第四章基本平面图形知识点梳理

合集下载

第四章 基本平面图形知识点梳理

第四章 基本平面图形知识点梳理

第四章基本平面图形知识点梳理
第四章基本平面图形知识点梳理
本章主要介绍基本的平面图形知识,包括几何体、平行四边形、多边形和圆。

一、几何体
几何体是构成物体形状的基本结构,可用平面图进行表示。

常见的几何体有正方形、矩形、多边形、三角形、圆形、椭圆形、棱形等,都有边和面。

二、平行四边形
平行四边形是指具有两条对角线的四边形,其四边相互平行。

可分为矩形和菱形,其中矩形是平行四边形中最常见的,它拥有两条相等的对角线,四个角都是直角;而菱形则是一种特殊
的平行四边形,它也具有两条对角线,不过这两条对角线是相等的,四个角都是锐角。

三、多边形
多边形是由多条线段构成的封闭图形,定义中指出“多”即多边形必须有3条或3条以上的线段才能算作一个多边形。

常见的多边形有三角形、四边形、五边形、六边形等,它们也可以分为凸多边形和凹多边形。

四、圆
圆是由一个中心点和相同半径的线段构成的一种图形,它是由圆上的所有点,距离圆心等距离构成的,因此圆也可以称为一种“完整”的图形。

圆的重要性在于不论在几何中,还是我们的日常生活中都会大量的使用,从标准的圆形工具,到日常中的化妆品,都常常使用圆形做为外形,这说明了圆形的有效性和重要性。

北师大版七年级上册数学第四章基本的平面图形讲义(学生、家长、教师必备)

北师大版七年级上册数学第四章基本的平面图形讲义(学生、家长、教师必备)

第四章基本平面图形■通关口诀:三线入门学几何;线段距离要分清。

温习数角数线段;中点角分三描述。

点点滴滴认识圆;六十进制作了解。

多边形与对角线;学习几何打基础。

比线比角要熟练;尺规作图知初步。

■正奇数学学堂第一讲:线段、射线、直线【知识点一】“三线”的基本概念{1.线段:不定义的基本概念。

两个特征:一是直的;二是有两个端点。

2.射线:把线段一方无限延长所形成的图形叫做射线。

三个特征:直的;一个端点;向一方无限延长。

3.直线:把线段向两方无限延长形成的图形叫做直线。

三个特征:直的;无端点;向两方无限延长。

4.注意:三线都是直的。

线段和射线都是直线的一部分。

区别在端点个数和是否延长及延长的方向。

〖母亲题示例〗1.填写下表:名称图例端点数延伸方向有无长度线段射线直线2.下图中哪个是线段,哪个是射线,哪个是直线?【知识点二】线段、射线、直线的表示方法。

1.线段:可以用表示两爹端点的大写字母或一个小写字母来表示。

名称+字母(无顺序)。

2.射线:可以用端点和射线上的另一点表示。

名称+字母(字母有顺序,端点字母必须在前)。

3.直线:可以用两个大写字母来表示。

也可以用一个小写字母来表示。

名称+字母(不讲顺序)。

4.注意:线段-字母相同即相同;射线:字母、顺序都相同,才能断定同一线;直线:字母相同即同线。

〖母亲题示例〗1.如图,A,B在直线l上,下列说法错误的是()A.线段AB和线段BA同一条线段B.直线AB和直线BA同一条直线C.射线AB和射线BA同一条射线D.图中以点A 为端点的射线有两条.【知识点三】直线的性质(老大:代表两个小弟。

)1.交点:两条直线相交,只有一个交点。

2.两点定线:经过两点有且只有一条直线。

(简记:两点确定一条直线)。

3.探求:过一点有无数条直线。

过两点以上不一定有直线。

但它们可以在一条直线上。

4.求交点:过平面内n条直线最多有(1)2n n —个交点。

5.数线段:①n个点= (1)2n n 条线段②n条基本线段:退乘法求线段数。

北师大版七年级数学上册复习课件 第四章 基本的平面图形 (共39张ppt)

北师大版七年级数学上册复习课件 第四章 基本的平面图形  (共39张ppt)
数学·课标版(BS)
第四章复习
方法技巧 通过观察、分析、综合、归纳、概括、推理、判断等一 系列探索活动,解答有关探索规律的问题,探索规律性问题 的特点是问题的结论或条件不直接给出,需要逐步确定所求 的结论和条件.
数学·课标版(BS)
第四章复习
试卷讲练

平面图形是七年级数学的重要组成部分,在各类考
(4)分类:小于平角的角可按大小分成三类:当一个角等 于平角的一半时,这个角叫做_直__角__;大于 0°角小于直角的角 叫做_锐__角__;大于直角而小于平角的角叫做__钝__角__.
数学·课标版(BS)__点__引出的一条射线,把这个角分成两 个__相__等___的角,这条射线叫做这个角的平分线.
上 ” , 那 么 小 亮 可 以 对 小 明 说 : “ 你 在 我 的 ________ 方 向
上.”( A )
A.南偏西 30°
B.北偏东 30°
C.北偏东 60°
D.南偏西 60°
2.在一次航海中,在一艘货轮的北偏东 54°的方向上有一 艘渔船,那么货轮在渔船的_南__偏__西__5_4_°_方向上.
[解析] 钟表被分成 12 格,每格的度数是 30°, 30°×2.5=75°.
数学·课标版(BS)
第四章复习
方法技巧 计算钟面上时针与分针的夹角,关键是确定时针
与分针相隔几个格.
数学·课标版(BS)
第四章复习
►考点三 规律探索性问题
如图 4-2,平面内有公共端点 的六条射线 OA,OB,OC,OD,OE, OF,从射线 OA 开始按逆时针方向依 次在射线上写出数字 1,2,3,4,5,6,7,…. 则“17”在射线__O__E__上;“2013”在射 线__O__C__上.

最新北师大版七年级数学上册第四单元基本平面图形知识点

最新北师大版七年级数学上册第四单元基本平面图形知识点

第四章:基本平面图形知识梳理一、线段、射线、直线1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。

线段可以量出长度。

(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。

射线无法量出长度。

(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。

直线无法量出长度。

: 联系:射线是直线的一部分。

线段是射线的一部分,也是直线的一部分。

2、点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

3、直线的性质(1)直线公理:经过两个点有且只有一条直线。

简称两点确定一条直线。

(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

(4)直线上有无穷多个点。

(5)两条不同的直线至多有一个公共点。

4、线段的比较(1)叠合比较法(用圆规截取线段);(2)度量比较法(用刻度尺度量)。

5、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。

(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。

若C 是线段AB 的中点,则:AC=BC=21AB 或AB=2AC=2BC 。

二、角1、角的概念:(1)角可以看成是由两条有共同端点的射线组成的图形。

两条射线叫角的边,共同的端点叫角的顶点。

(2)角还可以看成是一条射线绕着它的端点旋转所成的图形。

2、角的表示方法:角用“∠”符号表示,角的表示方法有以下四种: ①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B ,∠C 等。

基本平面图形4.1-4.2 全面讲义

基本平面图形4.1-4.2  全面讲义

四条直线相交,最多有6个交点.三条直线相交,最多有3个交点.两条直线相交,最多有1个交点.第四章 基本平面图形4.1~4.2【知识梳理】1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。

线段可以量出长度。

(2)射线:将线段向 个方向无限延伸就形成了射线,射线有 个端点;射线无法量出长度。

(3)直线:将线段向 个方向无限延伸就形成了直线,直线有 个端点;直线无法量出长度。

2、线段、射线、直线的表示方法(1)线段的表示方法有两种:一是用两个端点来表示,二是用一个小写字母来表示。

(2)射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。

(3)直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写字母来表示。

3、直线公理:经过两点 且 一条直线。

简称 点确定一条直线。

4、线段的比较:(1)叠合法;(2)度量法。

5、线段公理:“两点之间的所有连线中, 最短”,简称为:“两点之间, 最短”;6.两点间的距离:连接两点之间 的长度,叫做这两点的距离。

7、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。

例: 若C 是线段AB 的中点,则:AC=BC= AB 或AB= =2BC 。

8.尺规作图:作一条线段等于已知线段【重点难点】重点:线段、射线、直线等概念的理解及运用;线段长短及比较;线段和直线公理;分类讨论求线段的长度.难点:准确理解线段、直线、射线等概念;利用线段的中点分情况求线段的长度;尺规作图.【典型例题】例1、已知平面上四点A 、B 、C 、D,如图:(1)画直线AB;(2)画射线AD;(3)直线AB 、CD 相交于E;(4)连结AC 、BC 相交于点F.例2、观察图中的图形,并阅读图形下面的相关文字:像这样,10条直线相交,最多交点的个数是 ,n 条直线相交,最多交点的个数是 .知识迁移:往返于甲、乙两地的客运火车,中途停靠三个站.(假设该车只有硬座,且各站距离不等)(1)有多少种不同的票价; (2)要准备多少种车票?(总结同类问题:握手、球类单循环赛等等)例3、先阅读下面的材料,然后解答问题:在一条直线上有依次排列的n(n>1)台机床工作,我们要设置一个零件供应站P,使这n台机床到供应站P的距离总和最小,要解决这个问题,先退到比较简单的情形:如图①,如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之和等于A1到A2的距离.如图②,如果直线上有3台机床时,不难判断,供应站设在中间一台机床A2处最合适,因为如果P放在A2处,甲、乙和丙所走的距离之和恰好是A1到A3的距离,而如果把P放到别处,例如D处,那么甲和丙所走的距离之和仍是A1到A3的距离,可是乙还得走从A2到D的这一段,这是多出来的,因此P放在A2处最佳选择.不难知道,如果直线上有4台机床,P应设在第二台与第3台之间的任何地方,有5台机床,P应设在第3台位置.问题:(1) 有n台机床时,P应设在何处?(2) 根据(1)的结论,求|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣617|的最小值.知识迁移:某公司员工分别住在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在同一直线上,如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点应该设在()A. A区B. B区C. C区D. 不确定例4、在直线l上顺次..取A、B、C三点,使得AB=5㎝,BC=2㎝.求线段AC的长度。

六年级第四章平面图形的初步知识

六年级第四章平面图形的初步知识

六年级第四章平面图形的初步知识六年级第四章平面图形的初步知识小升初数学是很多同学比较头疼的科目,小编为大家准备了六年级第四章平面图形的初步知识,希望同学们能够掌握。

1、长方形(1)特征对边相等,4个角都是直角的四边形。

有两条对称轴。

(2)计算公式 c=2(a+b) s=ab2、正方形(1)特征:四条边都相等,四个角都是直角的四边形。

有4条对称轴。

(2)计算公式:c=4a ;s=a??3、三角形(1)特征:由三条线段围成的图形。

内角和是180度。

三角形具有稳定性。

三角形有三条高。

(2)计算公式:s=ah/2(3)分类*按角分:锐角三角形:三个角都是锐角。

直角三角形:有一个角是直角。

等腰三角形的两个锐角各为45度,它有一条对称轴。

钝角三角形:有一个角是钝角。

同一个圆里有无数条直径,所有的直径都相等。

同一个圆里,直径等于两个半径的长度,即d=2r。

圆的大小由半径决定。

圆有无数条对称轴。

(2)圆的画法把圆规的两脚分开,定好两脚间的距离(即半径);把有针尖的一只脚固定在一点(即圆心)上;把装有铅笔尖的一只脚旋转一周,就画出一个圆。

(3) 圆的周长围成圆的曲线的长叫做圆的周长。

把圆的周长和直径的比值叫做圆周率。

用字母∏表示。

(4) 圆的面积圆所占平面的大小叫做圆的面积。

(5)计算公式d=2r r=d/2 c=∏d c=2∏r s=∏r7、扇形(1) 扇形的认识一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。

圆上AB两点之间的部分叫做弧,读作“弧AB”。

顶点在圆心的角叫做圆心角。

在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。

扇形有一条对称轴。

(2) 计算公式s=n∏r??/3608、环形(1) 特征由两个半径不相等的同心圆相减而成,有无数条对称轴。

(2) 计算公式s=∏(R??-r??)9、轴对称图形特征:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

折痕所在的这条直线叫做对称轴。

北师大版七年级数学第四章----- 基本平面图形

北师大版七年级数学第四章----- 基本平面图形

第四章 基本平面图形思维导图形图面平本基⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧=︒⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧︒︒︒︒︒"=''=︒⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧)(36036018090909006016012为扇形的半径为圆心角的度数,π扇形面积:—用扇形所占百分比乘—圆心角的度数相关计算角叫做圆心角圆心角:顶点在圆心的形径所组成的图形叫做扇这条弧的端点的两条半扇形:由一条弧和经过的部分叫做圆弧圆弧:圆上任意两点间点形成的图形点旋转一周,另一个端段绕着它固定的一个端定义:平面上,一条线圆做正多边形各角也相等的多边形叫正多边形:各边相等,两个顶点的线段边形中,连接不相邻的多边形的对角线:在多图形次相连组成的封闭平面一直线上的线段首尾顺定义:由若干条不在同多边形大小比较线射线叫做这个角的平分的角,这条把这个角分成两个相等顶点引出的一条射线,角平分线:从一个角的的角,小于钝角:大于的角直角:等于的角,小于锐角:大于小于平角的角的分类,角的单位换算:希腊字母表示一个阿拉伯数字或一个字母或一个大写字母或表示方法:用三个大写而成的射线绕着它的端点旋转角也可以看成是由一条顶点的公共端点是这个角的的射线组成,两条射线角由两条具有公共端点定义角长短比较之间线段的长度两点之间的距离:两点最短性质:两点之间,线段点段分成两条相等线段的线段的中点:把一条线字母表示表示,也可用一个小写的两个端点的大写字母表示方法:用表示线段看做线段板的边沿都可以近似地定义:绷紧的琴弦、黑线段倒字母写在前面,不能颠字母表示,表示端点的表示方法:用两个大写限延长就形成了射线定义:将线段向一方无射线有一条直线性质:经过两点有且只个小写字母表示意两点的大写字母或一表示方法:用直线上任了直线个方向无限延长就形成定义:将线段向两个两直线扇形R n R n S考点精讲考点一线段、射线、直线线段、射线、直线的概念1.线段:期紧的琴弦、黑板的边沿都可以近似地看做线段.线段有两个特征:一是直的;二是有两个端点.2.射线:将线段向一个方向无限延长就形成了射线.手电筒、探照灯所射出的光线可以近似地看做射线.射线有三个特征:一是直的;二是有一个端点三是向一方无限延伸.3.直线:将线段向两个方向无限延长就形成了直线,直线有三个特征:一是直的;二是没有端点;三是向两方无限延伸.线段、射线、直线的表示方法名称图例表方方法线段用一个小写字母表示,如:线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).射线用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA直线用一个小写字母表示,如:直线l;用直线上的两个大写字母表示,如直线AB(或直线BA).线段、射线、直线的区别与联系名称线段射线直线不同点端点个数2个1个无伸展性不可延长只能向一方无限延长向两方无限延长度量可以度量不可度量不可度量联系将线段向一个方向无限延长就形成了射线,向两个方向无限延长就形成了直线,线段和射线都可以看做直线的一部分共同点都是直的,不是曲的拓展:线段的延长线是有方向的,作延长线时要特别注意表示线段的字母的顺序,以便确定延长的方向.“线段BA”与“线段AB”是同一条线段,但“线段AB的延长线”与“线段BA的延长线”却不是同一条.如图,图中,线段AB的延长线如图(1),线段BA的延长线如图(2).直线的性质1.画直线的常用工具是直尺,经过一点A可以画出无数条直线.2.直线的基本性质:经过两点有且只有一条直线(这一事实可以简述为:两点确定一条直线)线段的性质两点的所有连线中,线段最短.简单说成:两点之间的所有连线中,线段最短.可简称为“两点之间线段最短”两点之间的距离两点之间线段的长度,叫做这两点之间的距离.特别提醒:考点二比较线段的长短(1)线段是一个图形;两点间的距离是指线段的长度,是一个数值.(2)线段的长度可用刻度尺测量.比较两条线段的长短已知线段AB和CD.1.叠合法:把它们放在同一条直线上比较.具体作法如下:画一条直线l,在l上先作出线段AB,再作出线段CD,并使点C与点A重合,点D与点B位于点A的同侧,则:(1)如果点D与点B重合,就说线段AB与线段CD相等,记作AB=CD,如图①所示;(2)如果点D在线段AB内部,就说线段AB大于线段CD,记作AB>CD,如图②所示;(3)如果点D在线段AB外部,就说线段AB小于线段CD,记作AB<CD,如图③所示.2.度量法:先用刻度尺量出线段AB与线段CD的长度,再进行比较.特别提醒:用测量法比较线段的长短时,要采用相同的测量标准,单位要统一.作一条线段等于已知线段如图所示,作图步骤为:(1)作一条射线AB;(2)用圆规量出已知线段的长度(记作a);(3)用圆规在射线AB上截取AC=a.则线段AC就是所求作的线段.线段的中点特别提醒:(1)线段的中点必须在线段上,线段的中点只有一个,三等分点有两个,四等分点有三个.(2)利用线段的中点可以写出线段相等或成倍分关系的等式.(3)若点C是线段AB的中点,则AC=BC;但若AC=BC,则点C不一定是线段AB的中点.角的定义1.角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点,这两条射线叫做角的边.构成角的两个基本条件;一是角的顶点,二是角的边.如图所示,角的顶点是点O,角的边是射线OA,OB.考点三角2.从运动的观点看,角也可以看成是由一条射线绕着它的端点旋转而成的图形.如图所示,∠BAC可以看成是以A为端点的射线,从AB的位置绕点A旋转到AC的位置而成的图形.3.一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.终边继续旋转,当它又和始边重合时,所成的角叫做周角.如图(1)所示,射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所成的角叫做平角:如图(2)所示,射线OA绕它的端点旋转一周所成的角叫做周角.在小学数学中,我们已经知道:1平角=180°,1周角=360°.拓展:平角与直线、周角与射线的区别:平角是一个角,它的始边和终边在同一条直线上,但方向相反;直线是一条线,没有端点,可以向两边无限延长,这是两个不同的概念,不能说“一条直线就是平角”或“平角是一条直线”.同样,周角是始边旋转360°后与终边重合而构成的角,这时构成角的两条边的两条射线重合,同样也不能说“一条射线是周角”或“周角是一条射线”.特别提醒:(1)平角和周角都是“角”,而不是”线”因此不能说“一条直线就是平角”,也不能说“一条射线就是周角.(2)没有特殊说明,我们只讨论大于等于0且小于等于180°的角.角的表示方法角的几何符号是“∠”,角的表示方法有以下几种:图例记法适用范围及注意事项用三个大写字母表示,如∠AOB或∠BOA任何情况都适用,用此方法表示角时,顶点的字母必须写在中间用一个大写字母表示,如∠O以这一点为顶点的角只有一个时才适用用数字1,2,3,…表示,如∠AOB可记作∠1任何情况都适用,用此方法表示角时,要用小弧线表示出角的范围,即从哪边到哪边用小写希腊字母α,β,…表示,如∠BOC可记作∠α任何情况都适用,用此方法表示角时,要用小弧线表示出角的范围,即从哪边到哪边考点三角特别提醒:当以某一点为顶点的角较多时,不能只用表示顶点的大写字母表示角,一般可用数字或希腊字母表示.角的分类小于平角的角可按大小分成三类:当一个角等于平角的一半时,这个角叫直角;大于零度角且小于直角的角叫锐角;大于直角且小于平角的角叫钝角.1周角=2平角=4直角=360°,1平角=2直角=180°,1直角=90°.角的度量及换算1.角的度量单位角的度量单位主要有度、分、秒,符号分别是“°”“′”“″”.把一个周角360等分,每一份就是1度的角,记作1°;把1度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″.以度、分、秒为单位的角的度量制,叫做角度制.此外,还有其他度量角的单位制.2.角度制的换算1周角=360°,1平角=180°,1°=60′,1′=160⎛⎫⎪⎝⎭,1′=60″,1″=160''⎛⎫⎪⎝⎭.3.角的度量方法最常用的量角的工具是量角器.用量角器量角时要注意对中(顶点对中心)、重合(一边与量角器的零刻度线重合)、读数(读出另一边所对的度数)这三点.考点四角的比较角的大小比较名称方法举例度量法用量角器量出两个角的度数,度数大的角大,度数小的角小,度数相等的角相等用量角器量得∠1=50°,∠2=45°,所以∠1>∠2.叠合法把两个角的一条边和顶点叠合在一起,另一条边在叠合边的同侧,通过观察另一条边的位置来比较两个角的大小如果EF与BC重合,如图),那么∠DEF等于∠ABC,记作∠DEF=∠ABC.如果EF落在∠ABC的外部,如图,那么∠DEF大于∠ABC,记作∠DEF>∠ABC.如果EF落在∠ABC的内部,如图,那么∠DEF小于∠ABC,记作∠DEF<∠ABC.注意:(1)角的大小与角的两边的长短、粗细无关,只与角的两边张开的程度有关;考点四角的比较(2)角的大小一旦确定,它的大小就不因图形的位置,图形的放大或缩小而改变.特别提醒:(1)比较角的大小时,有时也可用估测法,即直接通过观察的方法,比较角的大小.此方法较为直观,但不够准确,适用于角度差别较大或精确度要求不高的角的大小的比较.(2)“测量法”中角的大小关系和角的度数大小关系是一致的,是从“数的方面”来比较角的大小.“叠合法”中比较角的大小时,一定要使两个角的顶点及一边重合,将角的另一边落在重合的边的同侧,这是从“形”的方面来比较角的大小.两者比较大小的结果是一致的.角的平分线定义:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.如图所示,如图所示,射线OC是∠BOA的平分线,则∠BOC=∠COA=21∠BOA,∠BOA=2∠BOC=2∠C0A.特别提醒:(1)角的平分线是一条射线,不是线段,也不是直线.(2)若OC是∠AOB的平分线,则OC必然在∠AOB的内部.考点五多边形和圆的初步认识多边形的有关概念1.多边形:由若干条不在同一直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形.三角形、四边形、五边形、六边形等都是多边形,组成多边形的各条线段叫做多边形的边,相邻两条边的公共端点叫做多边形的顶点,相邻两条边所组成的角叫做多边形的内角,简称多边形的角.特别提醒:多边形的特征:①多边形是平面图形,要和立体图形区分开;②多边形是由不在同一直线上的线段组成的封闭图形;③组成多边形的各条线段首尾顺次相连.2.多边形的对角线:在多边形中,连接不相邻两个顶点的线段叫做多边形的对角线. 拓展:从n边形每一个顶点都能引出(n-3)条对角线,共有n个顶点,但每条对角线都重复计算了一次,从而对角线共有2)3(nn条.正多边形各边相等,各角也相等的多边形叫做正多边形.如图所示的多边形分别是正三角形、正四边形(正方形)、正五边形、正六边形、正八边形.拓展:多边形可分为凸多边形和凹多边形,如没有特别说明,本书所说的多边形都是指凸多边形,即多边形总在任何一条边所在直线的同一侧,凸多边形的每个内角都小于180°.圆、圆弧、扇形、圆心角的概念1.平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆.固定的端点O称为圆心,线段OA称为半径(如图所示)2.圆上任意两点A ,B 间的部分叫做圆弧,简称弧,记作.读作圆弧AB 或“弧AB ”(现阶段一般研究小于半圆的弧)3.由一条弧AB 和经过这条弧的端点的两条半径OA ,OB 所组成的图形叫做扇形;顶点在圆心的角叫做圆心角.如图所示的阴影部分就是扇形AOB .∠AOB 就是圆中的一个圆心角,∠AOB 也可记作∠1.特别提醒:圆心和半径是确定一个圆的两个必须条件.圆心确定圆的位置,半径确定圆的大小,二者缺一不可.圆心角的度数(1)一个圆可以分割成若干个扇形,这些扇形的面积的和等于圆的面积(2)因为一个周角为360°,所以分成的几个扇形的圆心角的度数之和=360,每一个扇形圆心角的度数=360°×(每一个扇形圆心角占周角的百分比)拓展:半径为R 的圆,其面积S =πR 2,将圆等分为360个小扇形,则每个圆心角为1°的小扇形的面积是3602R π,所以圆心角为n 的扇形的面是3602R n π.。

北师大版(2024新版)七年级数学上册第四章课件:第四章 基本的平面图形 小结与复习

北师大版(2024新版)七年级数学上册第四章课件:第四章 基本的平面图形 小结与复习
北师大版 七年级(上册) 2024新版教材
第四章 基本的平面图形 小结与复习
知识梳理
基 本 平 面 图 形
直线 两点确定一条直线
线段 射线
两点之间线段最短 线段的中点 线段比较长短
角的定义

角平分线
角比较大小
尺规作图
知识梳理
基 本 平 面 图 形
多边形
定义 对角线 正多边形
定义

弧 扇形
圆心角
知识回顾

是否 可以 度量
不能 度量
不能 度量
表示方法
表示 方法
备注
作图 描述
射线 AB
A,B两点 以A为端点
有序,端 作射线
点在前
AB
直线
AB 或直 线BA 或直线
a
A,B两点
无序
过A,B两点 作直线AB
知识回顾
2.两点确定一条直线 经过两点有且只有一条直线.
二、比较线段的长度 1.线段的基本事实 两点之间的所有连线中,线段__最__短___. 简述为:两点之间,线段__最__短____ .
基础巩固
4.下午2时15分到5时30分,时钟的时针转过的度数 为__9_7_.5_°_.
解析:时钟被分成12个大格,相当于把圆分成12等份, 每一等份等于30°. 分针转360°时,时针转一格,即30°. 从2时15分到5时30分,时针走了(3.5-0.25)格, 即30°×(3.5-0.25)=97.5°.
知识回顾
4.角的度量 (1)角的度量单位是度、分、秒. (2)它们之间的关系是六十进制的,即1°=60′,1′=60″.
5.方向角 借助角表示方向,通常以正北或正南为基准,配以偏 西或偏东的角度来描述方向.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)直线公理:经过两个点有且只有一条直线。(或者说两点确定一条直线 。)
(2)过一点的直线有无数条。 (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。 (4)直线上有无穷多个点。 (5)两条不同的直线至多有一个公共点。 7、线段的性质 (1)线段公理:两点之间的所有连线中,线段最短。 (2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。 (3)线段的中点到两端点的距离相等。 (4)线段的大小关系和它们的长度的大小关系是一致的。 8、线段的中点: 点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。 9、角: 有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个 角的顶点,这两条射线叫做这个角的边。 或:角也可以看成是一条射线绕着它的端点旋转而成的。 10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线 时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角 叫做周角。 11、角的表示 角的表示方法有以下四种:
条射线。 平面内的n条直线相交,最多也只有 n (n 1) 个交点。 2
4、点、直线、射线和线段的表示 在几何里,我们常用字母表示图形。 一个点可以用一个大写字母表示。 一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示。 一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点 字母写在前面)。 一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示。 5、点和直线的位置关系有两种: ①点在直线上,或者说直线经过这个点。 ②点在直线外,或者说直线不经过这个点。 6、直线的性质
2、(1)两点之间,_________最短。 (2)__________________________________________叫做两点之间的距离。 (3)比较两段线段的方法有:____________________________________ (4)__________________________________________叫做线段的中点。如图: 则AM=BM=____AB(或AB=____AM=____BM)
【练习】(1)把一段弯曲的公路改为直道,可以缩短路程,其理由是( )
A、两点确定一条直线
B、线段有两个端点
C、两点之间线段最短
D、垂线段最短
(2)已知线段AB=4cm,C是AB的中点,延长CB至D,使CD=5cm,E是AD的中点,则AE
的长度为( A 3cm;
) B 3.5cm;
C 4cm;
D 4.5cm
的字母写在两侧。 12、角的度量 角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是
度,用“°”表示,1度记作“1°”,n度记作“n°”。 把1°的角60等分,每一份叫做1分的角,1分记作“1’”。 把1’ 的角60等分,每一份叫做1秒的角,1秒记作“1””。 1°=60’,1’=60” 13、角的性质 (1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。 (2)角的大小可以度量,可以比较 (3)角可以参与运算。 14、角的平分线 从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线
3 0o
O

(2) 7200″=______________′=
° 东 (3)
1.25°=_____′=_____″;
(3) 时钟表面3点30分时,时针与分针所夹角的度数是

(4)如图,O是直线AB上的一点,OD平分∠AOC,OE平分∠BOC,则∠DOE=_____.
(3)已知线段AB,延长AB到C,使BC= 1 AB,D为AC的中点,若AB=9cm,则DC的 3
长为

(4)已知:P是线段AB的中点,PA=3cm ,则AB=______cm.
(5)如图已知点C为AB上一点,AC=12cm,
d
CB= 2 AC,D、E分别为AC、AB的中点求DE的长。 3
A
D EC
(3)________________________________________________是平角
_____________________________________dd______________是周角
(4)1°=________′
1′=________″

A
【练习】(1)如图(3)所示,射线OA的方向是北偏_________度。
叫做这个角的平分线。 二、练习:
1、 经过两点有且只有________直线。
【练习】(1)下面四种叙述中正确的是( )
A 直线有端点;
B 射线有长度;
C 任何两直线必有交点;
D 线段有长度。
(2)下列图形能比较长短的是( )
A.直线与线段 B、直线与射线 C、两条线段 D、射线与线段
(3)锯木料的师傅一般先在木板上先画出两点,然后过这两点弹出一条墨线,这 是利用了_____________________________________原理
第四章 基本平面图形
一、知识点总结 1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段。线段有两个端
点。 2、射线:将线段向一个方向无限延长就形成了射线。射线有一个端点。 3、直线:将线段向两个方向无限延长就形成了直线。直线没有端点。 一条直线上有n个点,则在这条直线上一共有 n (n 1) 条线段,一共有2n 2
B

东 2 0东 东
3、(1)_______________________________________________是角,
或者角也可以看成是由____________________________________.
(2)___________________________________________是角的顶点
①用数字表示单独的角,如∠1,∠2,∠3等。 ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。 ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如
∠B,∠C等。 ④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。 注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上
相关文档
最新文档