第4章 几何图形工具的使用
人教版七年级数学上册第四章《几何图形初步》教案

人教,版,七年级,数学,上册,第四章,《,第四章,第四章几何图形初步1.通过从实物和具体模型中抽象,了解几何图形、立体图形与平面图形以及几何体、平面和曲面、直线和曲线、点等概念.2.能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合体得到的平面图形;了解直棱柱、圆柱、圆锥的展开图,能根据展开图想象相应的几何体,制作立体模型.3.进一步认识直线、射线、线段的概念,掌握它们的符号表示;掌握基本事实“两点确定一条直线”“两点之间,线段最短”,了解它们在生活和生产中的应用;理解两点间距离的意义,能度量两点间的距离;了解平面上两条直线具有相交与不相交两种位置关系;会比较线段的大小,理解线段的和、差及线段的中点等概念,会画一条线段等于已知线段.4.理解角的概念,掌握角的符号表示,会比较角的大小,认识度、分、秒并能进行简单的换算,会计算角的和与差,了解角的平分线、余角、补角的概念,知道补角和余角的性质.1.在平面图形和立体图形相互转换的过程中,培养空间观念和空间想象力.2.在对图形的探索过程中,培养学生的观察、类比、归纳的能力.1.初步认识几何图形是描述现实世界的重要工具,初步应用几何图形的知识解决一些简单的实际问题.2.培养学习图形与几何知识的兴趣,通过交流活动,形成积极参与数学活动、主动与他人合作交流的意识.本章教学内容是几何学中最基本的一些知识.我们生活中的现实空间的各种物体都以其所具有的各种空间形式存在于我们周围,学习有关图形与几何的知识能使人们更好地认识现实空间,并把有关的知识应用于实际生活和工作之中.本章是初中阶段“图形与几何”领域的第一章,介绍图形与几何的一些最基本的概念和图形.一些最基本的概念,如几何图形、立体图形、平面图形、体、面、线、点等要在本章中从现实具体物体中抽象、归纳出来,直线、线段、射线、角及有关的概念将在本章中得到比较详细的介绍,并被广泛应用于后续的教学中,本章的教学属于初中几何图形知识学习的起始阶段,对于后续相关知识的学习影响深远.本章研究的内容是几何图形.点、线、面、体既是组成几何图形的元素,本身又是基本的几何图形,而直线、射线、线段是研究数轴、函数图象以及各种几何图形的基础.本章中渗透了数形结合、分类讨论、几何变换等重要的数学思想和方法,并开始学习图形语言、符号语言,为学习相关的内容打好基础.【重点】1.平面图形和立体图形的认识.2.理解和掌握直线、射线、线段的特征和一些性质.3.掌握角的比较、度量,能判断互余角和互补角,并能正确地加以运用.【难点】1.直线、射线、线段的相关知识.2.角的有关计算.3.图形的表示和画图、作图,对几何语言的学习、运用.1.4.1节几何图形的教学中,要注意引导学生观察现实生活中的各种物体,从而进入到本章几何初步知识的学习中.对于立体图形,要引导学生对图形特征的认识,让学生完成从辨认到初步认识的提升.注意培养学生的空间观念,可以师生共同观察具体物体,教师多利用几何教具带领学生经历从物体抽象出几何图形的过程.2.4.2节直线、射线、线段的教学要让学生理解和掌握它们的联系和区别.通过实际操作和观察,理解和掌握直线、线段的性质,应让学生通过思考、探究、得到“两点确定一条直线”和“两点之间,线段最短”这两个基本事实.在图形与几何的教学中,画图教学和作图教学是重要内容,应引起重视.3.4.3节角的教学中,要在学生原有角的概念的基础上,通过丰富的实例,进一步认识角,认识与角有关的各种基本概念与关系.教学中可以通过大量贴近生活的实例,如时钟的分针与时针的夹角等来帮助学生理解角的概念,也可以让学生尽可能地去发现生活中还有哪些物体具有角的形象.4.4.4节课题学习,让学生设计制作长方体形状的包装纸盒.在此过程中,要让学生借助所学的几何初步知识,逐渐学会独立思考,学会与他人合作,并经历发现问题、分析问题和解决问题的过程,在活动过程中培养空间想象能力、逻辑思维能力、动手操作能力和在实践中应用数学的能力.4.1几何图形4.1.1立体图形与平面图形(2课时)4.1.2点、线、面、体(1课时)3课时4.2直线、射线、线段2课时4.3角4.3.1角(1课时)4.3.2角的比较与运算(1课时)4.3.3余角和补角(1课时)3课时4.4课题学习——设计制作长方体形状的包装纸盒1课时单元复习1课时4.1 几何图形1.认识几何图形,能识别立体图形与平面图形.2.能画出立体图形的三种视图,并了解立体图形的表面展开图.1.通过对生活中立体图形的认识,培养学生的空间观念.2.让学生学会观察,从周围熟悉的物体入手,对物体形状的认识由感性认识上升到理性认识.1.发展学生的空间观念,培养他们的想象力.2.让学生在学习的过程中树立学数学、爱数学的良好素养.【重点】1.观察和认识生活中的立体图形.2.会描述球、圆柱、圆锥、棱柱、棱锥及立方体的简单组合体的三种视图.【难点】1.会将生活中的实物抽象为某一类的立体图形.2.由视图描述简单的实际图形.4.1.1 立体图形与平面图形1.能识别一些基本几何体.2.初步了解立体图形和平面图形的概念.3.能从不同角度观察一些几何体,以及它们简单的组合体的平面图形.4.了解一些立体图形的表面展开图,能根据展开图想象相应的几何体.1.用数学眼光认识世界,认识学习几何知识的重要意义和应用价值.2.经历从现实世界中抽象出图形的过程,体会在解决问题过程中与他人合作的重要性.3.注意图形与几何知识和实际生活的联系,认识可以用平面图形表示立体图形,以及立体图形与平面图形的联系.1.感受数学世界的奇妙,形成学习数学的兴趣.2.激发学生对“空间与图形”的探究欲望,唤起学生爱生活,爱数学的热情.3.通过与他人的交流,初步形成积极参与数学活动,主动与他人合作的意识.【重点】1.从不同角度观察几何体.2.了解一些简单立体图形的展开图.【难点】1.了解从物体外形抽象出的几何体、平面、直线和点的概念.2.了解从物体外形抽象几何体的方法.3.根据展开图想象几何体.第课时1.通过实物和具体模型,了解从物体外形抽象出来的几何体、平面、直线和点的概念.2.能识别一些基本几何体.3.初步了解立体图形和平面图形的概念.1.用数学眼光认识世界,认识学习几何知识的重要意义和应用价值.2.经历从现实世界中抽象出图形的过程,体会在解决问题过程中与他人合作的重要性.1.感受数学世界的奇妙,形成学习数学的兴趣.2.激发学生对“空间与图形”的探究欲望,唤起学生爱生活、爱数学的热情.【重点】识别一些基本几何体.【难点】了解从物体外形抽象出的几何体、平面、直线和点的概念.【教师准备】教材图投影,部分立体图形的模型.【学生准备】生活中立体图形的小实物.导入一:现在,人们不仅从现代环境的科学角度,努力保护和改善人类生存环境,而且从环境艺术的角度,运用现代科学技术和各种艺术手段,为人类创造出更加美好的生存环境.在公园、广场等地看到的各种建筑标志、雕塑以及家庭住房的装饰等,使用了多姿多彩的图形,有的奇形怪状,有的具有较为规则的形状.你能说出日常生活中所见过的物体的形状有哪些吗?[设计意图] 通过介绍让学生了解在生活中存在着各种各样的图形,并通过举例让学生认识这些平面或立体图形.导入二:师:同学们, 不知道你们有没有仔细地观察过我们生活的周围,如果你认真观察的话,你就会发现我们周围的物体的形状是千姿百态的.其实这些美好的事物跟我们的数学有很大的联系,因为它包含着许多图形的知识.我们生活在三维的世界中,随时随地看到的和接触到的物体都是立体的.有些物体,像石头、植物等呈现出极不规则的奇形怪状;同时也有许多物体具有较为规则的形状.请同学们列举出一些生活中的立体图形.比一比谁想出的图形最多.(由学生回答,教师总结)生:橙子、苹果、西瓜、菠萝等;另外,还有中国传统建筑、书、蛋筒、冰淇淋等等.师:请大家观察下面的图片:城市里的雕塑、悉尼歌剧院、篮球、金字塔等.[设计意图] 结合生活中具体的例子,说明研究几何图形的应用价值,从而调动学生学习的积极性,激发学习的兴趣.活动1:几何图形的认识[过渡语] (出示教材图4.1 - 1)从城市宏伟的建筑到乡村简朴的住宅,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代的城市雕塑,从自然界形态各异的动物到北京的申奥标志……图形世界是多姿多彩的!各种各样的物体除了具有颜色、质量、材质等性质外,还具有形状(如方的、圆的等)、大小(如长度、面积、体积等)和位置关系(如相交、垂直、平行等),物体的形状、大小和位置关系是几何中研究的内容.观察这个纸盒,从中可以看出哪些你熟悉的图形?(教师出示教具)思考:从整体上看,它的形状是 ;看不同的侧面,得到的是或 ;看棱得到的是 ;看顶点得到的是 .(学生边回答,教师边展示上图)[知识拓展] 长方体、圆柱、球、长(正)方形、圆、线段、点,以及小学学过的三角形、四边形等,都是从形形色色的物体外形中得出的,它们都是几何图形.[设计意图] 通过观看图形展示,让学生感受现实生活中存在的图形,认识几何图形,从而发现各图形的特点,初步了解立体图形的组成,由点到线,由线到面,由面到体的特征.活动2:认识立体图形与平面图形1.立体图形[过渡语] 有些几何图形(如长方体、正方体、圆柱、圆锥、球等)各部分不都在同一平面内,它们是立体图形.思路一(1)上面的实物和下面的哪种立体图形比较相像?请同学们拿出手中的立体图形,它们分别是哪一种立体图形?(学生举例说明)(2)下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连接起来.(3)教师拿出事先准备好的立体图形的模型.让学生实际摸一摸,比较一下这些图形,看看这些图形有什么相同的地方,有什么不同的地方.教师归纳:如图(1)、图(2)所示的立体图形我们把它们叫做柱体(cylinder);如图(3)、图(5)所示的立体图形我们把它们叫做锥体(cone),如图(4)所示的立体图形我们把它们叫做球体(sphere).。
几何作图认识几何作图和作图工具

几何作图认识几何作图和作图工具几何作图是数学中的重要内容之一,它不仅是几何学习和实践的基础,也是科学研究和工程设计的重要工具。
在几何作图中,我们通过使用不同的作图工具,能够清晰地表达几何问题和解决方案。
本文将介绍几何作图的基本概念和常用的作图工具,帮助读者更好地理解和应用几何作图。
一、几何作图的基本概念几何作图是指根据已知条件,在纸上或计算机上绘制几何图形,并根据绘制的图形进行推理和求解几何问题的过程。
作图的基本概念包括以下内容:1. 已知条件:在作图之前,我们需要了解问题中已知的条件,例如给定的线段长度、角度大小等等。
2. 要求:作图的目的是根据已知条件完成一定要求,如绘制一个等边三角形或求解两直线的交点坐标等。
3. 作图步骤:作图过程中需要按照一定的步骤进行,例如使用直尺绘制线段、使用指南针画圆等。
二、常用的几何作图工具在几何作图中,我们使用各种工具来辅助绘制几何图形,下面是几种常用的几何作图工具:1. 直尺:用于绘制线段和测量线段的长度。
直尺通常为透明的,上面刻有标尺,方便读取线段的长度。
2. 指南针:用于绘制圆和弧。
指南针有一个固定的尺脚和一个可移动的尺脚,通过调整可移动的尺脚距离固定尺脚,可以画出不同半径的圆或弧。
3. 量角器:用于测量角度大小和绘制角度。
量角器上有一个转动的圆盘,可以用来测量和绘制不同大小的角度。
4. 细圆规:用于画圆弧、作割弧线段和消弧。
通常由铁制成,形状像一个尺子,但是上面的刻度不是均匀分布的,而是按照圆弧的弧长分布的。
5. 钢直尺:用于辅助绘制直线和测量线段的长度。
由于钢直尺的边缘非常平整,因此可以更加准确地绘制直线。
6. 图钉:用于固定纸张,使其不易移动,保持绘图的准确性。
三、几何作图的步骤几何作图的步骤可以根据具体问题的要求有所不同,但总体上可以归纳为以下几个步骤:1. 根据已知条件使用直尺绘制直线段。
直尺的一端与纸张上某一点对齐,另一端依照条件要求画出所需的线段。
新人教版七年级数学上册第4章 几何图形初步《4.3.1 角》优质课件

Aபைடு நூலகம்C
记作角∠用O符吗号?“∠”来表示. 为什注么意? :
1.用三个大写字母表示时,
O
B
中间字母是顶点字母;
(1)用三个大写字母:
∠AOB 或∠BOA ; 2.用一个大写字母表示
或用一个大写字母: ∠O.
时,顶点处只能有一 个角.
角的表示
(2)用一个数字加弧线表示:
1 能把∠∠1AOB
(3)用一记个为作小什∠写么1希吗?腊?字母加弧线表示:
学习重点: 角的概念及其表示方法.
复习回顾
1.填表:
图形 表示方法 端点个数
延伸方向
线段
线段AB 或线段a
两个
不向任何一方延伸
射线 直线
射线AB 或射线a
直线AB 或直线a
一个 0个
向一方无限延伸 向两方无限延伸
2.下图中共有几条线段?
AB
C
DE
我们知道,线段是一种基本的几何图形, 角也是一种基本的几何图形.在小学我们已 经对角有些粗浅的认识,本节课在已有的知 识基础上,我们将对角作进一步的研究.
角的度量在日常生活中经常要用到,度量离不开度 量单位和工具.通过本节课的学习为后面继续探究角的 知识:角的和差、角平分线等做好准备.
课件说明
学习目标: 1. 了解角度制,通过与时间单位相类比,理解和掌
握角的度分秒及其换算. 2. 通过回忆量角器的使用方法,得到用量角器作一
个角等于已知角的方法,进而从数的角度认识角. 3. 通过探究度分秒之间的换算及简单运算,了解类
如图,已知∠AOB,用量角器
量出它的度数.
A
O
B
用量角器度量角的方法: 1.对中——角的顶点对量角器的中心; 2.重合——角的一边与量角器的零线重合; 3.读数——读出角的另一边所对的度数.
数学教案二年级:使用工具绘制几何图形

数学教案二年级:使用工具绘制几何图形使用工具绘制几何图形引言几何学是数学的一个分支,研究空间与图形的性质和变化规律。
在我们的日常生活中,几何图形无处不在,比如建筑物、家具、衣服、道路等等。
因此,学会使用工具绘制几何图形是非常实用的技能。
本教案将介绍二年级使用工具绘制几何图形的方法和技巧,帮助学生掌握这一技能。
一、使用工具绘制几何图形的必备工具1.直尺:直尺是一种用于绘制直线的工具。
在使用直尺时,应该保持它与纸张平行,这样才能画出一个直线。
2.量角器:量角器是一种用于测量角度的工具。
在使用量角器时,应该将它放在所要测量的角上,然后读取角度。
3.圆规:圆规是一种用于绘制圆的工具。
在使用圆规时,应该将它的一只脚固定在纸张上,然后移动另一只脚绘制出一个圆。
二、绘不同几何图形的方法1.直线使用直尺绘制一条直线很简单。
只需要将直尺与纸张平行,并沿着尺移动铅笔即可。
同时,为了确保直线的长度和粗细都一致,应该在绘制直线前先量好长度和粗细。
2.角在绘制角时,应该先使用直尺画出一条线段,然后再使用量角器测量出所需的角度,最后用直尺连接两条线段即可。
3.三角形绘制三角形的方法有很多种,下面介绍两种比较常用的方法。
方法一:连接三个点在纸张上随意绘制三个点,然后使用直尺连接它们,构成一个三角形。
方法二:绘制一条边和两个角在纸张上使用直尺绘制一条边,然后使用量角器测量出所需的两个角度。
接着,在这条边的两端分别绘制出这两个角度对应的两条边,最后连接它们,构成一个三角形。
4.矩形绘制矩形的方法也有很多种,下面介绍两种比较常用的方法。
方法一:使用直尺和圆规在纸张上绘制一条直线作为矩形的一条边。
在这条直线的一端使用直尺和圆规绘制一个半径较小的圆弧,在另一端绘制一个半径较大的圆弧。
接着,使用直尺连接两个圆弧的交点,构成矩形的另外两条边。
方法二:使用直尺和量角器在纸张上绘制一条直线作为矩形的一条边。
使用量角器测量出所需的角度,并在这条直线的两端绘制出这两个角所对应的两条边。
初一数学第四章《几何图形初步》尺规作图——作线段

教案尺规作图——线段一、学习目标:1.会用尺规画一条线段等于已知线段;2.会比较两条线段的长短;3.理解线段中点的概念,了解“两点之间,线段最短”的性质;4.体验运用“两点之间,线段最短”解决生活中的问题;5.了解两点之间的距离的定义,并会求两点之间的距离.二、知识回顾:1.已知一条线段,如何画一条线段等于已知线段?先量出已知线段的长,再画一条这个长度的线段.2. 怎样比较两条线段的长短?用刻度尺分别量出两条线段的长度来比较.三、知识梳理:1.尺规作图和基本作图在几何里,把只用直尺和圆规画图的方法称为尺规作图;最基本、最常用的尺规作图,通常成为基本作图. 2.作一条线段等于已知线段已知线段a,画一条线段等于已知线段.作法:(1)作射线AM(2)在AM上截取AB= a.则线段AB为所求.3.比较两条线段的长短两条线段可能相等,也可能不相等,那么怎样比较两条线段的长短呢?(1)度量法:用刻度尺分别量出两条线段的长度从而进行比较.(2)叠合法:把一条线段移到另一条线段上,使一端对齐,从而进行比较.(如下图)4.线段的中点及等分点如图(1),点M把线段AB分成相等的两条线段AM与BM,点M叫做线段AB的中点;记作AM=MB或AM=MB=1/2AB或2AM=2MB=AB.如图(2),点M、N把线段AB分成相等的三段AM、MN、NB,点M、N叫做线段AB的三等分点.类似地,还有四等分点,等等.5.线段的性质两点所连的线中,线段最短.简单地说成:两点之间,线段最短.6.两点间的距离连接两点间的线段的长度,叫做这两点的距离.注意:距离是用“数”来度量的,它是线段的长度,而不是线段本身.四、典例探究1.用尺规作已知线段的和、差【例1】如下图,已知线段a,b,画一条线段,使它等于a+b.总结:1.画线段的和时,一般在第一条线段向右的延长线上画,画图工具可选用直尺和圆规,注意保留圆弧的痕迹.2.画线段的差时,一般从被减的那线段的右端点向左在线段上画.3.所画线段含已知线段的和、差时,通常先画和,再画差.4.画完线段后,最后别忘了写结论.练1如图,已知线段a,b,c,画一条线段,使它等于a-b+c.2.线段中点的有关计算【例2】如图,已知线段AD=6,线段AC=BD=4,E、F分别是线段AB,CD的中点,求线段EF的长.总结:1.一条线段的中点只有一个.2.某一点要成为一条线段的中点,必须同时满足两个条件:①点必须在这条线段上;②它把这条线段分为相等的两条线段.3.若点C是线段AB 的中点,则AB=2AC=2BC,或AC=BC=12AB.反之,若AB=2AC=2BC,或AC=BC=12AB,则点C是线段AB 的中点.练2已知线段AB=12,直线AB上有一点C,且BC=6,M是线段AC的中点,求线段AM的长.3.两点之间线段最短的实际应用【例3】如图,A、B是公路l两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在l上标注出点P的位置,并说明理由.总结:解决平面图形中最短路径(即最小距离或距离之和最小)问题时,通常会运用到线段的基本性质:两点之间,线段最短.练3如下图,一只壁虎要从圆柱体A点沿着表面尽快地爬到B点,因为B点有它要吃的一只蚊子,而它饿的十分厉害,问壁虎怎样爬行路线最短?4.两点之间的距离问题【例4】A,B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是()A.1cm B.9cm C.1cm或9cm D.以上答案都不对总结:对于题目中没有给出图的几何问题,要注意考虑全面,必要时需分类讨论. 结合题目已知条件正确画图很重要,既直观形象,又不易漏掉情况.练4已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm五、课后小测一、选择题1.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线 B.垂线段最短C.两点之间线段最短 D.三角形两边之和大于第三边2.如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为()A.2cm B.3cm C.4cm D.6cm3.已知线段AB=16cm,O是线段AB上一点,M是AO的中点,N是BO的中点,则MN=()A.10cm B.6cm C.8cm D.9cm4.如图,点C在线段AB上,点D是AC的中点,如果CD=3cm,AB=10cm,那么BC的长度是()A.3cm B.3.5cm C.4cm D.4.5cm5.在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB的长度是()A.0.5cm B.1cm C.1.5cm D.2cm6.如图所示,A、B两点所对的数分别为a、b,则AB的距离为()A.a﹣b B.a+b C.b﹣a D.﹣a﹣b7.如图,O是线段AB的中点,C在线段OB上,AC=4,CB=3,则OC的长等于()A.0.5 B.1 C.1.5 D.28.已知A,B两点之间距离是10cm,C是线段AB上任意一点,则AC的中点与BC的中点距离是()A.3cm B.4cm C.5cm D.不能确定9.下列说法中,正确的有()A.两点之间,直线最短 B.连结两点的线段叫做两点的距离C.过两点有且只有一条直线 D.AB=BC,则点B是线段AC的中点10.下列说法错误的是()A.若AP=BP,则点P是线段的中点 B.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外 D.两点之间,线段最短11.A、B两点的距离是()A.连接A、B两点的线段 B.连接A、B两点间的线段的长度C.过A、B两点的直线 D.过A、B两点的射线12.下列说法正确的是()A.两点之间的连线中,直线最短 B.如果AP=BP,那么点P是线段AB的中点C.两点之间的线段叫做这两点之间的距离 D.如果点P是线段AB的中点,那么AP=BP13.下列说法中,正确的是()A.若AC=12AB,则C是AB的中点 B.若AC=BC,则C是AB的中点C.若C在线段AB上,且AC=BC,则C是AB的中点 D.若C在直线AB上,且AC=12AB,则C是线段AB的中点二.填空题14.已知线段AB=10,如图,若C为线段AB的中点,D在线段CB上,DA=6,DB=4,则CD的长度是.15.(1)线段的大小比较可以用测量出它们的长度来比较,也可以把一条线段另一条线段上来比较;(2)将一条线段分成两条相等的线段的点叫做_________,若P是AB•的中点,•则PA=12_____,或AB=2________.三、解答题16.如图,已知线段a,b,c,画一条线段,使它等于a+3b-2c.17.如图,P是线段AB上一点,M,N分别是线段AB,AP•的中点,若AB=16,BP=6,求线段MN的长.18.知识是用来为人类服务的,我们应该把它们用于有意义的方面.从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.19.平面上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H的位置,使它与四个村庄的距离之和最小(A,B,C,D四个村庄的地理位置如图所示),你能说明理由吗?20.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.21.如图所示,A,B,C三棵树在同一直线上,量得树A与树B的距离为4m,树B与树C的距离为3m,小亮正好在A,C两树的正中间O处,请你计算一下小亮距离树B多远?22.如图所示,已知点C是线段AB的中点,D是AC上任意一点,M、N分别是AD、DB的中点,若AB=16,求MN的长.六、小结。
CorelDRAW X7中文版完全自学宝典

0 5
2.1.5 选 择覆盖对
象
0 3
2.1.3 选择 多个不相连
的对象
0 6
2.1.6 手 绘选择对
象
2.1 选择对象
2.2.1 移动和旋转对象 2.2.2 缩放和镜像对象 2.2.3 设置对象的大小
2 对象操作
2.2 变换对象
实战练习 制作几何图形标 志
实战练习 制作花纹边框
2.2.4 倾斜处理
实战练习 制作 旅游邮戳
2.5.1 对齐 对象
1
2 对象操作
2.5 对齐与分布
2.5.2 分布 对象
2
2 对象操作
2.6 步长与重复
实战练习 制作生日贺卡
2 对象操作
对象 属性栏中“合并” 与“合并”的区别
B A
本章学习总结
04
3 线型工具的使用
3 线型工具的使用
3.1 手绘工具
3.2 2点线工 具
A
CorelDRAW X7 的应用领域
B
03
2 对象操作
2 对象操作
2.1 选择 对象
2.4 控制 对象
2.2 变换 对象
2.5 对齐 与分布
2.3 复制 对象ห้องสมุดไป่ตู้
2.6 步长 与重复
2 对象操作
本章学习总结
2 对象操作
0 1
2.1.1 选 择单个对
象
0 4
2.1.4 全 选对象
0 2
2.1.2 选 择多个对
4
形转星形
4 几何图形工具的 使用
4.4 星形工具
操作演示 绘 制星形
实战练习 绘制 T恤印花图案
3.8.1 预设
Photoshop中的形状工具的应用技巧

Photoshop中的形状工具的应用技巧第一章:形状工具简介Photoshop是一款功能强大的图像处理软件,其中的形状工具是其重要的功能之一。
形状工具可以帮助用户快速创建各种形状,如直线、矩形、椭圆等,并且可以自由调整这些形状的大小、颜色以及其他属性。
在本章中,我们将介绍Photoshop中常用的形状工具及其基本操作。
第二章:绘制基本形状Photoshop的形状工具栏中包含了多种基本形状,例如矩形工具、椭圆工具、多边形工具等。
要绘制基本形状,只需在形状工具栏中选择对应的工具,然后在画布上点击并拖动鼠标即可。
在拖动过程中,我们可以按住Shift键来保持形状的宽高比,按住Alt键来以鼠标点击位置为中心绘制形状。
此外,还可以通过调整选项栏中的参数,如填充颜色、轮廓颜色等来修改形状的外观。
第三章:编辑形状一旦绘制完成,我们还可以对形状进行进一步的编辑。
在Photoshop中,有多种编辑形状的方法,如选择工具、直接编辑工具、转换工具等。
利用选择工具,我们可以选择并移动形状,通过直接编辑工具,我们可以修改形状的锚点,通过转换工具,我们可以调整形状的大小和形状。
第四章:自定义形状除了绘制基本形状外,Photoshop还支持用户自定义形状。
在形状工具栏中,我们可以找到自定义形状工具。
通过点击自定义形状工具,我们可以在选项栏中选择某个自定义形状或创建新的自定义形状。
创建自定义形状的方法有很多,常见的是使用钢笔工具绘制路径,然后将路径转换为自定义形状。
创建成功后,我们可以像使用基本形状一样使用自定义形状,并且可以根据需要调整其大小和外观。
第五章:形状的填充与描边除了基本的形状绘制外,我们还可以对形状进行填充和描边,以进一步美化图像。
在选项栏中,我们可以选择填充颜色和描边颜色,并通过调整参数来修改颜色的透明度、渐变方式等。
此外,我们还可以修改描边的线宽和线型,以及添加其他特效,如阴影、发光等,使形状更加立体和有趣。
第六章:形状的变换和变形形状的变换和变形是Photoshop中的常用操作之一。
2022年人教版七年级上册数学第四章几何图形初步单元教案

第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时认识几何图形◇教学目标◇【知识与技能】1.通过实物和具体模型,认识从实物中抽象出来的几何图形;2.了解立体图形和平面图形的概念,并能归纳常见的立体图形和平面图形.【过程与方法】经历探索立体图形与平面图形之间的关系,发展空间观念.【情感、态度与价值观】体会把实物抽象出几何图形的过程.◇教学重难点◇【教学重点】识别一些基本几何图形.【教学难点】认识从物体外形抽象出来的几何图形.◇教学过程◇一、情境导入观察下图中的“鸟巢”,你能抽象出熟悉的几何图形吗?二、合作探究探究点立体图形与平面图形典例1下列图形中不是立体图形的是()A.四棱锥B.长方形C.长方体D.正方体[解析]几何图形的各部分不都在同一平面内的图形叫立体图形,几何图形的各部分都在同一平面内的图形叫平面图形.由定义可知A,C,D均为立体图形.[答案] B下列各组图形中都是平面图形的一组是()A.三角形、圆、球、圆锥B.点、线段、数学书的封面、长方体C.点、三角形、四边形、圆D.点、直线、线段、正方体[答案] C典例2将下列的几何体进行分类,并说出每个几何体的名称.[解析]分别根据柱体、锥体、球体的定义进行分类.[答案]柱体有(1)(2)(4)(7);锥体有(5)(6);球体有(3).(1)长方体(四棱柱);(2)三棱柱;(3)球;(4)圆柱;(5)圆锥;(6)四棱锥;(7)六棱柱.将下列几何体分类,柱体有;锥体有.(只填序号)[答案]①②③⑤⑥三、板书设计认识几何图形立体图形{柱体{棱柱圆柱锥体{棱锥圆锥台体{棱台圆台球体:球◇教学反思◇本节课的内容较简单,课堂上通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识;通过自主探究活动,让学生感受图形的形状特点,提升学生的空间想象能力.第2课时折叠、展开与从不同方向观察立体图形◇教学目标◇【知识与技能】1.会识别从正面、左面、上面看物体所得的平面图形;2.会画一些常见几何体及简单组合体从正面、左面、上面看物体所得的平面图形;3.直观认识简单立体图形的平面展开图.【过程与方法】在平面图形和立体图形的相互转化中,初步发展空间观念,发展几何直觉.【情感、态度价值观】通过探讨现实生活中的实物制作,激发学生学习的热情.【情感、态度与价值观】培养敢于面对困难的精神,感受几何图形的美感.◇教学重难点◇【教学重点】识别、画出简单几何体从正面、左面、上面看物体所得的平面图形,了解直棱柱、棱锥、圆柱、圆锥的平面展开图.【教学难点】由从正面、左面、上面看物体所得的平面图形,还原为实物图,根据平面展开图想象相应的几何体.◇教学过程◇一、情境导入对于一些立体图形的问题,常把它们转化为平面图形来研究处理,从不同的方向看立体图形,往往会得到不同形状的平面图形.例如放在桌面上的茶杯,从不同侧面得到不同的图形,你能用学过的诗句描述这种现象吗?二、合作探究探究点1会从正面、左面、上面看物体所得的平面图形典例1如图的几何体是由一个正方体切去一个小正方体形成的,从正面看得到的图形是()[答案] D下列水平放置的四个几何体中,从正面看得到的图形与其他三个不相同的是()[答案] D典例2一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小方块的个数,则从正面看到几何体的形状图是()[答案] D探究点2会画从正面、左面、上面看物体所得的平面图形典例3如图是由4个大小相等的正方体搭成的几何体,你能画出从正面、左面、上面看得到的平面图形吗?[解析]从正面、左面、上面看得到的平面图形分别如图所示:探究点3探究立体图形的展开图典例4如图所示,下列四个选项中,不是正方体表面展开图的是()[答案] C三、板书设计折叠、展开与从不同方向观察立体图形1.从不同的方向观察立体图形2.立体图形的展开图◇教学反思◇本节课的内容有点难度,主要是培养学生的空间观念和空间想象力.应鼓励学生多动手画图,让学生自主探索立体图形与平面图形之间的对应关系.4.1.2点、线、面、体◇教学目标◇【知识与技能】1.认识点、线、面、体的几何特征,感受它们之间的关系;2.探索点、线、面运动后形成的几何图形.【过程与方法】培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想.【情感、态度与价值观】培养学生积极主动的学习态度和自主学习的方式.◇教学重难点◇【教学重点】了解点、线、面、体是组成几何图形的基本元素,认识点、线、面、体的几何特征,感受它们之间的关系.【教学难点】探索点、线、面运动后形成的几何图形.◇教学过程◇一、情境导入如图是一个长方体,它有几个面?面和面相交的地方形成了几条棱?棱和棱相交成几个顶点?二、合作探究探究点1从静态角度认识点、线、面、体典例1如图所示的几何体是由几个面围成的?面与面相交成几条线?它们是直的还是曲的?[解析] 从图中可以看出该几何体由4个面组成,4个面相交成6条线,有2条是曲的.圆柱由 面围成,它有 个底面,是平的,有 个侧面,是曲的,底面与侧面相交形成的线有 条,是 (填“直的”或“曲的”). [答案] 3 2 1 两 曲的探究点2 从动态角度认识点、线、面、体典例2 将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为 ()[解析] 圆柱是由一长方形绕其一边长旋转而成的;圆锥是由一直角三角形绕其直角边旋转而成的;C 中该几何体是由直角梯形绕其下底旋转而成的;D 中该几何体是由直角三角形绕其斜边旋转而成的. [答案] D如图所示的图形绕虚线旋转一周,所形成的几何体是 ( )[答案] B 三、板书设计点、线、面、体点、线、面、体{定义关系{静态关系动态关系◇教学反思◇本节课在学生已有的数学知识基础上,由学生自己观察、发现、探究从对点的认识到对线、面、体的进一步认识,使学生经历运用图形描述现实世界的过程,进一步发展学生的抽象思维能力.4.2直线、射线、线段第1课时直线、射线、线段的概念◇教学目标◇【知识与技能】理解直线、射线、线段的概念及它们的联系与区别,掌握它们的表示方法.【过程与方法】能在现实情境中,进行抽象的数学思考,提高抽象概括能力.【情感、态度与价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】理解直线、射线、线段的概念、表示方法及它们的联系与区别.【教学难点】直线、射线、线段的表示方法;实现文字、图形、符号三种语言的相互转化.◇教学过程◇一、情境导入我们在小学已经学过线段、射线和直线,你能说说它们的区别和联系吗?二、合作探究探究点1探究直线的性质典例1下列语句中正确的个数是 ()①延长直线AB;②延长射线OA;③在线段AB的延长线上取一点C;④延长线段BA至C,使AC=AB.A.1个B.2个C.3个D.4个[答案] B探究点2线段在生活中的应用典例2我们知道,若线段上取一个点(不与两个端点重合,以下同),则图中线段的条数为1+2=3条;若线段上取两个点,则图中线段的条数为1+2+3=6条;若线段上取三个点,则图中线段的条数为1+2+3+4=10条…请用你找到的规律解决下列实际问题:杭甬铁路(即杭州——宁波)上有萧山,绍兴,上虞,余姚4个中途站,则车站需要印制的不同种类的火车票为()A.6种B.15种C.20种D.30种[解析]车票需要考虑往返情况,故有2(1+2+3+4+5)=30.[答案] D乘火车从A站出发,沿途经过3个车站方可到达B站,那么A、B两站之间需要制定种不同的票价.[答案]10三、板书设计直线、射线、线段的概念直线、射线、线段{直线:无端点,无长度射线:一端点,无长度线段:两端点,有长度◇教学反思◇本节课是学生学习几何图形知识的基础,这堂课需要掌握的知识点多,而且比较抽象,教师在教学时要体现新课程的三维目标,并在有效地利用学生已有的旧知来引导学生学习新知.第2课时线段的比较◇教学目标◇【知识与技能】1.了解尺规作图的概念,会用尺规作图作一条线段等于已知线段;了解度量线段的两种方法,对线段进行大小比较.2.理解线段中点的概念,利用和、差、倍、分关系计算线段的长度.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.◇教学重难点◇【教学重点】线段的大小比较,利用和、差、倍、分关系计算线段的长度.【教学难点】线段的等分点表示方法及运用.◇教学过程◇一、情境导入小明和小华在比身高,以下是他们的对话:小明:“我身高1.5 m.”小华:“我身高1.53 m,比你高3 cm.”怎样比较两条线段的长短呢?你能从比身高上受到一些启发吗?二、合作探究探究点1尺规作图典例1如图,已知线段a,b,c(a>b),用圆规和直尺画线段,使它等于a-b+2c.[解析]如图所示:线段AE=a-b+2c.探究点2探索比较线段长短的方法典例2A,B,C三点在同一直线上,线段AB=5 cm,BC=4 cm,那么线段AC的长度是()A.1 cmB.9 cmC.1 cm或9 cmD.以上答案都不对[解析]第一种情况:C点在AB之间上,故AC=AB-BC=1 cm;第二种情况:当C点在AB的延长线上时,AC=AB+BC=9 cm.[答案] C三、板书设计线段的比较线段的长短比较{度量法叠合法◇教学反思◇教师要尝试让学生自主学习,优化课堂数学的反馈与评价,通过评价激发学生的求知欲,坚定学生学习的自信心.第3课时线段的性质◇教学目标◇【知识与技能】1.掌握“两点之间,线段最短”的性质,并能熟练应用;2.理解两点的距离,并能计算线段中两点的距离.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】掌握“两点之间,线段最短”的性质及应用.【教学难点】两点的距离定义及计算.◇教学过程◇一、情境导入如图,从A地到B地有四条道路,除它们外能否再修一条从A地到B地的最短道路?如果能,请你联系以前所学的知识,在图上画出最短路线.二、合作探究探究点1探究线段性质典例1如图所示,设A,B,C,D为4个村庄,现在需要在四个村庄中间建一个自来水中心,请你确定一个点,使这4个村庄的居民到该中心的距离之和最小.[解析]如图,连接AC,BD交于O点,此时距离之和AC+BD为最小.如图所示,A,B是两个村庄,若要在河边l上修建一个水泵站往两村输水,问水泵站应修在河边的什么位置,才能使铺设的管道最短,并说明理由.[解析]如图所示,根据两点之间,线段最短,连接AB,交l于O点,则O点为水泵站位置.“两点之间,线段最短”这一定理在生活中有许多应用,例如修高速路时,隧道将路变直;铺水管时,走最短的路线等.探究点2两点间的距离典例2已知线段AB=10 cm,点C在直线AB上,试探讨下列问题:(1)是否存在一点C,使它到A,B两点的距离之和等于8 cm?并说明理由;(2)是否存在一点C,使它到A,B两点的距离之和等于10 cm?若存在,它的位置是唯一的吗?(3)当点C到A,B两点距离之和等于20 cm,试说明点C的位置,并举例说明.[解析](1)根据两点之间,线段最短,AC+BC最短距离为10 cm,故不存在合条件的点.(2)存在,这样的点不唯一,线段AB上任意一点均满足条件.(3)存在,在A、B两点外5 cm处的点均满足条件.三、板书设计线段的性质1.线段性质:两点之间线段最短2.两点的距离:连接两点间的线段的长度,叫做这两点间的距离◇教学反思◇本节课通过引导学生主动参与学习过程,探究出线段的性质,从中培养学生动手和合作交流的能力,解决生活中的数学问题是为了进一步巩固两点之间的距离的意义,渗透数形结合思想解决线段长问题,渗透分类讨论思想,训练学生思维严谨性.4.3角4.3.1角◇教学目标◇【知识与技能】1.从实例中建立角的概念,从静态和动态两方面理解角的形成,掌握角的两种定义形式;2.掌握角的四种表示方法,角的度量单位及其换算.【过程与方法】提高学生的识图的能力,学会用运动变化的观点看问题.【情感、态度与价值观】保持学习兴趣,养成积极探索的精神和合作意识,感受数学的价值.◇教学重难点◇【教学重点】角的概念与角的表示方法.【教学难点】角的度量单位及其换算.◇教学过程◇一、情境导入时钟的时针、分针组成的形状是?二、合作探究探究点1探究角的定义及表示方法典例1看图解答下列问题:(1)以A为顶点共有几个角?如何表示?(2)以D为顶点共有几个角?如何表示?(3)图中能用一个大写字母表示的角有几个?分别是哪些角?∠BAC能用∠A表示吗?为什么?(4)图中共有几个角?[解析](1)以A为顶点共有3个角,分别是∠3,∠4,∠BAC.(2)以D为顶点共有8个角,分别是∠5,∠6,∠BDA,∠7,∠EDC,∠8,∠ADG,∠BDG.(3)能用一个大写字母表示的角有2个,分别是∠B,∠C;∠BAC不能用∠A表示,因为以A为顶点的角不止一个角.(4)图中共有17个角.探究点2角的度量典例2(1)填空:①57.18°=度分秒;②17°31'48″=度.(2)解答:38°15'与38.15°相等吗?如不等,谁大?[解析](1)①571048②17.53(2)因为38.15°=38°9',38°9'<38°15',所以38°15'大.(1)36.33°可化为()A.36°30'3″B.36°33'C.36°30'30″D.36°19'48″(2)15°24'36″=°.[答案](1)D(2)15.41°【技巧点拨】用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位乘以进率;而小单位化大单位要除以进率.三、板书设计角角{角的概念角的表示方法度、分、秒的换算◇教学反思◇通过本节课的学习,学生做到了以下三个方面:首先,理解角的定义并掌握角的四种表示方法.其次,能够熟练进行度、分、秒的换算,为接下来角的和差运算打下良好的基础.最后,形成严谨的学习态度.4.3.2角的比较与运算◇教学目标◇【知识与技能】1.掌握角的大小比较方法和角的和差运算;2.理解角平分线的定义及表示方法并能在实际情景中应用.【过程与方法】经历比较角的大小、用量角器画角平分线、用折纸法确定角平分线的过程,积累活动经验,培养动手操作能力.【情感、态度与价值观】让学生认识到用新知识构建新意义的过程,增强学生学习数学的愿望和信心,培养学生爱思考,善于交流的良好的学习习惯.◇教学重难点◇【教学重点】理解角平分线的定义.【教学难点】角平分线的定义、表示及应用.◇教学过程◇一、情境导入前面我们已经学习了比较两条线段的方法,那么怎样比较两个角的大小呢?二、合作探究探究点1角的大小比较典例1如图,射线OC,OD分别在直角∠AOB的内部,外部,则下列各式正确的是()A.∠AOB<∠BOCB.∠AOB=∠CODC.∠AOB<∠AODD.∠BOC>∠DOC[解析]∠BOC在∠AOB的内部,所以∠AOB>∠BOC,A错误;∠AOB与∠COD无重叠的边,∠AOB在∠AOD的内部,所以∠AOB<∠AOD,C正确;同理可得D错误.[答案] C探究点2探究角的和差运算典例2计算:(1)65°53'26″+37°14'53″;(2)106°27'30″-98°25'42″;(3)23°25'24″×4;(4)102°48'21″÷3.[解析](1)65°53'26″+37°14'53″=102°8'19″.(2)106°27'30″-98°25'42″=8°1'48″.(3)23°25'24″×4=93°41'36″.(4)102°48'21″÷3=34°16'7″.计算:(1)45°4'+2°58'=;(2)180°-72°55'=;(3)108°×5=;(4)180°26'÷5=.[答案](1)48°2'(2)107°5'(3)540°(4)36°5'12″探究点3探究角平分线的定义及表示典例3如图,OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,如果∠AOE =130°,求∠BOD 的度数.[解析] 因为OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,所以∠COB =12∠AOC ,∠COD =12∠COE ,所以∠BOD =∠COB +∠COD =12(∠AOC +∠COE )=12∠AOE =65°.三、板书设计角的比较与运算角的比较与运算{角的大小比较角的和差运算角平分线的定义及相关计算◇教学反思◇在讲授知识的过程中必须对旧的知识进行适当的复习,使学生能对角的知识有一个更深的记忆.在角的形象比较中,要努力引导学生的思维方向.重叠法是一个难点,但此法比较适用于实际中的比较.对于角度的计算要设计各个类型的教学.4.3.3余角和补角◇教学目标◇【知识与技能】1.掌握余角、补角的定义、性质及应用;2.理解方位角的意义,会画方位角.【过程与方法】经历余角、补角性质的推导和应用过程,初步掌握图形语言与符号语言之间的相互转化,进一步提高识图能力,发展空间观念.【情感、态度与价值观】通过互余、互补性质的学习过程,培养善于观察、独立思考、合作交流的良好学习习惯.◇教学重难点◇【教学重点】方位角的辨析与应用.【教学难点】余角、补角的性质及应用.◇教学过程◇一、情境导入知识回顾(1)叙述直角、平角的概念.(2)画出直角、平角的图形.二、合作探究探究点1探究余角、补角的性质典例1点A,O,B在一直线上,射线OD,OE分别平分∠AOC和∠BOC.(1)图中互余的角有对;(2)∠3的补角是.[解析](1)由已知,∠1=∠2,∠3=∠4,且∠2+∠4=90°,所以互余的角有:∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4共4对;(2)∠3的补角是∠AOE.[答案](1)4(2)∠AOE探究点2角的计算还多1°,求这个角.典例2一个角的补角与这个角的余角的和是平角的34×180+1,解得[解析]设这个角为x°,则它的余角为(90-x)°,补角为(180-x)°,则(90-x+180-x)=34x=67.答:这个角为67°.,则这个角的度数是.一个角的补角与它的余角的2倍的差是平角的13[答案]60°探究点3方位角典例3如图,O点是学校所在位置,A村位于学校南偏东42°方向,B村位于学校北偏东25°方向,C村位于学校北偏西65°方向,在B村和C村间的公路OE(射线)平分∠BOC.(1)求∠AOE的度数;(2)公路OE上的车站D相对于学校O的方位是什么?(以正北、正南方向为基准)[解析](1)因为A村位于学校南偏东42°方向,所以∠1=42°,则∠2=48°.因为C村位于学校北偏西65°方向,所以∠COM=65°.因为B村位于学校北偏东25°方向,所以∠4=25°,所以∠BOC=90°.因为OE(射线)平分∠BOC,所以∠COE=45°,∠EOM==20°,所以∠AOE=20°+90°+48°=158°.(2)由(1)可得∠EOM=20°,则车站D相对于学校O的方位是北偏西20°.三、板书设计余角和补角余角和补角{余角、补角的性质余角、补角的计算方位角◇教学反思◇对于七年级学生来说,他们在生活中已有一定的确定位置的经验,方位角的概念、方位角的表示是学生在小学就有所了解的,但根据题意画出方位角以及运用方位角的知识确定点的方位是学生不熟悉的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图4-21
图4-22
图4-23
图4-24
4.7.2 箭头形状工具
图4-17
图4-18
图4-19
即学即用——绘制格子图案
最终效果图
7 形状工具组
为了方便用户使用,CorelDRAWX7软件将 一些常用的形状进行了编组,用户可以根据需要 选择相应的形状绘制图形。长按鼠标左键打开工 具箱形状工具组,如图4-20所示,包括“基本形 状工具”“箭头形状工具”“流程图形状工 具”“标题形状工具”“标注形状工具”五种形 状样式。
第1种:双击工具箱中的“图纸工具”打开“选 项”面板,如图4-14所示,在“图纸工具”选项下设 置“宽度方向单元格数”和“高度方向单元格数”的 数值,确定行数和列数,完成后单击“确定”按钮即 设置好网格数值。
第2种:选择工具箱中的“图纸工具”,在其属 性栏的“行数和列数”上输入数值,如图4-15所示, 在“行”输入5“列”输入6得到的网格图纸,如图416所示。
在绘制多边形时按住Ctrl键可以绘制一个正多边形,如图4-5所示,也可以在属性栏上输入宽和高改为正多 边形,按住Shift键以中心为起始点绘制一个多边形,按住Shift+Ctrl键则是以中心为起始点绘制正多边形。
图4-3
图4-4
图4-5
4.3.2 多边形的设置
“多边形工具”的属性栏如图4-6所示。
4.1 矩形工具
矩形是图形绘制常用的基本图形,“矩形工具”主要以斜角拖动来快速绘制矩形, 并且利用属性栏进行基本的修改变化。
1.绘制方法 2.参数设置
4.2 椭圆工具组
椭圆形是图形绘制中除矩形外的另一个常用的基本图形,CorelDRAWX7软件提供 了2种绘制工具,“椭圆形工具”和“3点椭圆形工具”。
图4-20
4.7.1 基本形状工具
“基本形状工具”可以快速绘制梯形、心形和三角形等基本型形状,如图4-21所示。绘制方法和多边形绘制 方法一样,个别形状在绘制时会出现有红色轮廓沟槽,通过轮廓沟槽可修改造型的形状。
选择工具箱中的“基本形状工具”,然后在其属性栏中“完美形状”图标的下拉样式中进行选择,如图4-22 所示,选择图标在页面空白处按住鼠标左键拖动进行绘制,松开鼠标左键即完成绘制,如图4-23所示。将光标放 在红色轮廓沟槽上,按住鼠标左键可以进行修改形状,如图4-24所示将笑脸变为哭脸。
选择工具箱中的“3点椭圆形工具”,然后在页面空白处单击鼠标定下第1个点,接着长按鼠标左键拖动 一条实线进行预览,如图4-1所示,确定位置后松开鼠标左键定下第2个点,再移动光标进行定位,如图4-2所 示,确定后单击鼠标左键完成编辑。
图4-1
图4-2
即学即用——绘制时尚背景图案
最终效果图
4.3 多边形工具
“多边形工具”是专门用于绘制多边形的工具,略微比矩形与椭圆形工具绘制出来 的图形复杂,它可以自定义多边形的边数。
4.3.1 多边形的绘制方法
选择工具箱中的“多边形工具”,然后在页面空白处按住鼠标左键以对角的方向进行拉伸,如图4-3所示, 可以预览多边形大小,确定后松开鼠标左键完成编辑,如图4-4所示,在默认情况下,多边形边数为5条。
4.2.1 椭圆形工具
“椭圆形工具”以斜角拖动的方法快速绘制椭圆,可以在其属性栏中进行基本设置。 1.椭圆基础绘制 2.属性设置
4.2.23 点椭圆形工具
“3点椭圆形工具”和“3点矩形工具”的绘制原理相同都是定3个点来确定一个形,不同之处是矩形以高 度和宽度定一个形,椭圆则是以高度和直径长度定一个形。
图4-14
图4-15 图4-16
4.6.2 绘制图纸
选择工具箱中的“图纸工具”,然后设置好网格的行数与列数,接着在页面空白处按住鼠标左键以对角 方向拖动鼠标,如图4-17所示,松开鼠标左键完成绘制,如图4-18所示。按住Ctrl键可以绘制一个外框为正 方形的图纸,如图4-19所示。按住Shift键可以以中心为起始点绘制一个图纸,同时按住Shift键和Ctrl键则是 以中心为起始点绘制外框为正方形的图纸。
中文版
CorelDRAWX7从入门到精通
实用教程(微课版)
LOGO
学习要点
矩形工具 椭圆形和3点椭圆形工具 多边形工具 星形工具 图纸工具运用 形状工具组
第4章 几何图形工具的使用
本章主要讲解矢量绘图中几何图形的创建 方法,包括基础图形的绘制工具,也包括 复杂图形的绘制工具。通过本章详细的学 习,用户可以使用这些工具来绘制规矩或 不规矩的形状。
图4-11
图4-12
4.5.2 复杂星形的设置
“复杂星形工具”的属性栏如图4-13所示。
图4-13
4.6 图纸工具
“图纸工具”可以绘制一组由矩形组成的网格,格子数值可以设置。
4.6.1 设置参数
在绘制图纸之前需要设置网格的行数和列数,以 便于在绘制时更加精确。设置行数和列数的方法有以 下两种。
4.5 复杂星形工具
“复杂星形工具”用于绘制有交叉边缘的星形,与星形的绘制方法一样。
4.5.1 绘制复杂星形
选择工具箱中的“复杂星形工具”,然后在页面空白处按住鼠标左键以对角的方向拖动,松开鼠标左键 完成编辑,如图4-11所示。
按住Ctrl键可以绘制一个正星形,按住Shift键可以以中心为起始点绘制一个星形,同时按住Shift键和 Ctrl键则是以中心为起始点绘制正星形,如图4-12所示。
在绘制星形时按住Ctrl键可以绘制一个正星形,如图4-9所示,也可以在属性栏中输入宽和高进行修改,按住 Shift键可以以中心为起始点绘制一个星形,同时按住Shift键和Ctrl键则是以中心为起始点绘制正星形,与其他几 何形的绘制方法相同。
图4-7
图4-8
图4-9
4.4.2 星形的参数设置
“星形工具”的属性栏如图4-10所示。 图4-10
图4-6
4.3.3 多边形的修饰
多边形和星形复杂星形都是息息相关的,可以增加边数和利用“形状工具”的修饰来进行转化。 1.多边形转星形 2.多边形转复杂星形
4.4 星形工具
“星形工具”用于绘制规则的星形,默认下星形的边数为5。
4.4.1 星形的绘制
选择工具箱中的“星形工具”,然后在页面空白处按住鼠标左键以对角的方向拖动鼠标,如图4-7所示,松 开鼠标左键完成编辑,如图4-8所示。