗星做圆周运动的向心加速度与三星的质量无关C .若距离R 和每颗星的质量M 都变为原来的2倍,则角速度变为原来的2倍D .若距离R 和每颗星的质量M 都变为原来的2倍,则线速度大小不变第4讲 万有引力与航天必备知识·自主排查一、1.椭圆 焦点 2.面积 3.公转周期 二、1.正比 反比3.(1)质点 (2)两球心间 三、7.9 匀速圆周 11.2 地球 16.7 太阳 四、1.(1)运动状态 (2)相同 2.(1)不同 (2)不变 生活情境1.(1)√ (2)× (3)√ (4)√ (5)× 教材拓展 2.答案:A关键能力·分层突破例1 解析:设火星的半径为R 1、表面的重力加速度为g 1,质量为m 1的物体绕火星表面飞行的周期为T 1,则有m 14π2T 12 R 1=m 1g 1,设椭圆停泊轨道与火星表面的最近、最远距离分别为h 1、h 2,停泊轨道周期为T 2,根据开普勒第三定律有R 13 T 12 =(ℎ1+2R 1+ℎ22)3T 22 ,代入数据解得h 2=√2g 1R 12T 22 π23-2R 1-h 1≈6×107m ,故选项A 、B 、D 错误,选项C 正确.答案:C1.解析:悬停时二力平衡,即F =G Mm R 2∝MmR 2,得F 祝F 兔=M 火M 月×m 祝m 兔×(R 月R 火)2=91×21×(12)2=92,B 项正确. 答案:B2.解析:卫星绕地球沿椭圆轨道运动,类似于行星绕太阳运转,根据开普勒第二定律:行星与太阳的连线在相等时间内扫过的面积相等,则知卫星与地球的连线在相等时间内扫过的面积相等,所以卫星在距离地球最近的A 点速度最大,在距离地球最远的C 点速度最小,故A 错误;在椭圆的各个点上都是引力产生加速度,有a =GMr 2,因卫星在A 点与地球的距离最小,则卫星在A 点的加速度最大,故B 错误;根据对称性可知t ADC =t CBA =T2,故C 正确;卫星在近地点A 附近速度较大,在远地点C 附近速度较小,则t BAD <T2,t DCB >T 2,故D 错误.答案:C例2 解析:根据万有引力提供核心舱绕地球做匀速圆周运动的向心力得GMm r 2=m v 2r ,解得M =v 2r G,D 正确;由于核心舱质量在运算中被约掉,故无法通过核心舱质量求解地球质量,A 、B 错误;已知核心舱的绕地角速度,由GMm r 2=m ω2r 得M =ω2·r 3G,且ω=2πT,r 约不掉,故还需要知道核心舱的绕地半径,才能求得地球质量,C 错误. 答案:D 3.解析:“嫦娥五号”探测器在距月球表面为R 的轨道上运行,万有引力提供向心力,有G Mm (2R )2=m 4π2T 22R ,得月球质量为M =32π2R 3GT 2,A 错误;月球密度ρ=M V=M43πR3=24πGT 2,C 错误;对月球表面的物体m ′,有G Mm ′R 2=m ′g ,得月球表面的重力加速度g =GM R 2=32π2R T 2,B 正确;设月球第一宇宙速度为v ,则G MmR 2=m v 2R ,得v = √GM R=4√2πR T,D 错误.答案:B4.解析:由1994年到2002年间恒星S2的观测位置图可知,恒星S2绕黑洞运动的周期大约为T 2=16年,半长轴为a =1 000 AU ,设黑洞的质量为M 黑,恒星S2质量为m 2,由万有引力提供向心力可得GM 黑m 2a 2=m 2a (2πT 2)2;设地球质量为m 1,地球绕太阳运动的轨道半径为r=1 AU ,周期T 1=1年,由万有引力提供向心力可得GMm 1r 2=m 1r (2πT 1)2,联立解得黑洞质量M 黑≈4×106M ,选项B 正确.答案:B例 3 解析:当发射速度大于第二宇宙速度时,探测器将脱离地球的引力在太阳系的范围内运动,火星在太阳系内,所以火星探测器的发射速度应大于第二宇宙速度,故A 正确;第二宇宙速度是探测器脱离地球的引力到太阳系中的临界条件,当发射速度介于地球的第一和第二宇宙速度之间时,探测器将围绕地球运动,故B 错误;万有引力提供向心力,则有GMm R 2=mv 12 R,解得第一宇宙速度为v 1= √GM R,所以火星的第一宇宙速度为v 火= √10%50%v 地= √55v 地,所以火星的第一宇宙速度小于地球的第一宇宙速度,故C 错误;万有引力近似等于重力,则有GMm R 2=mg ,解得火星表面的重力加速度g 火=GM 火R 火2=10%(50%)2g 地=25g 地,所以火星表面的重力加速度小于地球表面的重力加速度,故D 错误.故选A.答案:A例4 解析:根据万有引力公式F =GMm r 2可知,核心舱进入轨道后所受地球的万有引力大小与轨道半径的平方成反比,则核心舱进入轨道后所受地球的万有引力与它在地面时所受地球的万有引力之比F ′F 地=R 2(R+R 16)2,解得F ′=(1617)2F 地,A 正确;根据GMm R 2=mv 2R可得,v = √GM R=7.9 km/s ,而核心舱轨道半径r 大于地球半径R ,所以核心舱在轨道上飞行的速度一定小于7.9 km/s ,B 错误;由GMm r 2=m4π2T 2r 得绕地球做圆周运动的周期T 与√r 3成正比,核心舱的轨道半径比同步卫星的小,故核心舱在轨道上飞行的周期小于24 h ,C 正确;根据G Mmr 2=m v 2r 可知空间站的轨道半径与空间站的质量无关,故后续加挂实验舱后,轨道半径不变,D 错误.答案:AC例5 解析:同步卫星的周期等于地球的自转周期,根据GMm r 2=m (2πT)2r 可知,卫星的周期越大,轨道半径越大,所以地球自转变慢后,同步卫星需要在更高的轨道上运行,A 正确;又由GMm r 2=m v 2r=m ω2r =ma 可知:r 增大,则v 减小、ω变小、a 变小,故B 、C 、D 均错误.答案:A例6 解析:天问一号探测器在轨道Ⅱ上做变速运动,受力不平衡,故A 错误.轨道Ⅰ的半长轴大于轨道Ⅱ的半长轴,根据开普勒第三定律可知,天问一号探测器在轨道Ⅰ的运行周期比在Ⅱ时长,故B 错误.天问一号探测器从较高轨道Ⅰ向较低轨道Ⅱ变轨时,需要在P 点点火减速,故C 错误.天问一号探测器沿轨道Ⅰ向P 飞近时,万有引力做正功,动能增大,速度增大,故D 正确.答案:D5.解析:组合体的轨道半径小于同步卫星的轨道半径,由开普勒第三定律可知其周期小于24 h ,A 项正确;环绕地球表面做圆周运动的近地卫星的速度为7.9 km/s ,组合体的轨道半径大于近地卫星的轨道半径,由v = √GM r可知组合体的速度小于7.9 km/s ,B 项错;若已知地球半径和表面重力加速度,则有GM =gR 2,对组合体则有G Mm(R+h )2=m ω2(R +h ),两式联立可得出组合体的角速度,C 项正确;若神舟十二号先到达天和核心舱所在圆轨道再加速,则做离心运动,不能完成对接,D 项错.答案:AC6.解析:设空间站离地面高度为h ,空间站在运行过程中万有引力提供其做圆周运动的向心力,有G Mm (R+h )2=m v 2(R+h ),则运行速度v =√GMR+h ,由题图可知卫星绕地球做离地高约420 km左右的近地轨道运动,故环绕速度略小于第一宇宙速度7.9 km/s ,A 、B 错误;4月份中某时刻轨道高度突然减小,是由于受到了外层大气稀薄空气的影响,机械能减小,C 错误;5月中轨道半径基本不变,故机械能可视为守恒,D 正确.答案:D例7 解析:设质量较大的恒星为M 1,质量较小的黑洞为M 2,则两者之间的万有引力为F =GM 1M 2L 2,由数学知识可知,当M 1=M 2时,M 1·M 2有最大值,根据题意可知质量较小的黑洞M 2吞噬质量较大的恒星M 1,因此万有引力变大,故A 正确,B 错误;对于两天体,万有引力提供向心力,即G M 1M 2L 2=M 1ω2R 1=M 14π2T 2R 1,GM 1M 2L 2=M 2ω2R 2=M 24π2R T 2R 2,解得两天体质量表达式为M 1=ω2L 2GR 2=4π2L 2GT 2R 2,M 2=ω2L 2GR 1=4π2L 2GT 2R 1,两天体总质量表达式为M 1+M 2=ω2L 3G=4π2L 3GT 2,两天体的总质量不变,两天体之间的距离L 不变,因此天体的周期T 和角速度ω也不变,质量较小的黑洞M 2的质量增大,因此恒星的圆周运动半径增大,根据v =2πR 2T可知,恒星的线速度增大.故C 正确,D 错误.答案:AC7.解析:两颗恒星做匀速圆周运动的向心力来源于恒星之间的万有引力,所以向心力大小相等,即M4π2T 2r A =3M4π2T 2r B ,解得恒星A 与恒星B 的轨道半径之比为r A ∶r B =3∶1,选项B 、D 错误;设两恒星相距为L ,即r A +r B =L ,则有M 4π2T 2r A =G 3M 2L 2,解得L = √GMT 2π23,选项A 正确;由v =2πTr 可得恒星A 与恒星B 的线速度之比为3∶1,选项C 错误.答案:A8.解析:任意两星之间的万有引力为F 0=G MM R 2,则任意一星所受合力为F =2F 0cos 30°=2×GMM R 2×√32=√3G MM R2,任意一星运动的轨道半径r =23R cos 30°=23×R ×√32=√33R ,万有引力提供向心力,有F =√3G MMR 2=M ω2r ,解得每颗星做圆周运动的角速度ω= √√3GM·√33R =√3GM R 3,A 错误;万有引力提供向心力,有F =√3GMM R2=Ma ,解得a =√3GMR 2,则每颗星做圆周运动的向心加速度与三星的质量有关,B 错误;根据题意可知ω′= √3G·2M(2R )3=12 √3GM R 3=12ω,C 错误;根据线速度与角速度的关系可知变化前线速度为v =ωr = √3GM R 3·√33R = √GM R,则变化后为v ′= √2GM 2R=v ,D 正确.答案:D。

高考复习方案(全国卷地区专用)高考物理一轮复习第4单元曲线运动万有引力与航天第11讲万有引力与天体运

高考复习方案(全国卷地区专用)高考物理一轮复习第4单元曲线运动万有引力与航天第11讲万有引力与天体运

第11讲 万有引力与天体运动核心填空一、开普勒三定律1.开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个________上.2.开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的________相等.3.开普勒第三定律:所有行星的轨道的________的三次方跟________的二次方的比值都相等.二、万有引力定律1.内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成________,跟它们的距离的二次方成________.2.公式:________________ (其中引力常量G =6.67×10-11 N ·m 2/ kg 2).3.适用条件:公式适用于质点间的相互作用.当两个物体间的距离远大于物体本身的大小时,物体可视为质点.均匀的球体视为质点时,r 是两球心间的距离.三、天体运动问题的分析1.运动学分析:将天体或卫星的运动看成________________运动.2.动力学分析:(1)万有引力提供________,即F 向=G Mm r 2=ma =m v 2r =m ω2r =m ⎝ ⎛⎭⎪⎫2πT 2r .(2)在星球表面附近的物体所受的万有引力近似等于________,即G Mm r2=mg (g 为星球表面的重力加速度).四、三个宇宙速度1.第一宇宙速度(环绕速度):v 1=7.9 km/s ,是人造地球卫星的________________,也是人造卫星绕地球做匀速圆周运动的________.2.第二宇宙速度(逃逸速度):v 2=11.2 km/s ,是卫星挣脱地球引力束缚的________. 3.第三宇宙速度:v 3=16.7 km/s ,是卫星挣脱太阳引力束缚的________.易错判断(1)牛顿利用扭秤实验装置比较准确地测出了引力常量.( ) (2)两物体间的距离趋近于零时,万有引力趋近于无穷大.( )(3)行星在椭圆轨道上运行速率是变化的,离太阳越远,运行速率越小.( ) (4)近地卫星距离地球最近,环绕速度最小.( )(5)地球同步卫星根据需要可以定点在北京正上空.( )(6)极地卫星通过地球两极,且始终和地球某一经线平面重合.( ) (7)发射火星探测器的速度必须大于11.2 km/s.( )考点一 开普勒行星运动定律的理解和应用] 登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星公转视为匀速圆周运动,忽略行星自转影响.根据下表,火星和地球相比( )A.B .火星做圆周运动的加速度较小 C .火星表面的重力加速度较大 D .火星的第一宇宙速度较大火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 ■ 特别提醒1.行星绕太阳的运动通常按圆轨道处理,若按椭圆轨道处理,则利用其半长轴进行计算.2.开普勒行星运动定律也适用于其他天体,例如月球、卫星绕地球的运动.3.开普勒第三定律a 3T2=k 中,k 值只与中心天体的质量有关,不同的中心天体k 值不同.考点二 万有引力的计算和应用1.万有引力的特点:两个物体相互作用的引力是一对作用力和反作用力,它们大小相等,方向沿两物体的连线且相反,分别作用在两个物体上,其作用效果一般不同.2.万有引力的一般应用: 万有引力的一般应用问题主要涉及万有引力的基本计算、天体质量和密度的计算等.在这类问题的分析中应注意:(1)万有引力公式F =Gm 1m 2r 2中的r 应为两物体球心间距,如果某一物体内部存在球形空腔,则宜采取“割补法”分析;(2)对于万有引力提供向心力情景下的天体运动,根据万有引力定律和牛顿第二定律有Gm 1m 2r 2=m 1a ,且a =ω2r =v 2r =⎝ ⎛⎭⎪⎫2πT 2r ;(3)根据万有引力等于重力,即G Mm R2=mg ,得GM =gR 2(黄金代换公式),利用黄金代换公式进行天体质量和天体重力加速度之间的代换.] 假设地球是一半径为R 、质量分布均匀的球体.一矿井深度为d .已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为( )A .1-d RB .1+d RC.⎝ ⎛⎭⎪⎫R -d R 2D.⎝ ⎛⎭⎪⎫R R -d 2[2015·重庆卷] 宇航员王亚平在“天宫一号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象.若飞船质量为m ,距地面高度为h ,地球质量为M ,半径为R ,引力常量为G ,则飞船所在处的重力加速度大小为( )A .0 B.GM(R +h )2C.GMm (R +h )2 D.GMh2■ 注意事项对万有引力和重力的关系要注意以下几点:(1)在地面上,忽略地球自转时,认为物体的向心力为零,各位置均有mg ≈GMm R 2;(2)若考虑地球自转,在赤道上的物体有GMmR2-F N =F 向,其中F N 大小等于mg ,对处于南北两极的物体则有GMmR 2=mg ;(3)在地球上空某一高度h 处有GMm(R +h )2=mg ′,可知随着高度的增加,重力逐渐减小,重力加速度也逐渐减小.考点三 天体质量及密度的计算计算天体的质量和密度问题的关键是明确中心天体对它的卫星(或行星)的引力就是卫星(或行星)绕中心天体做匀速圆周运动的向心力.由G Mm r 2=m 4π2T 2r 解得M =4π2r 3GT 2;ρ=MV=M43πR 3=3πr 3GT 2R 3R 为中心天体的半径,若为近地卫星,则R =r ,有ρ=3πGT2.由上式可知,只要用实验方法测出卫星(或行星)做圆周运动的半径r 及运行周期T ,就可以算出中心天体的质量M .若再知道中心天体的半径,则可算出中心天体的密度.] 过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b ”的发现拉开了研究太阳系外行星的序幕. “51 peg b ”绕其中心恒星做匀速圆周运动,周期约为4 天,轨道半径约为地球绕太阳运动半径的120.该中心恒星与太阳的质量比约为( )A. 110B .1C .5D .10[2014·全国卷Ⅱ] 假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常量为G .地球的密度为( )A.3πGT 2g 0-g g 0 B.3πGT 2g 0g 0-g C.3πGT 2 D.3πGT 2g 0g■ 规律总结天体质量和密度的估算问题是高考命题热点,解答此类问题,首先要掌握基本方法(两个等式:①万有引力提供向心力;②天体表面物体受到的重力近似等于万有引力),其次是记住常见问题的结论,主要分两种情况:(1)利用卫星的轨道半径r 和周期T ,可得中心天体的质量为M =4π2r 3GT 2,并据此进一步得到该天体的密度ρ=M V =M 43πR 3=3πr3GT 2R3(R 为中心天体的半径),尤其注意当r =R 时,ρ=3πGT2.(2)利用天体表面的重力加速度g 和天体半径R ,可得天体质量M =gR 2G ,天体密度ρ=M V =M 43πR3=3g4πGR.考点四 天体表面的力学问题1.在地球或其他天体表面及某一高度处的重力加速度的计算设天体表面重力加速度为g ,天体半径为R ,忽略天体自转,则有mg =G Mm R 2,得g =GM R 2或GM =gR 2.若物体距天体表面的高度为h ,则重力mg ′=GMm (R +h )2,得g ′=GM(R +h )2=R 2(R +h )2g .2.地球表面的物体运动规律的迁移应用在地球上所有只在重力作用下的运动形式,如自由落体运动、竖直上抛运动、平抛运动、斜抛运动等,其运动规律和研究方法同样适用于在其他星球表面的同类运动的分析,只是当地重力加速度取值不同而已.] 万有引力定律揭示了天体运行规律与地上物体运动规律具有内在的一致性.(1)用弹簧秤称量一个相对于地球静止的小物体的重量,随称量位置的变化可能会有不同的结果.已知地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量均匀分布的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧秤的读数是F 0.a .若在北极上空高出地面h 处称量,弹簧秤读数为F 1,求比值F 1F 0的表达式,并就h =1.0%R 的情形算出具体数值(计算结果保留两位有效数字);b .若在赤道地面称量,弹簧秤读数为F 2,求比值F 2F 0的表达式.(2)设想地球绕太阳公转的圆周轨道半径r 、太阳的半径R S 和地球的半径R 三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变.仅考虑太阳和地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长.1 (多选)[2015·全国卷Ⅰ] 我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4 m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落.已知探测器的质量约为1.3×103kg,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8 m/s2.则此探测器( )A.在着陆前的瞬间,速度大小约为8.9 m/sB.悬停时受到的反冲作用力约为2×103 NC.从离开近月圆轨道到着陆这段时间内,机械能守恒D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度2 [2015·海南卷] 若在某行星和地球上相对于各自的水平地面附近相同的高度处、以相同的速率平抛一物体,它们在水平方向运动的距离之比为2∶7,已知该行星质量约为地球的7倍,地球的半径为R.由此可知,该行星的半径约为( )A.12R B.72RC.2R D.7 2 R■ 特别提醒在其他星球表面的各种运动形式与在地球表面上时的运动规律完全一样,只是重力加速度大小不同而已,所以要及时迁移对应运动形式的基本规律和结论进行合理应用.第11讲 万有引力与天体运动【教材知识梳理】 核心填空一、1.焦点 2.面积 3.半长轴 公转周期二、1.正比 反比 2.F =G m 1m 2r2三、1.匀速圆周 2.(1)向心力 (2)物体的重力四、1.最小发射速度 最大运行速度 2.最小发射速度 3.最小发射速度 易错判断(1)(×)英国物理学家卡文迪许通过几个铅球之间万有引力的测量比较准确地测出了引力常量.(2)(×)两物体间的距离趋近于零时,万有引力定律不再适用. (3)(√)(4)(×)近地卫星距离地球最近,环绕速度最大. (5)(×)地球同步卫星只能定点在赤道正上空.(6)(×)由于地球自转,极地卫星不能始终和地球某一经线平面重合. (7)(√)发射火星探测器的速度必须大于第二宇宙速度. 【考点互动探究】考点一 开普勒行星运动定律的理解和应用例1 B [解析] 根据开普勒第三定律r 3T2=k ,轨道半径越大,公转周期越大,A 错;设太阳的质量为M ,行星的轨道半径为r ,行星的质量为m ,根据G Mm r2=ma 可知,轨道半径越大,行星绕太阳做圆周运动的加速度越小,所以B 对;设行星半径为R ,根据Gmm ′R 2=m ′g =m ′v 2R结合表中数据可知,火星表面的重力加速度和火星的第一宇宙速度均较小,故C 、D错.变式题 C [解析] 本题考查了开普勒的三个行星运动定律.题目中要求根据开普勒行星运动定律来判断,那么不能按照中学阶段的近似处理来判断.太阳应位于行星运行轨道的一个焦点上,而焦点不是圆心,A 错误.火星和木星绕太阳运行时是不在同一个轨道上的,根据开普勒第二定律可知,同一个行星与太阳的连线在相等的时间内扫过相等的面积,D 错误.火星和木星绕太阳运行速度的大小也是不可能始终相等的,B 错误.根据开普勒第三定律a 3火T 2火=a 3木T 2木可知T 2火T 2木=a 3火a 3木,C 正确. 考点二 万有引力的计算和应用例2 A [解析] 在地球表面,由万有引力定律有G Mm R 2=mg ,其中M =43πR 3,在矿井底部,由万有引力定律有GM 0m R 20=mg 0,其中M 0=43πR 30,R =R 0+d ,联立解得g 0g =1-dR,A 正确.变式题 B [解析] 由题意,飞船处于完全失重状态,飞船所受的重力等于万有引力,即G Mm(R +h )2=mg ,约去m ,得B 正确.考点三 天体质量及密度的计算例3 B [解析] 题中这颗行星绕其中心天体做圆周运动,其向心力是由中心天体与行星间的万有引力提供,即G M 中心m 行r 2行=m 行ω2行r 行=m 行4π2r 行T 2行, 可得M 中心=4π2r 3行GT 2行; 同理,地球绕太阳运动,有M 太阳=4π2r 3地GT 2地; 那么,中心天体与太阳的质量之比为M 中心M 太阳=4π2r 3行GT 2行4π2r 3地GT 2地=⎝ ⎛⎭⎪⎫r 行r 地3·⎝ ⎛⎭⎪⎫T 地T 行2=⎝ ⎛⎭⎪⎫1203·⎝ ⎛⎭⎪⎫36542≈1,选项B 正确. 变式题 B [解析] 在两极物体所受的重力等于万有引力,即 GMmR 2=mg 0,在赤道处的物体做圆周运动的周期等于地球的自转周期T ,则G Mm R 2-mg =m 4π2T 2R ,则密度ρ=3M4πR3=34πR 3·g 0R 2G =3πg 0GT 2(g 0-g ).B 正确. 考点四 天体表面的力学问题例4 (1)a. F 1F 0=R 2(R +h )20.98b . F 2F 0=1-4π2R 3GMT 2(2)1年[解析] (1)设小物体质量为m . a .在北极地面G MmR2=F 0 在北极上空高出地面h 处GMm(R +h )2=F 1F 1F 0=R 2(R +h )2当h =1.0%R 时F 1F 0=11.012≈0.98. b .在赤道地面,小物体随地球自转做匀速圆周运动,受到万有引力和弹簧秤的作用力,有G Mm R 2-F 2=m 4π2T2R 得F 2F 0=1-4π2R 3GMT 2.(2)地球绕太阳做匀速圆周运动,受到太阳的万有引力,设太阳质量为M S ,地球质量为M ,地球公转周期为T E ,有G M S M r 2=Mr 4π2T 2E得T E =4π2r3GM S=3πr3G ρR 3S.其中ρ为太阳的密度.由上式可知,地球公转周期T E 仅与太阳的密度、地球公转轨道半径与太阳半径之比有关.因此“设想地球”的1年与现实地球的1年时间相同.变式题1 BD [解析] 设月球表面重力加速度为g ′,则g ′g =GM ′R ′2GM R 2=M ′M ·⎝ ⎛⎭⎪⎫R R ′2,代入数据得g ′≈15.9g ≈1.66 m/s 2,探测器着陆瞬间的速度v =2g ′h =13.3 m/s ,A 错误;悬停时F =mg ′=1.3× 103×1.66 N ≈2.2×103N ,B 正确;发动机反冲力做负功,机械能不守恒,C 错误;在近月轨道上的线速度v ′=g ′R ′,在近地轨道上的线速度v =gR ,很明显v >v ′,D 正确.变式题2 C [解析] 由平抛运动规律h =12gt 2,x =v 0t 得g =2hv 20x 2,可得g 行g 地=74.在星球表面,有G MmR 2=mg ,得R =GM g ,可得R 行R 地=2,则R 行=2R 地,即R 行=2R .选项C 正确. 【教师备用习题】1.[2013·福建卷]设太阳质量为M ,某行星绕太阳公转周期为T ,轨道可视作半径为r 的圆.已知万有引力常量为G ,则描述该行星运动的上述物理量满足( )A .GM =4π2r3T 2B .GM =4π2r2T 2 C .GM =4π2r2T3 D .GM =4πr3T2[解析] A 行星绕太阳公转,由万有引力提供向心力,即G Mm r 2=m ⎝ ⎛⎭⎪⎫2πT 2r ,解得GM =4π2r3T 2,A 正确.2.“嫦娥一号”是我国首次发射的探月卫星,它在距月球表面高度为200 km 的圆形轨道上运行,运行周期为127 min.已知引力常量G =6.67×10-11 N ·m 2/kg 2,月球半径约为1.74×103km ,利用以上数据估算月球的质量约为( )A .8.1×1010kgB .7.4×1013kgC .5.4×1019kgD .7.4×1022kg[解析] D 由万有引力充当向心力,有G mM (r +h )2=m 4π2T 2(r +h ),可得月球质量M =4π2(r +h )3GT2=7.4×1022kg ,选项D 正确.3.我国志愿者王跃曾与俄罗斯志愿者一起进行“火星­500”的实验活动.假设王跃登陆火星后,测得火星的半径是地球半径的12,火星的质量是地球质量的19.已知地球表面的重力加速度为g ,地球的半径为R ,王跃在地面上能向上竖直跳起的最大高度为h ,忽略自转的影响,引力常量为G ,下列说法正确的是( )A .火星的密度为2g3πGRB .火星表面的重力加速度是29gC .火星的第一宇宙速度与地球的第一宇宙速度的比值为23D .王跃以与在地球上相同的初速度在火星上起跳后,能达到的最大高度是92h[解析] A 对地球表面质量为m 的物体,由牛顿第二定律,有G Mm R 2=mg ,则M =gR 2G,火星的密度为ρ=19M 4π3⎝ ⎛⎭⎪⎫R 23=2g3πGR ,选项A 正确;对火星表面质量为m ′的物体,由牛顿第二定律,有G M 9m ′⎝ ⎛⎭⎪⎫R 22=m ′g ′,则g ′=49g ,选项B 错误;火星的第一宇宙速度与地球的第一宇宙速度的比值v ′1v 1=g ′R 2gR=23,选项C 错误;王跃跳高时,分别有h =v 202g 和h ′=v 22g ′,所以在火星上能达到的最大高度为94h ,选项D 错误.。

(统考版)高考物理一轮复习 第四章 曲线运动 万有引力与航天 第2讲 抛体运动的规律及应用学生用书

(统考版)高考物理一轮复习 第四章 曲线运动 万有引力与航天 第2讲 抛体运动的规律及应用学生用书

第2讲抛体运动的规律及应用一、平抛运动1.定义:将物体以一定的初速度沿水平方向抛出,物体只在________作用下的运动.2.性质:平抛运动是加速度为g的________曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解.(1)水平方向:________直线运动;(2)竖直方向:________运动.4.基本规律:如图所示,以抛出点O为坐标原点,以初速度v0方向(水平方向)为x轴正方向,竖直向下为y轴正方向.(1)位移关系(2)速度关系(3)常用推论:①图中C点为水平位移中点;②tan θ=2tan α.注意θ与α不是2倍关系.二、斜抛运动1.定义:将物体以初速度v0________或斜向下方抛出,物体只在________作用下的运动.如图所示.2.性质:斜抛运动是加速度为g的________曲线运动,运动轨迹是________.3.研究方法:运动的合成与分解(1)水平方向:________直线运动;(2)竖直方向:________直线运动.,生活情境1.一架投放救灾物资的飞机在受灾区域的上空水平地匀速飞行,从飞机上投放的救灾物资在落地前的运动中(不计空气阻力)(1)速度和加速度都在不断改变.( )(2)速度和加速度方向之间的夹角一直减小.( )(3)在相等的时间内速度的改变量相等.( )(4)在相等的时间内速率的改变量相等.( )(5)在相等的时间内动能的改变量相等.( )教材拓展2.(多选)为了验证平抛运动的小球在竖直方向上做自由落体运动,用如图所示的装置进行实验.小锤打击弹性金属片,A球水平抛出,同时B球被松开,自由下落,关于该实验,下列说法中正确的有( )A.两球的质量应相等B.两球应同时落地C.应改变装置的高度,多次实验D.实验也能说明A球在水平方向上做匀速直线运动考点一平抛运动规律的应用用“化曲为直”的思想处理平抛运动中落点在水平面上的问题时,将研究对象抽象为质点平抛运动模型,处理平抛运动的基本方法是运动的分解(化曲为直).即同时又要注意合运动与分运动的独立性、等时性.例1.[2021·河北卷,2]铯原子钟是精确的计时仪器.图1中铯原子从O点以100 m/s 的初速度在真空中做平抛运动,到达竖直平面MN所用时间为t1;图2中铯原子在真空中从P点做竖直上抛运动,到达最高点Q再返回P点,整个过程所用时间为t2.O点到竖直平面MN、P点到Q点的距离均为0.2 m.重力加速度取g=10m.则t1∶t2为( )s2A.100∶1 B.1∶100跟进训练1.在高空中匀速飞行的轰炸机,每隔时间t投放一颗炸弹,若不计空气阻力,则投放的炸弹在空中的位置是选项中的(图中竖直的虚线将各图隔离)( )2.[2022·陕西五校联考]墙网球又叫壁球,场地类似于半个网球场,如图所示,在场地一侧立有一竖直墙壁,墙壁上离地面一定高度的位置画了水平线(发球线),在发球区发出的球必须击中发球线以上位置才有效,假设运动员在某个固定位置将球发出,发球速度(球离开球拍时的速度)方向与水平面的夹角为θ,球击中墙壁位置离地面的高度为h,球每次都以垂直墙壁的速度撞击墙壁,设球撞击墙壁的速度大小为v,球在与墙壁极短时间的撞击过程中无机械能损失,球撞到墙壁反弹后落地点到墙壁的水平距离为x,不计空气阻力,球始终在与墙壁垂直的平面内运动,则下列说法正确的是( )A.h越大,x越大B.v越小,x越大C.h越大,θ越大 D.v越大,h越大考点二平抛运动与各种面结合问题角度1落点在斜面上分解位移,构建位移三例2. [2022·江西八校联考](多选)如图所示,小球A从斜面顶端水平抛出,落在斜面上的Q点,在斜面底端P点正上方水平抛出小球B,小球B也刚好落在斜面上的Q点,B球,A、B 抛出点离斜面底边的高度是斜面高度的一半,Q点到斜面顶端的距离是斜面长度的23两球均可视为质点,不计空气阻力,则A、B两球( )A.平抛运动的时间之比为2∶1B.平抛运动的时间之比为3∶1C.平抛运动的初速度之比为1∶2D.平抛运动的初速度之比为1∶1角度2落点在曲面上例3. [2022·浙江温州一模]如图所示为某种水轮机的示意图,水平管出水口的水流速度恒定为v 0,当水流冲击到水轮机上某挡板时,水流的速度方向刚好与该挡板垂直,该档板的延长线过水轮机的转轴O ,且与水平方向的夹角为30°.当水轮机圆盘稳定转动后,挡板的线速度恰为冲击该挡板的水流速度的一半.忽略挡板的大小,不计空气阻力,若水轮机圆盘的半径为R ,则水轮机圆盘稳定转动的角速度大小为( )A.v 02R B .v0RC .√3v 0RD .2v 0R跟进训练.3 [2022·浙江名校统测]如图所示,水平地面有一个坑,其竖直截面为y =kx 2的抛物线(k =1,单位为m -1),ab 沿水平方向,a 点横坐标为-3s2,在a 点分别以初速度v 0、2v 0(v 0未知)沿ab 方向抛出两个石子并击中坑壁,且以v 0、2v 0抛出的石子做平抛运动的时间相等.设以v 0和2v 0抛出的石子做平抛运动的时间为t ,击中坑壁瞬间的速度分别为v 1和v 2,下落高度为H ,仅s 和重力加速度g 为已知量,不计空气阻力,则(选项中只考虑数值大小,不考虑单位)( )A .不可以求出tB .可求出t 的大小为 √4sg C .可以求出v 1的大小为 √3g+16gs 24D .可求出H 的大小为2s 2考点三 生活中的平抛运动(STSE 问题)素养提升情境1投篮游戏[2021·新疆第二次联考]如图甲所示,投篮游戏是小朋友们最喜欢的项目之一,小朋友站立在水平地面上双手将皮球水平抛出,皮球进入篮筐且不擦到篮筐就能获得一枚小红旗.如图乙所示,篮筐的半径为R,皮球的半径为r,篮筐中心和出手处皮球的中心高度为h1和h2,两中心在水平地面上的投影点O1、O2之间的距离为d.忽略空气的阻力,已知重力加速度为g.设出手速度为v,要使皮球能入筐,则下列说法中正确的是( )A.出手速度大的皮球进筐前运动的时间也长B.速度v只能沿与O1O2连线平行的方向C.速度v的最大值为(d+R-r)√g2(h2−h1)D.速度v的最小值为(d-R+r)√2gh2−h1[思维方法]1.处理平抛运动中的临界问题要抓住两点(1)找出临界状态对应的临界条件;(2)用分解速度或者分解位移的思想分析平抛运动的临界问题.2.平抛运动临界极值问题的分析方法(1)确定研究对象的运动性质;(2)根据题意确定临界状态;(3)确定临界轨迹,画出轨迹示意图;(4)应用平抛运动的规律结合临界条件列方程求解.情境2农林灌溉农林灌溉需要扩大灌溉面积,通常在水管的末端加上一段尖管,示意图如图所示,尖管,尖管水平,不考虑空气阻力的影响,下列说法正确的是( )的直径是水管直径的13A.由于增加尖管,单位时间的出水量增加2倍B.由于增加尖管,水平射程增加3倍C.增加尖管前后,空中水的质量不变D.由于增加尖管,水落地时的速度大小增加8倍情境3海鸥捕食[2021·山东卷,16] 海鸥捕到外壳坚硬的鸟蛤(贝类动物)后,有时会飞到空中将它丢下,利用地面的冲击打碎硬壳.一只海鸥叼着质量m=0.1 kg的鸟蛤,在H=20 m的高度、,以v0=15 m/s的水平速度飞行时,松开嘴巴让鸟蛤落到水平地面上.取重力加速度g=10ms2忽略空气阻力.(1)若鸟蛤与地面的碰撞时间Δt =0.005 s ,弹起速度可忽略,求碰撞过程中鸟蛤受到的平均作用力的大小F ;(碰撞过程中不计重力)(2)在海鸥飞行方向正下方的地面上,有一与地面平齐、长度L =6 m 的岩石,以岩石左端为坐标原点,建立如图所示坐标系.若海鸥水平飞行的高度仍为20 m ,速度大小在15~17 m/s 之间,为保证鸟蛤一定能落到岩石上,求释放鸟蛤位置的x 坐标范围.第2讲 抛体运动的规律及应用必备知识·自主排查一、 1.重力 2.匀变速3.(1)匀速 (2)自由落体 4.(1)12gt 2√x 2+y 2yx(2)√v x 2+v y 2 v y v x二、1.斜向上方 重力 2.匀变速 抛物线 3.(1)匀速 (2)匀变速生活情境1.(1)× (2)√ (3)√ (4)× (5)× 教材拓展2.解析:根据合运动与分运动的等时性和独立性特点可知,两球应同时落地,为减小实验误差,应改变装置的高度,多次做实验,选项B 、C 正确;平抛运动的实验与小球的质量无关,选项A 错误;此实验只能说明A 球在竖直方向做自由落体运动,选项D 错误.答案:BC关键能力·分层突破例1 解析:设距离d =0.2 m ,铯原子做平抛运动时有d =v 0t 1,做竖直上抛运动时有d =12g (t 22)2,解得t 1t 2=1200.故A 、B 、D 错误,C 正确.答案:C1.解析:由题意可知,炸弹被投放后做平抛运动,它在水平方向上做匀速直线运动,与飞机速度相等,所以所有离开飞机的炸弹与飞机应在同一条竖直线上,故A 、C 错误;炸弹在竖直方向上做自由落体运动,从上至下,炸弹间的距离越来越大.故B 正确,D 错误.答案:B 2.解析:将球离开球拍后撞向墙壁的运动反向视为平抛运动,该平抛运动的初速度大小为v ,反弹后球做平抛运动的初速度大小也为v ,两运动的轨迹有一部分重合,运动员在某个固定位置发球,因此不同的发球速度对应击中墙壁的不同高度h ,但所有轨迹均经过发球点,如图所示,h 越大,球从发球点运动到击墙位置的运动时间越长,墙壁到发球点的水平位移x ′相同,则v 越小,由图可知,反弹后球做平抛运动的水平位移x 越小,选项A 、B 、D 错误;设球击中墙壁的位置到发球点的高度为h ′,由平抛运动的推论可知2h ′x ′=tan θ,则h ′越大,即h 越大,θ越大,选项C 正确.答案:C例2 解析:依题意及几何关系可知,小球A 下落的高度为斜面高度的23,小球B 下落高度为斜面高度的12再减去斜面高度的13,则根据公式h =12gt 2,可知A 、B 两球平抛运动时间之比为tA tB =2,选项A 正确,B 错误;两小球在水平方向做匀速直线运动,有x =v 0t ,小球A水平分位移为斜面宽度的23,小球B 水平分位移为斜面宽度的13,代入上式联立可得v 0A v 0B=1,选项C 错误,D 正确.答案:AD 例3 解析:由几何关系可知,水流冲击挡板时,水流的速度方向与水平方向成60°角,则有vy v 0=tan 60°,所以水流速度为v =√v 02+v y2 =2v 0,根据题意知被冲击后的挡板的线速度为v ′=12v =v 0,所以水轮机圆盘稳定转动的角速度大小为ω=v ′R=v0R,选项B 正确.答案:B3.解析:由题可知,两个石子做平抛运动,运动时间一样,则下落的高度H 一样,又因为落在抛物线上,a 、b 是关于y 轴对称的点,可得如下关系3s 2-v 0t =2v 0t -3s2,可得v 0t =s ,可分别得出落在坑壁上两个石子的横坐标分别为-s 2和s2,由y =kx 2,可得初始高度为9s 24,可求得此时高度为s 24,所以利用高度值差可求得H =2s 2,由H =12gt 2可求出平抛运动的运动时间t = √2Hg =2s √1g ,故选项D 正确,A 、B 错误;由前面可求出v 0=st =√g2,竖直方向上的速度v y =gt =2s √g ,由运动的合成可得v 1=√v 02+v y2 =√g+16gs 24,故选项C 错误.答案:D情境1 解析:本题考查平抛,属于应用性题.平抛运动的时间由下落的高度决定,则进筐的皮球运动时间相同,A 错误;与O 1O 2连线方向成一个合适的角度投出的皮球也可能进筐,B 错误;皮球沿与O 1O 2连线平行的方向投出,下落的高度为h 2-h 1,水平射程临界分别为d +R -r 和d +r -R ,则投射的最大速度为v max =√2(h 2−h 1)g=(d +R -r ) √g2(h 2−h 1)最小速度为v min =√2(h 2−h 1)g=(d -R +r ) √g2(h 2−h 1)C 正确,D 错误. 答案:C情境2 解析:单位时间的出水量与单位时间输入水管的量有关,与是否增加尖管无关,选项A 错误;设尖管中水的流速为v 0,水管中水的流速为v ,水管的半径为r ,根据相同时间Δt 内水的流量相同可得,π(r3)2v 0Δt =πr 2v Δt ,得水管、尖管中水的流速之比为v v 0=19,根据平抛运动规律,有h =12gt 2,增加尖管后水平射程x 0=v 0t =v 0√2hg ,不加尖管时水平射程x =vt =v √2hg,可得xx 0=19,Δx =x 0-x =8x ,故由于增加尖管,水平射程增加8倍,选项B 错误;不加尖管时,空中水的质量m =ρπr 2x ,加尖管时空中水的质量为m 0=ρ·π(r 3)2·x 0=πρr 2x ,则m =m 0,选项C 正确;由动能定理有mgh =12mv 12-12mv 2、m 0gh =12m 0v −2212m 0v 02,解得增加尖管前后水落地时的速度分别为v1=√2g ℎ+v 2、v2=√2g ℎ+v 02 ,v 2−v 1v 1≠8,选项D 错误.答案:C情境3 解析:(1)设平抛运动的时间为t,鸟蛤落地前瞬间的速度大小为v.竖直方向gt2,v y=gt,v=√v02+v y2.分速度大小为v y,根据运动的合成与分解得H=12在碰撞过程中,以鸟蛤为研究对象,取速度v的方向为正方向,由动量定理得-FΔt =0-mv联立并代入数据得F=500 N(2)若释放鸟蛤的初速度为v1=15 m/s,设击中岩石左端时,释放点的x坐标为x1,击中岩石右端时,释放点的x坐标为x2,则有x1=v1t,x2=x1+L联立并代入数据得x1=30 m,x2=36 m若释放鸟蛤时的初速度为v2=17 m/s,设击中岩石左端时,释放点的x坐标为x′1,击中岩石右端时,释放点的x坐标为x′2,则有x′1=v2t,x′2=x′1+L联立并代入数据得x′1=34 m,x′2=40 m综上得x坐标范围为[34 m,36 m].。

适用于新高考新教材 高考物理一轮总复习第4章曲线运动万有引力与航天研专项素养提升2课件

适用于新高考新教材 高考物理一轮总复习第4章曲线运动万有引力与航天研专项素养提升2课件
F2=G
地 '
(+)2
质量为 m'的物体以地球为中心做圆周运动,向心力由 F1 和 F2 的合力提供,设
圆周运动的角速度为 ω,则
F1+F2=m'ω2(L+r)


2
(L+r)

G 2 +G

(+)2
根据以上三个式子可得
月球绕地球做匀速圆周运动,它们之间的万有引力提供向心力,有

部着陆区,并传回了任务着陆区域高分影像图。2021年5月22日,祝融号火
星车驶离着陆平台,到达火星表面,开始巡视探测。
资料六 天眼、黑洞、宇宙探索——由我国天文学家南仁东于1994年提
出构想,历时22年建成的500 m口径球面射电望远镜被誉为“中国天眼”,于
2016年9月25日落成启用。它是由中国科学院国家天文台主导建设,它具
在新高考的角度,除了要关注“从天体质量或密度的计算、行星运动规律
的分析到同步卫星、双星、宇宙速度、变轨问题”这些动力学问题外,还
要多关注一些涉及功能关系和动量的新情境问题,关注宇宙探索的前沿知
识,关注近几年以中国及世界空间技术和宇宙探索为背景的题目。
【创新训练】
1.(多选)脉冲星的本质是中子星,它具有在地面实验室无法实现的极端物理性
2

=ma,可得 a=
2
,可知,飞船在近地轨道上 A 点距地心的
距离与转移轨道上 A 点距地心的距离相等,因此加速度大小相等,选项 C 错
误。

飞船做匀速圆周运动时,根据万有引力充当向心力有 G
T=
4π 2
=m 2 r,解得
2

高考复习方案(全国卷地区专用)高考物理一轮复习第4单元曲线运动万有引力与航天第11讲万有引力与天体运

高考复习方案(全国卷地区专用)高考物理一轮复习第4单元曲线运动万有引力与航天第11讲万有引力与天体运

第11讲万有引力与天体运动一、单选题1.[2015·湖南衡阳五校联考]在力学理论建立的过程中,有许多伟大的科学家做出了贡献.关于科学家和他们的贡献,下列说法中不正确的是( )A.伽利略首先将实验事实和逻辑推理(包括数学推演)和谐地结合起来B.笛卡儿对牛顿第一定律的建立做出了贡献C.开普勒通过研究行星观测记录,发现了行星运动三大定律D.牛顿总结出了万有引力定律并用实验测出了引力常量2.一名宇航员来到一个星球上,如果该星球的质量是地球质量的一半,该星球的直径也是地球直径的一半,那么这名宇航员在该星球上所受的万有引力大小是它在地球上所受万有引力的( )A.1 4B.1 2C.2倍D.4倍3.[2015·郑州调研]人类对自己赖以生存的地球的研究是一个永恒的主题.我国南极科学考察队在地球的南极用弹簧测力计称得某物体重为P,在回国途经赤道时用弹簧测力计称得同一物体重为0.9P.若已知地球自转周期为T,引力常量为G,假设地球是质量均匀分布的球体,则由以上物理量可以求得( )A.物体的质量mB.地球的半径RC.地球的质量MD.地球的密度ρ4.[2015·江西八所重点中学联考]据报道,科学家们在距离地球20万光年外发现了首颗系外“宜居”行星.假设该行星质量约为地球质量的6.4倍,半径约为地球半径的2倍.那么,一个在地球表面能举起64 kg物体的人在这个行星表面能举起的物体的质量约为(地球表面重力加速度g取10 m/s2)( )A.40 kgB.50 kgC.60 kgD.30 kg5.[2015·北京卷]假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距离小于火星到太阳的距离,那么( )A.地球公转周期大于火星的公转周期B.地球公转的线速度小于火星公转的线速度C.地球公转的加速度小于火星公转的加速度D.地球公转的角速度大于火星公转的角速度二、多选题6.2013年1月27日,我国在境内再次成功地进行了陆基中段反导拦截技术试验,中段是指弹道导弹在大气层外空间依靠惯性飞行的一段.如图K11­1所示,一枚蓝军弹道导弹从地面上A点发射升空,目标是攻击红军基地B点,导弹升空后,红军反导预警系统立刻发现目标,从C 点发射拦截导弹,并在弹道导弹飞行中段的最高点D 将其击毁.下列说法中正确的是( )图K11­1A .图中从E 到D 过程,弹道导弹的机械能不断增大B .图中从E 到D 过程,弹道导弹的加速度不断减小C .弹道导弹在大气层外运动轨迹是以地心为焦点的椭圆D .弹道导弹飞行至D 点时速度大于7.9 km/s7.若宇航员在月球表面附近自高h 处以初速度v 0水平抛出一个小球,测出小球的水平射程为L ,已知月球半径为R ,引力常量为G ,则下列说法正确的是( )A .月球表面的重力加速度g 月=2hv 2L2B .月球的质量m 月=2hR 2v 2GL2C .月球的第一宇宙速度v =v 0L2hR D .月球的平均密度ρ=3hv 202πGL28.1798年,英国物理学家卡文迪许测出引力常量G ,因此卡文迪许被人们称为能称出地球质量的人.若已知引力常量G ,地球表面处的重力加速度g ,地球半径R ,地球上一个昼夜的时间T 1(地球自转周期),一年的时间T 2(地球公转周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离L 2.你能计算出( )A .地球的质量m 地=gR 2GB .太阳的质量m 太=4π2L 32GT 22C .月球的质量m 月=4π2L 31GT 21D .月球、地球及太阳的密度 三、计算题9.宇航员站在一星球表面上的某高处沿水平方向抛出一小球.经过时间t ,小球落到该星球表面,测得抛出点与落地点之间的距离为L .若抛出时初速度增大到原来的2倍,则抛出点与落地点之间的距离为3L .已知两落地点在同一平面上,该星球的半径为R ,引力常量为G .求该星球的质量M .10.[2015·河南焦作一模]由于地球的自转,物体在地球上不同纬度处随地球自转所需向心力的大小不同,因此同一个物体在地球上不同纬度处重力大小也不同,在地球赤道上的物体受到的重力与其在地球两极点受到的重力大小之比约为299∶300,因此我们通常忽略两者的差异,可认为两者相等.而有些星球,却不能忽略.假如某星球因为自转的原因,一物体在赤道上的重力与其在该星球两极点受到的重力大小之比为7∶8,已知该星球的半径为R.(1)求绕该星球运动的同步卫星的轨道半径r;(2)若已知该星球赤道上的重力加速度大小为g,引力常量为G,求该星球的密度ρ.课时作业(十一)1.D [解析] 伽利略首先将实验事实和逻辑推理(包括数学推演)和谐地结合起来,选项A 正确;笛卡儿等人又在伽利略研究的基础上进行了更深入的研究,他认为:如果运动物体,不受任何力的作用,不仅速度大小不变,而且运动方向也不会变,将沿原来的方向匀速运动下去,因此笛卡儿对牛顿第一定律的建立做出了贡献,选项B 正确;开普勒提出行星运动三大定律,选项C 正确;引力常量是由卡文迪许测出的,选项D 错误.2.C [解析] F 引=G Mm r 2=G 12M 0m ⎝ ⎛⎭⎪⎫12r 02=2GM 0mr 20=2F 地,选项C 正确.3.D [解析] 因为两极处的万有引力等于物体的重力,故:P =G Mm R2,由于赤道处的向心力等于万有引力与物体在赤道处的重力之差,故:P -0.9P =m4π2T 2R ,故:M =40π2R3GT2,物体的质量是任意的,故无法求解出,选项A 错误;由于不知道地球半径,故无法求解地球的质量,选项B 、C 错误;地球密度ρ=M V =40π2R3GT 243πR3=30πGT2,选项D 正确.4.A [解析] 根据万有引力等于重力,有G Mm R 2=mg ,解得g =G M R2,因为行星质量约为地球质量的6.4倍,其半径是地球半径的2倍,则行星表面重力加速度是地球表面重力加速度的1.6倍.而人的举力认为是不变的,则人在行星表面所举起的重物质量为:m =m 01.6=641.6kg =40 kg ,选项A 正确,B 、C 、D 错误.5.D [解析] 地球和火星绕太阳做匀速圆周运动,它们各自所受的万有引力充当向心力.由G Mm r 2=m 4π2T 2r 可得T =2πr 3GM ,又r 地<r 火,则T 地<T 火.所以选项A 不正确.由G Mm r2=m v 2r可得v =GM r ,又r 地<r 火,则v 地>v 火.所以选项B 不正确.由G Mm r 2=ma 可得a =GMr2,又r 地<r 火,则a 地>a 火.所以选项C 不正确.由G Mm r 2=mω2r 可得ω=GMr 3,又r 地<r 火,则ω地>ω火.所以选项D 正确.6.BC [解析] 弹道导弹从E 到D 过程靠惯性飞行,只受地球的引力作用,机械能守恒,选项A 错误;弹道导弹从E 到D 过程,与地心的距离r 增大,万有引力F =GMmr2减小,弹道导弹的加速度a =F m减小,选项B 正确;由开普勒第一定律知,选项C 正确;D 点在远地点,到地心的距离r 大于地球的半径R 0,由v =GMr可知,弹道导弹飞行至D 点时的速度小于第一宇宙速度,即小于7.9 km/s ,选项D 错误.7.ABC [解析] 根据平抛运动规律,有L =v 0t ,h =12g 月t 2,联立解得g 月=2hv 20L2,选项A 正确;由mg 月=Gmm 月R 2解得m 月=2hR 2v 20GL 2,选项B 正确;由mg 月=m v 2R 解得v =v 0L2hR ,选项C 正确;月球的平均密度ρ=m 月43πR 3=3hv 22πGL 2R ,选项D 错误. 8.AB [解析] 对地球表面的一个质量为m 0的物体来说,应有m 0g =Gm 地m 0R 2,所以地球质量m 地=gR 2G ,选项A 正确;对地球绕太阳运动来说,有Gm 太m 地L 22=m 地4π2T 22L 2,则m 太=4π2L 32GT 22,选项B 正确;对月球绕地球运动来说,能求地球的质量,不知道月球的相关参量及月球的卫星的运动参量,无法求出它的质量和密度,选项C 、D 错误.9.2 3LR 23Gt2[解析] 设抛出点的高度为h ,第一次平抛的水平射程为x ,当初速度变为原来的2倍时,水平射程为2x ,如图所示.由几何关系可知: L 2=h 2+x 2① (3L )2=h 2+(2x )2② ①②联立,得:h =33L 设该星球表面的重力加速度为g 则竖直方向h =12gt 2③又因为GMmR 2=mg ④ ③④联立,得M =2 3LR23Gt 2. 10.(1)2R (2)6g7G πR[解析] (1)设物体质量为m ,星球质量为M ,星球的自转周期为T ,物体在星球两极时,万有引力等于重力,即F 万=G MmR2=G 极物体在星球赤道上随星球自转时,向心力由万有引力的一个分力提供,另一个分力就是重力G 赤,有F 万=G 赤+F n因为G 赤=78G 极,所以F n =18G Mm R 2=m ⎝ ⎛⎭⎪⎫2πT 2R该星球的同步卫星的周期等于自转周期T ,则有G Mm r 2=m 4π2T2r 联立解得:r =2R . (2)在星球赤道上,有 78G MmR2=mg 可得:M =8gR27G又因星球的体积:V =43πR 3所以该星球的密度:ρ=M V =6g7G πR.。

(全国通用)高三物理一轮复习 第四章 曲线运动 万有引力与航天 第4节 万有引力定律及其应用课时跟踪

万有引力定律与其应用对点训练:开普勒行星运动定律与万有引力定律1.(2016·某某黄浦区期末)关于万有引力定律,如下说法正确的答案是( ) A .牛顿提出了万有引力定律,并测定了引力常量的数值 B .万有引力定律只适用于天体之间C .万有引力的发现,揭示了自然界一种根本相互作用的规律D .地球绕太阳在椭圆轨道上运行,在近日点和远日点受到太阳的万有引力大小是一样的解析:选C 牛顿提出了万有引力定律,卡文迪许测定了引力常量的数值,万有引力定律适用于任何物体之间,万有引力的发现,揭示了自然界一种根本相互作用的规律,选项A 、B 错误C 正确;地球绕太阳在椭圆轨道上运行,在近日点和远日点受到太阳的万有引力大小是不一样的,选项D 错误。

2.对于环绕地球做圆周运动的卫星来说,它们绕地球做圆周运动的周期会随着轨道半径的变化而变化,某同学根据测得的不同卫星做圆周运动的半径r 与周期T 关系作出如图1所示图像,如此可求得地球质量为(引力常量为G )( )图1A .4π2a Gb B .4π2bGaC .Ga4π2b D .Gb4π2a解析:选A 由GMm r 2=m 4π2T 2·r 可得r 3T 2=GM 4π2,结合图线可得,a b =GM 4π2,故M =4π2aGb,A正确。

3.一名宇航员来到一个星球上,如果该星球的质量是地球质量的一半,它的直径也是地球直径的一半,那么这名宇航员在该星球上所受的万有引力大小是他在地球上所受万有引力的( )A .0.25倍B .0.5倍C .2.0倍D .4.0倍解析:选C 由F 引=GMm r2=12GM 0m ⎝ ⎛⎭⎪⎫r 022=2GM 0mr 02=2F 地,故C 项正确。

4.(2016·福州二模)北斗卫星导航系统(BDS)是中国自行研制的全球卫星导航系统,该系统将由35颗卫星组成,卫星的轨道有三种:地球同步轨道、中地球轨道和倾斜轨道。

「精品」高考物理一轮复习第四章曲线运动万有引力与航天学案

第四章曲线运动万有引力与航天[全国卷5年考情分析]匀速圆周运动、角速度、线速度、向心加速度(Ⅰ)离心现象(Ⅰ)第二宇宙速度和第三宇宙速度(Ⅰ)经典时空观和相对论时空观(Ⅰ)以上4个考点未曾独立命题第1节曲线运动__运动的合成与分解(1)速度发生变化的运动,一定是曲线运动。

(×) (2)做曲线运动的物体加速度一定是变化的。

(×) (3)做曲线运动的物体速度大小一定发生变化。

(×) (4)曲线运动可能是匀变速运动。

(√)(5)两个分运动的时间一定与它们的合运动的时间相等。

(√) (6)合运动的速度一定比分运动的速度大。

(×)(7)只要两个分运动为直线运动,合运动一定是直线运动。

(×)(8)分运动的位移、速度、加速度与合运动的位移、速度、加速度间满足平行四边形定则。

(√)1.物体做直线运动还是做曲线运动是由物体的速度与合外力是否在同一直线上决定的。

2.两个分运动的合运动是直线运动还是曲线运动要看两个分运动的合速度与合加速度是否在同一直线上。

3.解题中常用到的二级结论: (1)小船过河问题①船头的方向垂直于水流的方向,则小船过河所用时间最短,t =d v 船。

②若船速大于水速,则合速度垂直于河岸时,最短航程s =d 。

③若船速小于水速,则合速度不可能垂直于河岸,最短航程s =d ×v 水v 船。

(2)用绳或杆连接的两物体,沿绳或杆方向的分速度大小相等。

突破点(一) 物体做曲线运动的条件与轨迹分析1.运动轨迹的判断(1)若物体所受合力方向与速度方向在同一直线上,则物体做直线运动。

(2)若物体所受合力方向与速度方向不在同一直线上,则物体做曲线运动。

2.合力方向与速率变化的关系[题点全练]1.关于曲线运动,下列说法中正确的是( )A.做曲线运动的物体速度方向必定变化B.速度变化的运动必定是曲线运动C.加速度恒定的运动不可能是曲线运动D.加速度变化的运动必定是曲线运动解析:选A 做曲线运动的物体速度大小不一定变化,但速度方向必定变化,A正确;速度变化的运动可能是速度方向在变,也可能是速度大小在变,不一定是曲线运动,B错误;加速度恒定的运动可能是匀变速直线运动,也可能是匀变速曲线运动,C错误;加速度变化的运动可能是非匀变速直线运动,也可能是非匀变速曲线运动,D错误。

高考物理一轮复习 第四章 曲线运动 万有引力与航天 第1讲 曲线运动 运动的合成与分解学生用书

第1讲曲线运动运动的合成与分解一、曲线运动1.速度的方向:质点在某一点的速度,沿曲线在这一点的________.2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是________运动.3.运动的条件:二、运动的合成与分解1.分运动和合运动:一个物体同时参与几个运动,参与的这几个运动即________,物体的实际运动即________.2.运动的合成:已知________________,包括位移、速度和加速度的合成.3.运动的分解:已知________________,解题时应按实际效果分解或正交分解.4.遵循的法则位移、速度、加速度都是矢量,故它们的合成与分解都遵循________________.,生活情境右图为建筑工地塔吊示意图,在驾驶工人的操作下,小车A可在起重臂上左右移动,同时又可使重物上下移动,若起重臂不转动,则(1)小车A向左匀速运动,同时拉重物的绳子匀速缩短,则重物相对地面为直线运动.( )(2)小车A向左匀加速运动,同时拉重物的绳子匀速缩短,则重物相对地面为曲线运动.( )(3)小车A向左运动的速度v1,重物B向上运动的速度v2,则重物B对地速度为v=√v12+v22.( )(4)做曲线运动的物体.其速度时刻变化,所以物体所受合力一定不为零.( )(5)两个互成角度的初速度均为零的匀加速直线运动的合运动一定是直线运动.( )考点一物体做曲线运动的条件及轨迹分析1.合力方向与轨迹的关系无力不拐弯,拐弯必有力.曲线运动的轨迹始终夹在合力方向与速度方向之间,而且向合力的方向弯曲,或者说合力的方向总是指向轨迹的“凹”侧.2.合力方向与速率变化的关系跟进训练1.[人教版必修2P6演示实验改编]在演示“做曲线运动的条件”的实验中,有一个在水平桌面上向右做直线运动的小钢球,第一次在其速度方向上放置条形磁铁,第二次在其速度方向上的一侧放置条形磁铁,如图所示,虚线表示小球的运动轨迹.观察实验现象,以下叙述正确的是( )A.第一次实验中,小钢球的运动是匀变速直线运动B.第二次实验中,小钢球的运动类似平抛运动,其轨迹是一条抛物线C.该实验说明做曲线运动物体的速度方向沿轨迹的切线方向D.该实验说明物体做曲线运动的条件是物体受到的合外力的方向与速度方向不在同一直线上2.(多选)一个质点在恒力F的作用下,由O点运动到A点的轨迹如图所示,在A点时的速度方向与x轴平行,则恒力F的方向可能沿图示中( )A.F1的方向 B.F2的方向C.F3的方向 D.F4的方向3.春节期间人们放飞孔明灯表达对新年的祝福.如图所示,孔明灯在竖直Oy方向做匀加速运动,在水平Ox方向做匀速运动.孔明灯的运动轨迹可能为图乙中的( )A.直线OA B.曲线OBC.曲线OC D.曲线OD考点二运动的合成与分解运动的合成与分解是指描述运动的各物理量,即位移、速度、加速度的合成与分解,由于它们均是矢量,故合成与分解都遵守平行四边形定则.跟进训练4.如图所示,乒乓球从斜面上滚下,它以一定的速度做直线运动,在与乒乓球路径相垂直的方向上放一个纸筒(纸筒的直径略大于乒乓球的直径),当乒乓球经过筒口时,对着乒乓球横向吹气,则关于乒乓球的运动,下列说法中正确的是( )A.乒乓球将偏离原有的运动路径,但不能进入纸筒B.乒乓球将保持原有的速度方向继续前进C.乒乓球一定能沿吹气方向进入纸筒D.只有用力吹气,乒乓球才能沿吹气方向进入纸筒5.2020年3月3日消息,国网武汉供电公司每天用无人机对火神山医院周边线路进行巡检,一次最长要飞130分钟,它们是火神山医院的电力“保护神”.如图所示,甲、乙两图分别是某一无人机在相互垂直的x方向和y方向运动的v­t图象.在0~2 s内,以下判断正确的是( )A.无人机的加速度大小为10 m/s2,做匀变速直线运动B.无人机的加速度大小为10 m/s2,做匀变速曲线运动C.无人机的加速度大小为14 m/s2,做匀变速直线运动D.无人机的加速度大小为14 m/s2,做匀变速曲线运动6.[2022·广东深圳模拟]我国五代战机“歼­20”再次闪亮登场.表演中,战机先水平向右,再沿曲线ab向上(如图所示),最后沿陡斜线直入云霄.设飞行路径在同一竖直面内,飞行速率不变,则沿ab段曲线飞行时,战机( )A.所受合外力大小为零B.所受合外力方向竖直向上C.竖直方向的分速度逐渐增大D.水平方向的分速度不变考点三小船渡河模型和关联速度模型素养提升角度1小船渡河问题1.合运动与分运动合运动→船的实际运动v合→平行四边形对角线分运动→船相对静水的运动v船水流的运动v水→平行四边形两邻边.两类问题、三种情景例1.如图所示,河水由西向东流,河宽为800 m,河中各点的水流速度大小为v水,各x(m/s)(x的单位为m),让小船船头垂点到较近河岸的距离为x,v水与x的关系为v水=3400直河岸由南向北渡河,小船划水速度大小恒为v船=4 m/s,则下列说法正确的是( ) A.小船渡河的轨迹为直线B.小船在河水中的最大速度是5 m/sC.小船在距南岸200 m处的速度小于在距北岸200 m处的速度D.小船渡河的时间是160 s角度2关联速度问题例2. 如图所示,一辆货车利用跨过光滑定滑轮的轻质缆绳提升一箱货物,已知货箱的质量为m0,货物的质量为m,货车以速度v向左做匀速直线运动,在将货物提升到图示的位置时,下列说法正确的是( )A.货箱向上运动的速度大于vB.缆绳中的拉力F T等于(m0+m)gC.货箱向上运动的速度等于v cos θD.货物对货箱底部的压力等于mg[思维方法]绳(杆)关联问题的解题技巧(1)先确定合速度的方向(物体实际运动方向).(2)分析合运动所产生的实际效果;一方面使绳(杆)伸缩;另一方面使绳(杆)转动.(3)确定两个分速度的方向:沿绳(杆)方向的分速度和垂直绳(杆)方向的分速度,而沿绳(杆)方向的分速度大小相同.跟进训练7.如图所示,小球a、b用一细直棒相连,a球置于水平地面,b球靠在竖直墙面上,释放后b球沿竖直墙面下滑,当滑至细直棒与水平面成θ角时,两小球的速度大小之比为( )A.v av b =sin θ B.v av b=cos θC.v av b =tan θ D.v av b=1tanθ8.如图所示,一船夫以摇船载客为生往返于河的两岸.若该船夫摇船从河岸A点以v1的速度用最短的时间到对岸B点.第二次该船以v2的速度从同一地点以最短的路程过河到对岸B点,船轨迹恰好与第一次船轨迹重合.假设河水速度保持不变,则该船两次过河所用的时间之比是 ( )A.v1∶v2 B.v2∶v1C.v:12v22D.v22 v12第1讲曲线运动运动的合成与分解必备知识·自主排查一、1.切线方向2.变速二、1.分运动合运动2.分运动求合运动3.合运动求分运动4.平行四边形定则生活情境(1)√(2)√(3)√(4)√(5)√关键能力·分层突破1.解析:本题考查曲线运动的轨迹问题.第一次实验中,小钢球受到沿着速度方向的吸引力作用,做直线运动,并且随着距离的减小吸引力变大,加速度变大,则小钢球的运动是非匀变速直线运动,选项A错误;第二次实验中,小钢球所受的磁铁的吸引力方向总是指向磁铁,方向与大小均改变,是变力,故小钢球的运动不是类似平抛运动,其轨迹也不是一条抛物线,选项B错误;该实验说明物体做曲线运动的条件是物体受到的合外力的方向与速度方向不在同一直线上,但是不能说明做曲线运动物体的速度方向沿轨迹的切线方向,故选项C错误,D正确.答案:D2.解析:曲线运动受到的合力总是指向曲线凹的一侧,但和速度永远不可能达到平行的方向,所以合力可能沿着F3的方向、F4的方向,不可能沿着F1的方向或F2的方向,C、D 正确,A、B错误.答案:CD3.解析:孔明灯在竖直Oy方向做匀加速运动,在水平Ox方向做匀速运动,则合外力沿Oy方向,所以合运动的加速度方向沿Oy方向,但合速度方向不沿Oy方向,故孔明灯做曲线运动,结合合力指向轨迹内侧可知运动轨迹可能为曲线OD,故D正确.答案:D4.解析:当乒乓球经过筒口时,对着乒乓球横向吹气,乒乓球沿着原方向做匀速直线运动的同时也会沿着吹气方向做加速运动,实际运动是两个运动的合运动,故一定不会进入纸筒,要提前吹气才会进入纸筒,故A正确,B、C、D错误.答案:A5.解析:在0~2 s内,由速度-时间图象可知,x方向初速度为v0x=0,加速度为a x =6 m/s2,y方向初速度为v0y=0,加速度为a y=8 m/s2,根据平行四边形定则可以得到合初速度为v=0,合加速度为a=10 m/s2,而且二者方向在同一直线上,可知合运动为匀变速直线运动,故A正确,B、C、D错误.答案:A6.解析:战机在同一竖直面内做曲线运动,且运动速率不变,由于速度方向是变化的,则速度是变化的,故战机的加速度不为零,根据牛顿第二定律可知,战机所受的合力不为零,故A错误;战机在同一竖直平面内做匀速率曲线运动,所受合力与速度方向垂直,由于速度方向时刻在变化,则合外力的方向也时刻在变化,故B错误;由以上分析可知,战机所受合力始终都与速度方向垂直,斜向左上方,对合力和速度进行分解,竖直方向上做加速运动,水平方向上做减速运动,即竖直分速度增大,水平分速度减小,所以选项C正确,D错误.答案:C例1 解析:小船在南北方向上为匀速直线运动,在东西方向上先加速,到达河中间后再减速,速度与加速度不共线,小船的合运动是曲线运动,选项A错误;当小船运动到河中间时,东西方向上的分速度最大,v水=3 m/s,此时小船的合速度最大,最大值v m=5 m/s,选项B正确;小船在距南岸200 m处的速度等于在距北岸200 m处的速度,选项C错误;小船的渡河时间t=dv船=8004s=200 s,选项D错误.答案:B例2 解析:将货车的速度进行正交分解,如图所示.由于绳子不可伸长,货箱和货物整体向上运动的速度和货车速度沿着绳子方向的分量相等,有v1=v cos θ,故选项C正确;由于θ不断减小,v1不断增大,故货箱和货物整体向上做加速运动,加速度向上,故选项A错误;拉力大于(m0+m)g,故选项B错误;货箱和货物整体向上做加速运动,加速度向上,属于超重,故箱中的物体对箱底的压力大于mg,故选项D错误.答案:C7.解析:如图所示,将a球速度分解成沿着杆与垂直于杆方向,同时b球速度也是分解成沿着杆与垂直于杆两方向.对于a球v=v acos θ,对于b球v=v bsin θ,由于同一杆,则有v acosθ=v bsin θ,所以v av b=tan θ,故选C.答案:C8.解析:由题意可知,船夫两次驾船的轨迹重合,知合速度方向相同,第一次船的静水速度垂直于河岸,第二次船的静水速度与合速度垂直,如图所示.船两次过河的合位移相等,则渡河时间之比等于船两次过河的合速度之反比,则t1 t2=v2合v1合=v2tanθv1sinθ=v2v1cos θ,而cos θ=v2v1可得t1t2=v22v12,故D项正确.答案:D。

高考复习方案(全国卷地区专用)2017届高考物理一轮复习 第4单元 曲线运动万有引力与航天 第8

第8讲运动的合成与分解核心填空一、曲线运动易错判断(1)曲线运动一定是变速运动.( )(2)水流速度越大,渡河时间越长.( )(3)先发生分运动再发生合运动.( )(4)合速度一定大于分速度.( )(5)运动合成与分解的实质是对描述运动的物理量(位移、速度、加速度)的合成与分解.( )(6)两个直线运动的合运动一定是直线运动.( )(7)做曲线运动的物体受到的合外力一定是变力.( )考点一对曲线运动特征的理解1.曲线运动条件:物体受到的合外力与速度始终不共线.2.曲线运动特征(1)运动学特征:由于做曲线运动的物体的瞬时速度方向沿曲线上物体位置的切线方向,所以做曲线运动的物体的速度方向时刻发生变化,即曲线运动一定为变速运动.(2)动力学特征:由于做曲线运动的物体的速度时刻变化,说明物体具有加速度,根据牛顿第二定律可知物体所受合外力一定不为零且和速度方向始终不在一条直线上 (曲线运动条件).合外力在垂直于速度方向上的分力改变物体速度的方向,合外力在沿速度方向上的分力改变物体速度的大小.(3)轨迹特征:曲线运动的轨迹始终夹在合力的方向与速度的方向之间,而且向合力的一侧弯曲,或者说合力的方向总指向曲线的凹侧.曲线轨迹只能平滑变化,不会出现折线.(4)能量特征:如果物体所受的合外力始终和物体的速度垂直,则合外力对物体不做功,物体的动能不变;若合外力不与物体的速度方向垂直,则合外力对物体做功,物体的动能发生变化.一物体在xOy平面内运动的轨迹如图8­1所示,下列判断正确的是( )图8­1A.若物体在x轴方向上始终匀速,则在y轴方向上先加速后减速B.若物体在x轴方向上始终匀速,则在y轴方向上始终匀速C.若物体在y轴方向上始终匀速,则在x轴方向上先减速后加速D.若物体在y轴方向上始终匀速,则在x轴方向上先加速后减速(多选)[2015·河北保定一检] 关于力和运动的关系,下列说法中正确的是( )A.物体做曲线运动,其速度一定改变B.物体做曲线运动,其加速度可能不变C.物体在恒力作用下运动,其速度方向一定不变D.物体在变力作用下运动,其速度方向一定改变■ 规律总结当合外力方向与速度方向的夹角为锐角时,物体的速率增大;当合外力方向与速度方向的夹角为钝角时,物体的速率减小;当合外力方向与速度方向垂直时,物体的速率不变.考点二运动的合成与分解及运动性质分析1.运动合成的计算(1)如果各分运动在同一直线上,需选取正方向,与正方向同向的量取“+”号,与正方向反向的量取“-”号,从而将矢量运算简化为代数运算.(2)两分运动不在同一直线上时,按照平行四边形定则进行合成.2.合运动性质的判定根据合加速度方向与合初速度方向判定合运动是直线运动还是曲线运动,具体分以下几种情况:道经过调整再进入地球同步轨道.当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行.已知同步卫星的环绕速度约为 3.1×103 m/s,某次发射卫星飞经赤道上空时的速度为1.55×103 m/s,此时卫星的高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30°,如图8­2所示,发动机给卫星的附加速度的方向和大小约为( )图8­2A.西偏北方向,1.9×103 m/sB.东偏南方向,1.9×103 m/sC.西偏北方向,2.7×103 m/sD.东偏南方向,2.7×103 m/s[2015·广东卷] 如图8­3所示,帆板在海面上以速度v朝正西方向运动,帆船以速度v朝正北方向航行,以帆板为参照物( )图8­3A.帆船朝正东方向航行,速度大小为vB.帆船朝正西方向航行,速度大小为vC.帆船朝南偏东45°方向航行,速度大小为2vD.帆船朝北偏东45°方向航行,速度大小为2v■ 特别提醒上面例2为“相对运动”和“运动的合成与分解”知识的综合考查,解答此类问题要注意以下几点:1.理解好参考系的概念,参考系是假定为不动的物体;2.应用“运动的合成与分解”的思想,先研究分运动,再研究合运动.考点三小船渡河问题(1)若船在静水中的速度为v2=5 m/s,欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2)若船在静水中的速度为v2=5 m/s,欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?(3)若船在静水中的速度v2=1.5 m/s,要使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?(多选)(结论应用)船在静水中的速度与时间的关系如图8­4甲所示,河水的流速随离一侧河岸的距离的变化关系如图乙所示,经过一段时间该船以最短时间成功渡河,下面对该船渡河的说法正确的是( )甲乙图8­4A.船在河水中的最大速度是5 m/sB.船渡河的时间是150 sC.船在行驶过程中,船头必须始终与河岸垂直D.船渡河的位移是13×102 m■ 规律总结解小船渡河问题必须明确以下四点:(1)解决这类问题的关键:正确区分船的分运动和合运动.船的航行方向也就是船头指向,是分运动;船的运动方向也就是船的实际运动方向,是合运动,一般情况下与船头指向不一致.(2)运动分解的基本方法:按实际效果分解,一般用平行四边形定则按水流方向和船头指向分解.(3)渡河时间只与船垂直于河岸方向的分速度有关,与水流速度无关.(4)求最短渡河位移时,根据船速v船与水流速度v水的情况用三角形定则求极限的方法处理.考点四绳(杆)[2015·吉林实验中学二模] 如图8­5所示,长为L的直棒一端可绕固定轴O转动,另一端搁在水平升降台上,升降平台以速度v匀速上升,当棒与竖直方向的夹角为θ时,棒的角速度为( )图8­5A.v sin θLB.vL cos θC.v cos θLD.vL sin θ■ 题根分析本题考查“关联速度”问题,对“关联速度”问题的分析要注意以下两个方面:1.对“关联速度”问题的理解用绳、杆相牵连的物体在运动过程中的速度通常不同,但两物体沿绳或杆方向的分速度大小相等,据此就可以建立牵连物两端物体速度间的定量关系.2.“关联速度”问题的解题步骤(1)确定合速度:牵连物端点的速度(即所连接物体的速度)是运动的实际速度,为合速度.(2)分解合速度:先确定合运动的方向(物体实际运动的方向),然后分析这个合运动所产生的实际效果以确定两个分速度的方向.说明:在分析用绳或杆相连的两个物体的速度关系时,均是将物体的速度沿平行于绳或杆和垂直于绳或杆的方向进行分解.(3)沿绳或杆方向的分速度大小相等,列方程求解.3.“关联速度”常见情景示例■ 变式网络图8­61 如图8­7所示,一激光探照灯发出的光照射在云层底面上,云层底面是与地面平行的平面,云层底面距地面高为h ,探照灯以恒定角速度ω在竖直平面内转动,当光束转到与竖直方向的夹角为θ时,云层底面上光点的移动速度是( )图8­7A .h ω B.h ωcos θ C.h ωcos 2θD .h ωtan θ2 一轻杆两端分别固定质量为m A 和m B 的两个小球A 和B (可视为质点).将其放在一个光滑球形容器中从位置1开始下滑,如图8­8所示,当轻杆到达位置2时球A 与球形容器球心等高,其速度大小为v 1,已知此时轻杆与水平方向成θ=30°角,B 球的速度大小为v 2,则( )图8­8A .v 2=12v 1B .v 2=2v 1C .v 2=v 1v 2=3v 13 (多选)如图8­9所示,在水平地面上做匀速直线运动的小车,通过定滑轮用绳子吊起一个物体,若小车和被吊的物体在同一时刻的速度分别为v 1和v 2,绳子对物体的拉力为F T ,物体质量为m ,重力加速度为g ,则下列说法正确的是( )图8­9A .物体做匀速运动,且v 1=v 2B .物体做加速运动,且v 2<v 1C.物体做加速运动,且F T>mg D.物体做匀速运动,且F T=mg第8讲运动的合成与分解【教材知识梳理】核心填空一、切线匀变速曲线加速度合外力二、合运动分运动实际效果平行四边形易错判断(1)(√)曲线运动的速度方向一定变化,则曲线运动的速度一定变化.(2)(×)渡河时间与水流速度无关.(3)(×)(4)(×)根据平行四边形定则易知合速度不一定大于分速度.(5)(√)(6)(×)两个直线运动的合运动不一定是直线运动,如平抛运动.(7)(×)做曲线运动的物体受到的合外力不一定是变力,如平抛运动.【考点互动探究】考点一对曲线运动特征的理解例1 D [解析] 物体运动轨迹上各点的切线方向为物体的合速度方向,若物体在x轴方向上始终匀速,根据合速度方向的变化(由轨迹图可知物体的合速度方向与x轴方向的夹角先减小后增大),结合下面图甲可知,物体在y轴方向上的速度应先减小再增大,选项A、B错误;同理,若物体在y轴方向上始终匀速,根据合速度方向的变化,结合下面图乙可知,物体在x轴方向上的速度先增大后减小,选项C错误,选项D正确.甲乙变式题AB [解析] 做曲线运动的物体速度方向为轨迹切线方向,所以其速度时刻改变,且一定具有加速度,则合力一定不为零,选项A正确;物体做曲线运动,所受合力可以为变力也可以为恒力,故其加速度可能不变,选项B正确;恒力作用下的物体若做曲线运动,其速度方向时刻改变,选项C错误;如果物体受到的变力只是其大小变化而其方向始终与速度方向相同,则其速度方向保持不变,选项D错误.考点二运动的合成与分解及运动性质分析2.匀速直线匀加速直线匀变速直线匀变速曲线匀变速直线匀变速曲线例 2 B [解析] 本题以万有引力与航天为素材,实际考查的是运动的合成与分解,点火后,附加速度与飞经赤道上空的速度的合速度应该沿同步轨道切线方向,如图所示,根据三角形定则及数学知识得Δv=v21+v22-2v1v2cos 30°=1.9×103 m/s,故正确答案为B.变式题 D [解析] 在东西方向,帆船相对帆板以速度v朝正东方向运动,在南北方向,帆船相对帆板以速度v向正北方向运动,故根据速度的合成,以帆板为参照物,帆船的速度v船=v2+v2=2v,方向为北偏东45°方向,故D正确.考点三小船渡河问题船垂直于河岸方向的分速度水流速度船头正对河岸d v 1(d 为河宽) v 2v 1例3 (1)船头垂直于河岸 36 s 90 5 m(2)船头与上游河岸成60°角 24 3 s 180 m (3)船头与上游河岸成53°角 150 s 300 m[解析] 将船实际的速度(合速度)分解为垂直河岸方向和平行河岸方向的两个分速度,垂直河岸分速度影响渡河的时间,而平行河岸分速度只影响船在平行河岸方向的位移.(1)若v 2=5 m/s ,欲使船在最短时间内渡河,船头应朝垂直河岸方向,当船头垂直河岸时,如图甲所示,合速度为倾斜方向,垂直河岸分速度为v 2=5 m/s.甲t =d v ⊥=d v 2=1805s =36 s v 合=v 21+v 22=525 m/s x =v 合t =90 5 m.(2)若v 2=5 m/s ,欲使船渡河航程最短,合速度应沿垂直河岸方向.船头应朝图乙中的v 2方向.垂直河岸过河要求v ∥=0,如图乙所示,有v 2sin α=v 1,得α=30°. 所以当船头与上游河岸成60°角时航程最短乙x =d =180 mt =d v ⊥=d v 2cos 30°=18052 3s =24 3 s. (3)若v 2=1.5 m/s ,与(2)中不同,因为船速小于水速,所以船一定向下游漂移,设合速度方向与河岸下游方向夹角为α,则航程x =dsin α.欲使航程最短,需α最大,如图丙所示,由出发点A 作出v 1矢量,以v 1矢量末端为圆心,v 2大小为半径作圆,A 点与圆周上某点的连线为合速度方向,欲使v 合与河岸下游方向夹角最大,应使v 合与圆相切,即v 合⊥v 2.丙sin α=v 2v 1=35,得α=37°所以船头应朝与上游河岸成53°角方向.t =d v 2cos α=1801.2 s =150 s v 合=v 1cos 37°=2 m/s x =v 合t =300 m.变式题 ACD [解析] 以最短时间成功渡河,由图乙可知水流的最大速度为4 m/s ,根据速度的合成可知船在河水中的最大速度是5 m/s ,选项A 正确;当船头(静水中速度)与河岸垂直时,渡河时间最短,有t =d v 船=3003s =100 s ,因此渡河的时间不是150 s ,选项B 错误,C 正确;在这段时间内,船沿水流方向的位移x 数值上等于水流速度与时间图像所构成的面积大小,有x =4×1002m =200 m ,再根据运动的合成与分解可得船渡河的位移为13×102m ,选项D 正确.考点四 绳(杆)关联速度问题例 4 D [解析] 本题应清楚棒与平台接触点的实际运动即合运动方向是垂直于棒指向左上,竖直向上是它的一个分速度,刚好等于平台竖直向上的速度v ,把合速度分解,根据三角形知识即可求解.棒与平台接触点的实际运动即合运动方向是垂直于棒指向左上,如图所示.合速度v 实=ωL ,竖直向上的速度分量等于v ,即ωL sin θ=v ,所以ω=vL sin θ,选项D 正确.变式题1 C [解析] 当光束转到与竖直方向的夹角为θ时,云层底面上光点转动的线速度为h ωcos θ,设云层底面上光点的移动速度为v ,则有v cos θ=h ωcos θ,解得云层底面上光点的移动速度v =h ωcos 2θ,选项C 正确.变式题2 C [解析] 球A 与球形容器球心等高,速度v 1方向竖直向下,速度分解如图所示.由图可知:v 11=v 1sin 30°=12v 1,球B 此时速度方向与杆成α=60°角,因此v 21=v 2cos 60°=12v 2,沿杆方向两球速度相等,即v 21=v 11,解得v 2=v 1,选项C 正确.变式题 3 BC [解析] 小车在运动的过程中,其速度产生两个效果,故将小车的速度按照沿绳子方向与垂直绳子的方向进行分解,如图所示.则由图可以看出v2=v1cos α,则v2<v1,选项A错误,B正确;随着小车向前移动,α将不断减小,cos α将逐渐增大,则v2逐渐增大,即物体竖直向上做加速运动,根据牛顿第二定律有F T-mg=ma,所以F T>mg,选项C正确,D错误.【教师备用习题】1.一个物体在光滑水平面上沿曲线MN运动,如图所示,其中A点是曲线上的一点,虚线1、2分别是过A点的切线和法线,已知该过程中物体所受到的合外力是恒力,则当物体运动到A点时,合外力的方向可能是( )A.沿F1或F5的方向B.沿F2或F4的方向C.沿F2的方向D.不在MN曲线所决定的水平面内[解析] C 物体做曲线运动,必须有指向曲线内侧的合外力,或者合外力有沿法线指向内侧的分量,才能改变物体的运动方向而做曲线运动,合力沿切线方向的分量只能改变物体运动的速率,故F4、F5的方向不可能是合外力的方向,只有F1、F2、F3才有可能,选项A、B错误,C正确;合外力方向在过M、N两点的切线所夹的区域里,若合外力不在MN曲线所决定的平面上,则必有垂直水平面的分量,物体在该方向上应有速度分量而使物体脱离水平面,这与题述事实不符,故合外力一定在曲线MN所决定的水平面内,选项D错误.2.[2014·四川卷]有一条两岸平直、河水均匀流动、流速恒为v的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k,船在静水中的速度大小相同,则小船在静水中的速度大小为( )A.kvk2-1B.v1-k2C.kv1-k2D.vk2-1[解析] B 设河宽为d,船速为u,则根据渡河时间关系得du∶du2-v2=k,解得u=v1-k2,B选项正确.3.如图所示,水平面上固定一个与水平面夹角为θ的斜杆A,另一竖直杆B以速度v 水平向左做匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P的速度方向和大小分别为( )A .水平向左,大小为vB .竖直向上,大小为v tan θC .沿A 杆斜向上,大小为vcos θD .沿A 杆斜向上,大小为v cos θ[解析] C 两杆的交点P 参与了两个分运动,如图所示.水平向左的速度大小为v 的匀速直线运动和沿B 杆竖直向上的匀速运动,交点P 的实际运动方向沿A 杆斜向上,如图所示,则交点P 的速度大小为v P =vcos θ,选项C 正确.4.小船过河问题与切割玻璃问题的区别例1:小船在200 m 宽的河中横渡,水流速度为2 m/s ,船在静水中的速度是4 m/s ,要使小船到达正对岸,应如何行驶?例2:宽9 m 的成型玻璃以2 m/s 的速度连续不断地向前行进,在切割工序处,金刚割刀的速度为10 m/s ,为了使割下的玻璃板都成规定尺寸的矩形,则金刚割刀的轨道应如何控制?这是两道经典陈题,但大多数学生搞不清这两道题在解法上有什么区别.如例1的解法如下:要使小船垂直过河,即合速度应垂直于河岸,如图甲所示,则cos θ=v 水v 船=12, 所以θ=60°,即航向与岸上游成60°角.对例2的解法,多数学生认为与例1的解法相同,即合速度应垂直于玻璃板,如图乙所示,则cos θ=v 1v 2=210=15, 即θ=arccos 15.众所周知,例1的解法正确,例2解法错误,例2正确解法如下:由题目条件知,割刀运动的速度是实际的速度,所以为合速度,其分速度的效果恰好相对玻璃垂直切割.设割刀的速度v 2的方向与玻璃板速度v 1的方向之间的夹角为θ,如图丙所示,要保证割下矩形的玻璃板,由v 2是合速度,得v 1=v 2cos θ所以cos θ=v 1v 2=15,即θ=arccos 15.要割下矩形板,割刀速度方向与玻璃板速度所成角度 θ=arccos 15.这两道题看起来非常相似,解法上却有很大区别,为什么呢?这也是很多学生的疑点,分析可知,关键是找合速度的问题,例2中割刀运动的速度v2为什么是合速度?原来,割刀是机器控制的速度方向,它不会随玻璃行进的方向的改变而改变,也就是割刀运动的实际速度,所以为合速度.而例1中船行进的方向会随水流速度的改变而改变,故v船不是合速度,这就是两道题的区别.甲乙丙。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9讲抛体运动一、单选题1.人站在平台上平抛一小球,球离手时的速度为v1,落地时速度为v2,不计空气阻力,图K9­1中能表示出速度矢量的演变过程的是( )A B C D图K9­12.[2015·浙江余姚三模]游乐场内两支玩具枪在同一位置先后沿水平方向各射出一颗子弹,打在远处的同一个靶上,A为甲枪子弹留下的弹孔,B为乙枪子弹留下的弹孔,两弹孔在竖直方向上的距离为h,如图K9­2所示,不计空气阻力.关于两枪射出的子弹的初速度大小、飞行时间长短,下列判断正确的是( )图K9­2A.乙枪射出的子弹初速度较大B.两枪射出的子弹初速度一样大C.甲枪射出的子弹飞行时间较长D.乙枪射出的子弹飞行时间较长3.[2015·郑州第一次质量预测]如图K9­3所示,光滑斜面固定在水平面上,第一次让小球从斜面顶端A由静止释放,使小球沿斜面滑到底端B;第二次将小球从斜面顶端A沿水平方向抛出,使小球刚好落到斜面底端B.比较两次小球的运动,下列说法正确的是( )图K9­3A.第二次小球运动经历时间更长B.第一次小球运动速度变化更快C.第二次小球到达B点的速度更大D.两种情况小球到达B点的速度方向相同4.如图K9­4所示,两个足够大的倾角分别为30°、45°的光滑斜面放在同一水平面上,两斜面间距大于小球直径,斜面高度相等,有三个完全相同的小球a、b、c开始均静止于斜面同一高度处,其中b小球在两斜面之间.若同时由静止释放a、b、c小球到达该水平面的时间分别为t1、t2、t3.若同时沿水平方向抛出,初速度方向如图所示,小球到达水平面的时间分别为t′1、t′2、t′3.下列关于时间的关系不正确的是( )图K9­4A.t1>t3>t2B.t1=t′1、t2=t′2、t3=t′3C.t′1>t′3>t′2D.t1<t′1、t2<t′2、t3<t′35.[2015·江西重点中学协作体联考]如图K9­5所示,将a、b两小球以大小为20 5 m/s 的初速度分别从A、B两点相差1 s先后水平相向抛出,a小球从A点抛出后,经过时间t,a、b两小球恰好在空中相遇,且速度方向相互垂直,不计空气阻力,g取10 m/s2,则抛出点A、B间的水平距离是( )图K9­5A.80 5 mB.100 mC.200 mD.180 5 m二、多选题6.[2015·山东潍坊模拟]从竖直墙的前方A处沿AO方向水平发射三颗弹丸a、b、c,在墙上留下的弹痕如图K9­6所示.已知Oa=ab=bc,则a、b、c三颗弹丸( )图K9­6A.初速度之比是6∶3∶ 2B.初速度之比是1∶2∶ 3C.从射出至打到墙上过程速度增量之比是1∶2∶ 3D.从射出至打到墙上过程速度增量之比是6∶3∶ 27.[2015·河南省十所名校测试]2013年7月7日,温网女双决赛开打,“海峡组合”彭帅、谢淑薇击败澳大利亚组合夺得职业生涯首个大满贯冠军.如图K9­7所示是比赛场地,已知底线到网的距离为L,彭帅在网前截击,若她在球网正上方距地面H处,将球以水平速度沿垂直球网的方向击出,球刚好落在底线上.将球的运动视作平抛运动,重力加速度为g,则下列说法正确的是( )图K9­7A.根据题目条件能求出球的水平速度vB.根据题目条件能求出球从击出至落地所用时间tC.球从击球点至落地点的位移等于LD.球从击球点至落地点的位移与球的质量无关8.[2015·江西宜春第三次月考]如图K9­8所示,A、D分别是斜面的顶端、底端,B、C是斜面上的两个点,AB=BC=CD,E点在D点的正上方,与A等高.从E点以一定的水平速度抛出质量相等的两个小球,球1落在B点,球2落在C点,关于球1和球2从抛出到落在斜面上的运动过程( )图K9­8A.球1和球2运动的时间之比为2∶1B.球1和球2动能增加量之比为1∶2C.球1和球2抛出时初速度之比为2 2∶1D.球1和球2运动时的加速度之比为1∶2三、计算题9.如图K9­9所示,有一带正电小球从地面上A点正上方的某点O以某一初速度平抛,落地点为B点(不计空气阻力);今在竖直平面所在的空间加一个竖直向上的匀强电场后,仍从O点以相同的初速度平抛该带电小球,小球落地点为C点,测得AC=2AB.已知小球的重力为mg,小球所带电荷量为q.求电场强度E的大小.图K9­910.某电视台娱乐节目,要求选手要从较高的平台上以水平速度v0跃出后,落在水平传送带上,已知平台与传送带高度差H=1.8 m,水池宽度s0=1.2 m,传送带两端A、B间的距离L0=20.85 m,由于传送带足够粗糙,假设人落到传送带上后瞬间相对传送带静止,经过一个Δt=0.5 s反应时间后,立刻以a=2 m/s2、方向向右的加速度跑至传送带最右端.(1)若传送带静止,选手以v0=3 m/s水平速度从平台跃出,求从开始跃出到跑至传送带右端经历的时间.(2)若传送带以u=1 m/s的恒定速度向左运动,选手若要能到达传送带右端,则从高台上跃出的水平速度v1至少为多大?图K9­10课时作业(九)1.C [解析] 小球做平抛运动,只受重力作用,加速度方向竖直向下,所以速度变化的方向竖直向下,C 正确.2.D [解析] 子弹在竖直方向做自由落体运动,由H =12gt 2可知乙枪射出的子弹飞行时间较长,选项C 错误,D 正确;子弹在水平方向做匀速直线运动,由x =v 0t 可知甲枪射出的子弹初速度较大,选项A 、B 错误.3.C [解析] 设斜面倾角为θ,斜面长度为l ,第一次的加速度为a =g sin θ,第二次做平抛运动,加速度为g ,则第二次速度变化快,第一次运动的时间:t =2lg sin θ,第二次运动的时间:t ′=2l sin θg,所以第一次运动时间长,选项A 、B 错误;第一次和第二次运动的过程中,都只有重力做功,可知运动过程中小球所受的合力做功相同,动能的变化量相同,但第二次初速度大于零,所以第二次小球到达B 点的速度更大,选项C 正确;小球第一次到达B 点时速度沿斜面方向,第二次到达B 点时速度不沿斜面方向,方向不同,选项D 错误.4.D [解析] 由静止释放三个小球时,对a :h sin 30°=12g sin 30°·t 21,则t 21=8h g.对b :h =12gt 22,则t 22=2h g .对c :h sin 45°=12g sin 45°·t 23,则t 23=4h g ,所以t 1>t 3>t 2.当平抛三个小球时,小球b 做平抛运动,小球a 、c 在斜面内做类平抛运动.沿斜面方向的运动同第一种情况,所以t 1=t ′1,t 2=t ′2,t 3=t ′3.选项D 不正确.5.D [解析] a 、b 两球在空中相遇时,a 球运动时间为t ,b 球运动了t -1 s ,此时两球速度相互垂直,如图所示.由图可得:tan α=gt v 0=v 0g (t -1 s ),解得:t =5 s(另一个解舍去),故抛出点A 、B间的水平距离是v 0t +v 0(t -1 s)=180 5 m ,选项D 正确.6.AC [解析] 水平发射的弹丸做平抛运动,竖直方向上是自由落体运动,水平方向上是匀速直线运动.又因为竖直方向上Oa =ab =bc ,即Oa ∶Ob ∶Oc =1∶2∶3,由h =12gt2可知,t a ∶t b ∶t c =1∶2∶3,由水平方向x =v 0t 可知,v a ∶v b ∶v c =1∶12∶13=6∶3∶2,故选项A 正确,B 错误;由Δv =gt 可知,从射出至打到墙上过程速度增量之比是1∶2∶3,故选项C 正确,D 错误.7.ABD [解析] 根据平抛运动规律及题目条件能求出球的水平速度v ,能求出球从击出至落地所用时间t ,球从击球点至落地点的位移s 等于H 2+L 2,选项A 、B 正确,C 错误;球从击球点至落地点的位移与球的质量无关,选项D 正确.8.BC [解析] 因为AC =2AB ,所以A 、C 的高度差是A 、B 高度差的2倍,根据h =12gt2得t =2hg,解得运动的时间之比为1∶2,选项A 错误;根据动能定理得mgh =ΔE k ,可知球1和球2动能增加量之比为1∶2,选项B 正确;球1在水平方向上的位移是球2在水平方向位移的2倍,结合x =v 0t ,解得初速度之比为2 2∶1,选项C 正确;平抛运动的加速度为g ,两球的加速度相同,选项D 错误.9.3mg 4q[解析] 设O 点与A 点的距离为h ,A 、B 的距离为s ,下落时间为t 1,初速度为v 0,则无电场平抛时,水平方向:s =v 0t 1竖直方向:h =12gt 21得:s =v 02h g有电场平抛时水平方向:2s =v 0t 2 竖直方向:h =12at 22竖直方向的加速度a =mg -Eqm代入得2s =v 02hmmg -Eq解得:E =3mg4q.10.(1)5.6 s (2)3.25 m/s[解析] (1)选手离开平台做平抛运动,则:H =12gt 21 t 1=2Hg=0.6 sx 1=v 0t 1=1.8 m选手在传送带上做匀加速直线运动,则:L 0-(x 1-s 0)=12at 22t 2=4.5 st =t 1+t 2+Δt =5.6 s.(2)选手以水平速度v 1跃出落到传送带上,先向左匀速运动后再向左匀减速运动,刚好不从传送带上掉下时水平速度v 1最小,则:v 1t 1-s 0=u Δt +u 22a解得:v 1=3.25 m/s.。

相关文档
最新文档