第四章:基本平面图形知识点及经典例题

合集下载

北师大版七年级上册数学基本平面图形知识点典型例题练习

北师大版七年级上册数学基本平面图形知识点典型例题练习

第四章:基本平面图形知识梳理一、线段、射线、直线1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。

线段可以量出长度。

(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。

射线无法量出长度。

(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。

直线无法量出长度。

结论:直线、射线、线段之间的区别:联系:射线是直线的一部分。

线段是射线的一部分,也是直线的一部分。

2、点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

3、直线的性质(1)直线公理:经过两个点有且只有一条直线。

简称两点确定一条直线。

(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

(4)直线上有无穷多个点。

(5)两条不同的直线至多有一个公共点。

4、线段的比较(1)叠合比较法(用圆规截取线段);(2)度量比较法(用刻度尺度量)。

5、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。

(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。

若C 是线段AB 的中点,则:AC=BC=21AB 或AB=2AC=2BC 。

二、角1、角的概念:(1)角可以看成是由两条有共同端点的射线组成的图形。

两条射线叫角的边,共同的端点叫角的顶点。

(2)角还可以看成是一条射线绕着它的端点旋转所成的图形。

2、角的表示方法:角用“∠”符号表示,角的表示方法有以下四种:①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B ,∠C 等。

(完整)第四章:基本平面图形知识点及经典例题,推荐文档

(完整)第四章:基本平面图形知识点及经典例题,推荐文档

(完整)第四章:基本平面图形知识点及经典例题,推荐文档第四章:基本平面图形知识点一、寻找规律:(1)2n n - ◆ 数线段条数:线段上有n 个点(包括线段两个端点)时,共有(1)2n n -条线段◆ 数角的个数:以0为端点引n 条射线,当∠AOD<180°时,则(如图)•小于平角的角个数为(1)2n n -.◆ 数直线条数:过任三点不在同一直线上的n 点一共可画(1)2n n -条直线.◆ 数交点个数:n 条直线最多有(1)2n n -个交点.◆ 握手问题:数n 个人两两握手能握(1)2n n -次.二、基本概念1.线段、射线、直线(1)线段:绷紧的琴弦、人行道横线都可以近似地看做线段.线段的特点:是直的,它有两个端点.(2)射线:将线段向一方无限延伸就形成了射线.射线的特点:是直的,有一个端点,向一方无限延伸.(3)直线:将线段向两个方向无限延长就形成了直线.直线的特点:是直的,没有端点,向两方无限延伸. 2.线段的中点把一条线段分成两条相等的线段的点,叫做线段的中点.利用线段的中点定义,可以得到下面的结论:(1)因为AM=BM=12AB ,所以M 是线段AB 的中点.(2)因为M 是线段AB 的中点,所以AM=BM=12AB 或AB=2AM=2BM .3.角由两条具有公共端点的射线组成的图形叫做角,公共端点叫做角的顶点,两条射线叫做角的边.角也可以看成是由一条射线绕着它的端点旋转而成的.一条射线绕着它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.终边继续旋转,当它又和始边重合时,所成的角叫做周角.4.角平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线. 5.两点之间的距离两点之间的线段的长度,叫做这两点之间的距离.6.直线的性质经过两点有且只有一条直线,其中“有”表示“存在性”,“只有”表示“惟一性”. 7.线段的性质两点之间的所有连线中,线段最短.三、线段、角的表示方法线段的记法:①用两个端点的字母来表示②用一个小写英文字母表示射线的记法:用端点及射线上一点来表示,注意端点的字母写在前面直线的记法:①用直线上两个点来表示②用一个小写字母来表示角的表示:①用三个大写字母表示,表示顶点的字母写在中间:∠AOB ;②用一个大写字母表示:∠O ;③用一个希腊字母表示:∠a;④用一个阿拉伯数学表示:∠1。

第四章 基本平面图形知识点梳理

第四章 基本平面图形知识点梳理

第四章基本平面图形知识点梳理
第四章基本平面图形知识点梳理
本章主要介绍基本的平面图形知识,包括几何体、平行四边形、多边形和圆。

一、几何体
几何体是构成物体形状的基本结构,可用平面图进行表示。

常见的几何体有正方形、矩形、多边形、三角形、圆形、椭圆形、棱形等,都有边和面。

二、平行四边形
平行四边形是指具有两条对角线的四边形,其四边相互平行。

可分为矩形和菱形,其中矩形是平行四边形中最常见的,它拥有两条相等的对角线,四个角都是直角;而菱形则是一种特殊
的平行四边形,它也具有两条对角线,不过这两条对角线是相等的,四个角都是锐角。

三、多边形
多边形是由多条线段构成的封闭图形,定义中指出“多”即多边形必须有3条或3条以上的线段才能算作一个多边形。

常见的多边形有三角形、四边形、五边形、六边形等,它们也可以分为凸多边形和凹多边形。

四、圆
圆是由一个中心点和相同半径的线段构成的一种图形,它是由圆上的所有点,距离圆心等距离构成的,因此圆也可以称为一种“完整”的图形。

圆的重要性在于不论在几何中,还是我们的日常生活中都会大量的使用,从标准的圆形工具,到日常中的化妆品,都常常使用圆形做为外形,这说明了圆形的有效性和重要性。

第四章-基本平面图形(含解析)

第四章-基本平面图形(含解析)

2019备战中考数学基础必练(北师大版)-第四章-基本平面图形(含解析)一、单选题1.如图所示,A、B、C、D在同一条直线上,则图中共有线段的条数为()A.3B.4C.5D.62.下列说法错误的是()A. 角的大小与角的边的长短无关B. 角的大小和它们的度数大小是一致的C. 角的平分线是一条直线D. 如果C点在∠AOB的内部,那么射线OC上所有的点都在∠AOB的内部3.在Rt△ABC中,∠C=90°,AC=3.将其绕B点顺时针旋转一周,则分别以BA、BC为半径的圆形成一圆环,该圆环的面积为( ).A. πB. 3πC. 6πD. 9π4.如图所示的四条射线中,表示南偏东65°的是()A. 射线OAB. 射线OBC. 射线OC D. 射线OD5.已知α、β都是钝角,甲、乙、丙、丁四个同学的计算(α+β)的结果依次为28°、48°、60°、88°,其中只有一个同学计算结果是正确的,则得到正确结果的同学是()A. 甲B. 乙C. 丙D. 丁6.下面表示∠ABC的图是()A.B.C.D.7.如图,点B、C在线段AD上,且AB=CD,则AC与BD的大小关系是()A. AC>BD B. AC=BDC. AC<BD D. 不能确定8.点M(﹣3,4)离原点的距离是多少单位长度()A. 3B. 4C. 5D. 79.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A. 10B. 9C. 8D. 7二、填空题10.线段AB=10cm,BC=5cm,A、B、C三点在同一条直线上,则AC=________11.如图,∠AOB=90°,OD平分∠BOC,∠DOE=45°,则∠AOE________ ∠COE(填“<”“>”或“=”号)12.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是________.13.已知点C是线段AB上的一点,如果线段AC=8cm,线段BC=4cm,则线段AC和BC的中点间的距离为________.14.在灯塔O处观测到轮船A位于北偏西43°的方向,同时轮船B在东北的方向,那么∠AOB 的大小为________°.15.甲看乙在北偏东50度,那么乙看甲的方向为________.16.102°43′32″+77°16′28″=________;98°12′25″÷5=________.17.正六边形的边长为a,面积为S,那么S关于a的函数关系式是________ .18.点C在射线AB上,若AB=3,BC=2,则AC为________三、解答题19.如图,已知,,,求的长.20.车轮为什么都做成圆形的?四、综合题21.如图,∠AOB=120°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每分钟20°;射线OD从OB开始,绕点O逆时针旋转,旋转的速度为每分钟5°,OC和OD同时旋转,设旋转的时间为t(0≤t≤15).(1)当t为何值时,射线OC与OD重合;(2)当t为何值时,射线OC⊥OD;(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC,OB与OD 中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.22.如图,已知同一平面内,∠AOB=90゜,∠AOC=60゜.(1)填空:∠COB=________;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为________;(3)试问在(2)的条件下,如果将题目中∠AOC=60゜改成∠AOC=2α(α<45゜),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.23.已知:如图,线段AB=10,C是AB的中点.(1)求线段BC的长;(2)若点D在直线AB上,DB=2.5,求线段CD的长.答案解析部分一、单选题1.【答案】D【考点】直线、射线、线段【解析】【解答】解:如图,线段有:线段AB、线段AC、线段AD、线段BC、线段BD、线段CD共6条.故选D.【分析】根据线段的定义,写出所有线段后再计算条数.2.【答案】C【考点】角平分线的定义,角的计算【解析】【解答】解:A、角的大小与角的边的长短无关,正确,故本选项错误;B、角的大小和它们的度数大小是一致的,正确,故本选项错误;C、角的平分线是从角的顶点出发的一条射线,错误,故本选项正确;D、如果C点在∠AOB的内部,那么射线OC上所有的点都在∠AOB的内部,正确,故本选项错误;故选C.【分析】根据角的有关内容(角的大小和角的两边的长短无关,只和角的度数有关,角的平分线是从角的顶点出发的一条射线)判断即可.3.【答案】D【考点】圆的认识【解析】【解答】圆环的面积=AB2-BC2=(AB2-BC2)在Rt ABC中,根据勾股定理得:AC2=AB2-BC2,∴圆环的面积=AC2=9.故答案为:D.【分析】本题主要考查圆环面积的计算及勾股定理的运用,根据题意用代数式表示圆环的面积,再根据勾股定理等量代换即可求得面积.4.【答案】B【考点】钟面角、方位角【解析】【解答】解:如图所示:表示南偏东65°的是射线OB.故答案为:B.【分析】根据方位角的意义判断即可.5.【答案】B【考点】角的概念,角的计算【解析】【解答】甲、乙、丙、丁四个同学的计算(α +β)的结果依次为28°、48°、60°、88°,那么这四个同学计算α+β的结果依次为168°、288°、360°、528°,又因为两个钝角的和应大于180°且小于360°,所以只有乙同学的计算正确.故答案选:B 【分析】钝角是大于90°且小于180°的角,那么两个钝角的和应大于180°且小于360°.6.【答案】C【考点】角的概念【解析】【解答】解:A、有四个小于平角的角,没有∠ABC,故错误; B、用三个大写字母表示角,表示角顶点的字母在中间,应为∠BCA,故错误;C、用三个大写字母表示角,表示角顶点的字母在中间,应为∠ABC,故正确;D、用三个大写字母表示角,表示角顶点的字母在中间,应为∠BAC,故错误.故选:C.【分析】根据角的概念,对选项进行一一分析,排除错误答案.7.【答案】B【考点】比较线段的长短【解析】【解答】解;AB=CD,两边都加BC,得AB+BC=CD+BC,即AC=BD,故选:B.【分析】根据等式的性质,可得答案.8.【答案】C【考点】两点间的距离【解析】【解答】解:设原点为O(0,0),根据两点间的距离公式,∴MO===5,故选C.【分析】根据两点间的距离公式即可直接求解.9.【答案】D【考点】正多边形和圆【解析】【解答】解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选D.【分析】先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.二、填空题10.【答案】5cm或者15cm【考点】两点间的距离【解析】【解答】解:本题有两种情形:(1)当点C在线段AB上时,如图,AC=AB﹣BC,又∵AB=10cm,BC=5cm,∴AC=10﹣5=5cm;(2)当点C在线段AB的延长线上时,如图,AC=AB+BC,又∵AB=10cm,BC=5cm,∴AC=10+5=15cm.故线段AC=15cm或5cm.故答案为:15cm或5cm.【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据题意画出的图形进行解答.11.【答案】=【考点】角的计算【解析】【解答】解:∵∠AOB=90°,∠DOE=∠DOC+∠COE=45°,∴∠BOD+∠AOE=45°,∵OD平分∠BOC,∴∠BOD=∠COD,∴∠AOE=∠COE,故答案为:=【分析】根据角的和差得出∠BOD+∠AOE=45°,再利用角平分线的定义得出∠BOD=∠COD,即可得到答案.12.【答案】两点之间,线段最短【考点】线段的性质:两点之间线段最短【解析】【解答】解:某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是:两点之间,线段最短.故答案为:两点之间,线段最短.【分析】根据线段的性质进行解答即可.13.【答案】6cm【考点】两点间的距离【解析】【解答】解:根据题意,点C在线段AB上,如图,∵AB=8cm,BC=4cm,点E、F分别是线段AC、BC的中点,∴CE= AC,CF=BCAC和BC的中点间的距离为:EC+CF=AC+BC=(AC+BC)=×(8+4)=6cm故答案为:6cm.【分析】根据题意画出图形,找出线段之间的关系,列出关系式,代入具体数据计算即可.14.【答案】88【考点】钟面角、方位角【解析】【解答】解:∠AOB=43°+45°=88°.故答案为:88.【分析】根据方向角的定义,然后利用角的和差计算即可求解.15.【答案】南偏西50°【考点】钟面角、方位角【解析】【解答】解:甲看乙在北偏东50度,那么乙看甲的方向为南偏西50°.故答案为:南偏西50°.【分析】根据方向角的表示方法,可得答案.16.【答案】180;19°38′29″【考点】度分秒的换算【解析】【解答】解:102°43′32″+77°16′28″ =(102+77)°+(43+16)′+(32+28)″=179°59′60″=180°;98°12′25″÷5=19°+38′+29″=19°38′29″.故答案为:180;19°38′29″.【分析】(1)利用度分秒分别相加,再把满60的向前一个单位进位即可;(2)首先利用98°除以5,再把余数乘以60化成分,加到12′上再除以,再把余数乘以60加到25″上,再除以5即可.17.【答案】【考点】正多边形和圆【解析】【解答】经过圆心O作圆的内接正n边形的一边AB的垂线OC,垂足是C;连接OA,则在直角△OAC中,∠O=30°,OC是边心距,OA即半径.再根据三角函数即可求解.边长为a的正六边形的面积=6×边长为a的等边三角形的面积s=6××a×(a×sin60°)=.故答案为:S=.【分析】过圆心O作圆的内接正n边形的一边AB的垂线OC,垂足是C;连接OA,即可得出答案。

最新北师大版七年级数学上册第四单元基本平面图形知识点

最新北师大版七年级数学上册第四单元基本平面图形知识点

第四章:基本平面图形知识梳理一、线段、射线、直线1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。

线段可以量出长度。

(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。

射线无法量出长度。

(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。

直线无法量出长度。

: 联系:射线是直线的一部分。

线段是射线的一部分,也是直线的一部分。

2、点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

3、直线的性质(1)直线公理:经过两个点有且只有一条直线。

简称两点确定一条直线。

(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

(4)直线上有无穷多个点。

(5)两条不同的直线至多有一个公共点。

4、线段的比较(1)叠合比较法(用圆规截取线段);(2)度量比较法(用刻度尺度量)。

5、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。

(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。

若C 是线段AB 的中点,则:AC=BC=21AB 或AB=2AC=2BC 。

二、角1、角的概念:(1)角可以看成是由两条有共同端点的射线组成的图形。

两条射线叫角的边,共同的端点叫角的顶点。

(2)角还可以看成是一条射线绕着它的端点旋转所成的图形。

2、角的表示方法:角用“∠”符号表示,角的表示方法有以下四种: ①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B ,∠C 等。

基本平面图形典型例题

基本平面图形典型例题

第四章基本平面图形练习题典型考题一: 线段的中点问题1.已知线段AB=10cm,在AB的延长线上取一点C,使AC=16cm,则线段AB的中点与AC的中点的距离为2.如果A,B,C三点在同一条直线上,且线段AB=4cm, BC=2cm,则那么A,C两点之间的距离为3.已知线段AB=20cm,在直线AB上有一点C,且BC=10cm,M是线段AC的中点,求线段AM的长.4.如图,点C在线段AB上,AC=8cm,CB=6cm,点M,N分别是AC,BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗典型考题二: 角的平分线问题1.已知:OC是∠AOB的平分线,若∠AOB=58°,则∠AOC=2.如图,OC是∠AOB的平分线,OD平分∠AOC,若∠COD=25°,则∠AOB的度数为3.如图,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,(1)求∠MON的度数。

(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数。

(3)如果(1)中∠BOC=β(β为锐角),其他条件不变,求∠MON的度数。

(4)从(1)(2)(3)的结果你能看出什么规律4.已知∠AOB=120°,∠AOC=30°,OM平分∠AOC,ON平分∠AOB,(1)求∠MON的度数;(2)通过(1)题的解法,你可得出什么规律5.已知∠AOB是一个直角,作射线OC,再分别∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC =70°时,求∠DOE的度数;(3)当射线OC在∠AOB外绕O点旋转时,画出图形,判断∠DOE的大小否发生变化若变化,说明理由;若不变,求∠DOE的度数.典型考题三: 时针分针夹角问题1.时钟在4点整时,分针与时针的夹角为度.2.时钟的分针从4点整开始,转过多少度分针才能与时针重合3.在4时和5时之间的哪个时刻,时钟的时针和分针成直角变式训练:试一试:o=_______度.1、3.76o=______度______分______秒;'"2232242、在直线AB上取C、D两个点,如图所示,则图中共有射线_____条。

第四章 基本平面图形 复习(4)

第四章 基本平面图形 复习(4)

时,所成的角是。终平边角继续旋转,当它和始边重合时,所
成的角叫做。1平角=;周1周角角=。我们还规1定80:º1º的为1
分,3记60做º1ʹ,即1º=60ʹ;1ʹ的为6110秒;记作1ʹʹ,即
1ʹ=60ʹʹ.
1 60
基础知识复习
11、如图:从一个角的顶点(O)引出的一条射线(OC)
,把这个角分成两个相等的角,这条射线叫做这个角的平
A
考点七:求多边形的对角线
【例题】过n边形的每一个顶点有几条对角线?分割成几个 三角形
【例题解析】三角形没有对角线 (1)从一个顶点出发四边形有一条对角线,分割成两个三
角形 (2)五边形有两条对角线,分割成3个三角形 (3)六边形有三条对角线,分割成4个三角形 观察对角线的条数比多边形的边数少3,观察三角形的个数
距离
度量法
叠合法
基础知识复习
8、如下图:点M把线段AB分成相等的两条线段AM与BM,点
M叫做线段AB的。中这点时AM=BM=AB;或
1 2
AB=AM=2BM. 2
A●
● M
●B
9、角有两条具有端共点同的射线组成,两条射线的公共端点是这
个角的。
顶点
10、一条射线围绕它的端点旋转,当终边和始边成一条直线
考点二:两点之间线段最短
【原理】两点之间所有的连线中,线段最短 【例题】一条弯曲的公路改直,可以缩短路程,用
数学知识解释为------解题思路:(1)两点之间,线段最短; (2)按照线段将公路改直,路程最短。
考点三:线段的中点
【原理】如图,点M把线段AB分成相等的两条线段AM与
BM,点M叫做线段AB的中点。 ●


A

七年级数学上册第四章基本平面图形知识梳理(新版)北师大版

七年级数学上册第四章基本平面图形知识梳理(新版)北师大版

第四章基本平面图形知识梳理一、知识梳理:1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段,线段有两个端点,可以度量;射线:将线段向一个方向无限延长就形成了射线,射线有一个端点,不可度量;直线:将线段向两个方向无限延长就形成了直线,直线没有端点,不可度量.2.点、直线、射线和线段的表示:一个点可以用一个大写字母表示; A一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示;一条射线一般用两个大写字母表示,用端点和射线上另一点来表示(端点字母写在前面);一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示.3.点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点;②点在直线外,或者说直线不经过这个点.4、直线的性质:①经过两个点有且只有一条直线(两点确定一条直线);②过一点的直线有无数条.5、线段的性质:①两点之间的所有连线中,线段最短(两点间线段最短).②两点之间的距离:两点之间线段的长度,叫做这两点之间的距离.③线段的中点到两端点的距离相等。

(线段上点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点.6、角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。

或:角也可以看成是一条射线绕着它的端点旋转而成的。

7、角的分类:平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角;周角:一条射线绕着它的端点旋转一周,终边与始边重合时,所形成的角叫做周角.8、角的表示:①用一个大写英文字表示一个独立(在一个顶点处只有一个角)的角,如∠B等;②用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等(注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧);③用数字表示单独的角,如∠1,∠2,∠3等;④用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等.9、角的度量:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示, 1度记作1°;把1°的角60等分,每一份叫做1分的角,1分记作1’;把1’的角60等分,每一份叫做1秒的角,1秒记作1”.换算: 1°=60’,1’=60”直角三角板(45°,45°,90°,30°,60°,90°)可画出15°,75°,105°,120°,135°,150°,165°等,都是15的倍数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章:基本平面图形知识点
一、寻找规律:
(1)
2
n n - ◆ 数线段条数:线段上有n 个点(包括线段两个端点)时,共有(1)
2
n n -条线段 ◆ 数角的个数:以0为端点引n 条射线,当∠AOD<180°时,
则(如图)•小于平角的角个数为(1)
2
n n -.
◆ 数直线条数:过任三点不在同一直线上的n 点一共可画(1)
2
n n -条直线.
◆ 数交点个数:n 条直线最多有(1)
2
n n -个交点.
◆ 握手问题:数n 个人两两握手能握(1)
2
n n -次.
二、基本概念
1.线段、射线、直线
(1)线段:绷紧的琴弦、人行道横线都可以近似地看做线段. 线段的特点:是直的,它有两个端点. (2)射线:将线段向一方无限延伸就形成了射线.
射线的特点:是直的,有一个端点,向一方无限延伸. (3)直线:将线段向两个方向无限延长就形成了直线. 直线的特点:是直的,没有端点,向两方无限延伸. 2.线段的中点
把一条线段分成两条相等的线段的点,叫做线段的中点. 利用线段的中点定义,可以得到下面的结论:
(1)因为AM=BM=12
AB ,所以M 是线段AB 的中点.
(2)因为M 是线段AB 的中点,所以AM=BM=12
AB 或AB=2AM=2BM .
3.角
由两条具有公共端点的射线组成的图形叫做角,公共端点叫做角的顶点,两条射线叫做角的边.
角也可以看成是由一条射线绕着它的端点旋转而成的.
一条射线绕着它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.终边继续旋转,当它又和始边重合时,所成的角叫做周角.
4.角平分线
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线. 5.两点之间的距离
两点之间的线段的长度,叫做这两点之间的距离. 6.直线的性质
经过两点有且只有一条直线,其中“有”表示“存在性”,“只有”表示“惟一性”. 7.线段的性质
两点之间的所有连线中,线段最短. 三、线段、角的表示方法
线段的记法:
①用两个端点的字母来表示 ②用一个小写英文字母表示 射线的记法:
用端点及射线上一点来表示,注意端点的字母写在前面
直线的记法:
①用直线上两个点来表示 ②用一个小写字母来表示
角的表示:①用三个大写字母表示,表示顶点的字母写在中间:∠AOB ; ②用一个大写字母表示:∠O ; ③用一个希腊字母表示:∠a; ④用一个阿拉伯数学表示:∠1。

四、线段、角的比较 度量法 叠合法 1.作一条线段等于已知线段 作法:
O A
顶点


B

1
射线OA
a
直线AB 直线a
西北
西南
东南
东北

西南

A
O
60︒南


西
(1)作射线AM
(2)在AM 上截取AB= a 。

则线段AB 为所求。

应用:已知线段a 、b ,求作线段AB=a+b 。

解:(1)作射线AM ;
(2)在AM 上顺次截取AC=a ,CB= b 。

则AB= a+b 为所求。

五、钟表问题
1、每分钟:时针走0.5°、分针走6°。

2、
=30?m+0.5?n-6?n 180?180?=360?-m αα
αβα
∠∠∠∠∠时n 分,时针与分针的夹角为()
当时,时针与分针的夹角为
六、方位角 3.方位角:
(1)认识方位:
正东、正南、正西、正北、东南、西南、西北、东北。

(2)找方位角:
乙地对甲地的方位角 ; 甲地对乙地的方位角
1.考查学生发现问题、解决问题的能力.
【例1】从哈尔滨开往A 市的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,不同的票价有( )
A .4种
B .6种
C .10种
D .12种
【例2】L 1与L 2是同一平面内的两条相交直线,它们有1个交点,•如果在这个平面内,再画第三条直线L 3,那么这3条直线最多可有_______个交点;•如果在这个平面内再画第4条直线L 4,那么这4条直线最多可有_______个交点;由此我们可以
猜想在同一平面内,6条直线最多可有_______个交点,n (n 为大于1的整数)条直线最多可有_______个交点(用含n 的代数式表示). 2.线段长度的计算,线段的中点
【例3】某大公司员工分别住在A ,B ,C 三个住宅区,A 区有60人,B 区有30人,C 区有20人,三个区在同一条直线上,位置如图所示,该公司的接送车打算只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在( )
3.角的度量与换算
【例4】(山西)时钟在3点半时,它的时针和分针所成的锐角是( ) A .70° B .75° C .85° D .90°
4:见比设元
【例5】如图所示,B 、C 两点把线段AD 分成2:4:3三部分,M 是AD 的中点,CD=9,求线段MC 的长.
【分析】题中给出了线段的长度比,那么设每一分为K 是常见的解法. 【规律总结】不论是有关线段还是有关角的问题,只要有比值,就设未知数. 5、线段,角
【例6】如图,C 是AB 的中点,D 是BC 的中点,下面等式不正确的是(• )
A .CD=AC-D
B B .CD=AD-B
C C .CD=
12AB-BD D .CD=1
2
AB 例7:如图.货轮O 在航行过程中,发现灯塔A 在它
南偏东60°的方向上,同时,在它北偏东40°,南偏西10°, 西北(即北偏西45°)方向上又分别发现了客轮B,
货轮C 和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C 和海岛D 方向的射线。

M
B
· ·
A
M
B
·
· A
a
b
C。

相关文档
最新文档