第四章基本平面图形典型例题
北师大版七年级上册数学基本平面图形知识点典型例题练习

第四章:基本平面图形知识梳理一、线段、射线、直线1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。
线段可以量出长度。
(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。
射线无法量出长度。
(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。
直线无法量出长度。
结论:直线、射线、线段之间的区别:联系:射线是直线的一部分。
线段是射线的一部分,也是直线的一部分。
2、点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
3、直线的性质(1)直线公理:经过两个点有且只有一条直线。
简称两点确定一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
4、线段的比较(1)叠合比较法(用圆规截取线段);(2)度量比较法(用刻度尺度量)。
5、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。
若C 是线段AB 的中点,则:AC=BC=21AB 或AB=2AC=2BC 。
二、角1、角的概念:(1)角可以看成是由两条有共同端点的射线组成的图形。
两条射线叫角的边,共同的端点叫角的顶点。
(2)角还可以看成是一条射线绕着它的端点旋转所成的图形。
2、角的表示方法:角用“∠”符号表示,角的表示方法有以下四种:①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B ,∠C 等。
(完整)第四章:基本平面图形知识点及经典例题,推荐文档

(完整)第四章:基本平面图形知识点及经典例题,推荐文档第四章:基本平面图形知识点一、寻找规律:(1)2n n - ◆ 数线段条数:线段上有n 个点(包括线段两个端点)时,共有(1)2n n -条线段◆ 数角的个数:以0为端点引n 条射线,当∠AOD<180°时,则(如图)•小于平角的角个数为(1)2n n -.◆ 数直线条数:过任三点不在同一直线上的n 点一共可画(1)2n n -条直线.◆ 数交点个数:n 条直线最多有(1)2n n -个交点.◆ 握手问题:数n 个人两两握手能握(1)2n n -次.二、基本概念1.线段、射线、直线(1)线段:绷紧的琴弦、人行道横线都可以近似地看做线段.线段的特点:是直的,它有两个端点.(2)射线:将线段向一方无限延伸就形成了射线.射线的特点:是直的,有一个端点,向一方无限延伸.(3)直线:将线段向两个方向无限延长就形成了直线.直线的特点:是直的,没有端点,向两方无限延伸. 2.线段的中点把一条线段分成两条相等的线段的点,叫做线段的中点.利用线段的中点定义,可以得到下面的结论:(1)因为AM=BM=12AB ,所以M 是线段AB 的中点.(2)因为M 是线段AB 的中点,所以AM=BM=12AB 或AB=2AM=2BM .3.角由两条具有公共端点的射线组成的图形叫做角,公共端点叫做角的顶点,两条射线叫做角的边.角也可以看成是由一条射线绕着它的端点旋转而成的.一条射线绕着它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.终边继续旋转,当它又和始边重合时,所成的角叫做周角.4.角平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线. 5.两点之间的距离两点之间的线段的长度,叫做这两点之间的距离.6.直线的性质经过两点有且只有一条直线,其中“有”表示“存在性”,“只有”表示“惟一性”. 7.线段的性质两点之间的所有连线中,线段最短.三、线段、角的表示方法线段的记法:①用两个端点的字母来表示②用一个小写英文字母表示射线的记法:用端点及射线上一点来表示,注意端点的字母写在前面直线的记法:①用直线上两个点来表示②用一个小写字母来表示角的表示:①用三个大写字母表示,表示顶点的字母写在中间:∠AOB ;②用一个大写字母表示:∠O ;③用一个希腊字母表示:∠a;④用一个阿拉伯数学表示:∠1。
七年级上学期第四章基本平面图形同步练习题

七年级上学期第四章基本平面图形同步练习题一.选择题(共30小题)1.点A、B、C在同一条数轴上,其中点A、B表示的数分别为-3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或62.如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为()A.2cm B.3cm C.4cm D.6cm3.如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB的方位角是()A.北偏西30° B.北偏西60° C.东偏北30° D.东偏北60°4.若一个60°的角绕顶点旋转15°,则重叠部分的角的大小是()A.15° B.30° C.45° D.75°5.如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE=60°,则∠BOD的度数为()A.50 B.60 C.65 D.706.已知线段AB=16cm,O是线段AB上一点,M是AO的中点,N是BO的中点,则MN=()A.10cm B.6cm C.8cm D.9cm7.如图,在数轴上有A、B、C、D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A、D两点表示的数的分别为-5和6,点E为BD的中点,那么该数轴上上述五个点所表示的整数中,离线段BD的中点最近的整数是()A.-1 B.0 C.1 D.28.时钟在3点半时,分针与时针所夹的角的度数是()A.67.5° B.75° C.82.5° D.90°9.如图,点O在直线AB上,射线OC平分∠AOD,若∠AOC=35°,则∠BOD等于()A.145° B.110° C.70° D.35°10.2012年12月26日京广高铁全线通车.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制()种车票. A.6 B.12 C.15 D.3011.如图,点A、B、C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点.若想求出MN的长度,那么只需条件()A.AB=12 B.BC=4 C.AM=5 D. CN=212.如图,地图上A地位于B地的正北方,C地位于B地的北偏东50°方向,且C地到A地、B地的距离相等,那么C地位于A地的()A.南偏东50°方向 B.北偏西50°方向 C.南偏东40°方向 D.北偏西40°方向13.如图,C是线段AB上一点,M是线段AC的中点,若AB=8cm,BC=2cm,则MC的长是()A.2 cm B.3 cm C.4 cm D.6 cm14.如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是()A.南偏西60°B.南偏西30°C.北偏东60°D.北偏东30°15.如图,小明在操场上从A点出发,先沿南偏东30°方向走到B点,再沿南偏东60°方向走到C点.这时,∠ABC的度数是()A.120° B.135° C.150° D.160°16.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB等于()A .40°B .75°C .85°D .140°17.下列说法错误的是( )A .两点确定一条直线 B .线段是直线的一部分 C .一条直线是一个平角 D .把线段向两边延长即是直线18.如图,C 、B 是线段AD 上的两点,若AB=CD ,BC=2AC ,那么AC 与CD 的关系是为( )A .CD=2ACB .CD=3AC C .CD=4BD D .不能确定19.用一副三角板画角,不能画出的角的度数是( )A .15°B .75°C .145°D .165°20.求一个五边形的内角和时,可以从一个顶点出发引对角线,将五边形分成三角形,那么三角形个数是( )A .6 B .5 C .4 D .321.如图,将一副三角板折叠放在一起,使直角的顶点重合于点O ,则∠AOC+∠DOB=( )A .120° B .180° C .150° D .135°22.如图,C ,D 是线段AB 上两点,若CB=4cm ,DB=7cm ,且D 是AC的中点,则AC 的长等于( ) A .3cm B .6cm C .11cm D .14cm23.四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点,若EH=5,则FG 的长度是( )A .2.5B .5C .6D .1024.如图,直线AB 、CD 相交于点O ,OE 平分∠AOD ,若∠BOC=80°,则∠AOE 的度数是( )A .40° B .50° C .80° D .100°25.已知一条射线OA ,若从点O 再引两条射线OB 和OC ,使∠AOB=80°,∠BOC=40°,则∠AOC 等于( )水所走路程之和最小,可以选择的地点应在( )A .B 楼 B .C 楼 C .D 楼 D .E 楼 27.如图,甲顺着大半圆从A 地到B 地,乙顺着两个小半圆从A 地到B 地,设甲、乙走过的路程分别为a 、b ,则a 与b 的大小关系是( )A .a=b B .a <b C .a >b D .不能确定28.如图,长度为12cm 的线段AB 的中点为M ,C 点将线段MB 分成MC :CB=1:2,则线段AC 的长度为( )A .2cmB .8cmC .6cmD .4cm29.已知线段AB=8,延长AB 到C ,使BC=21AB ,若D 为AC 的中点,则BD 等于( )A .1 B .2 C .3 D .430.如图,已知∠AOC=90°,∠COB=α,OD 平分∠AOB ,则∠COD 等于( )A .2α B .45°-2α C .45°-α D .90°-α。
北师大版七年级上册数学第四章 基本平面图形含答案

北师大版七年级上册数学第四章基本平面图形含答案一、单选题(共15题,共计45分)1、如图,B在线段AC上,且BC=2AB,D,E分别是AB,BC的中点.则下列结论:①AB= AC;②B是AE的中点;③EC=2BD;④DE=AB.其中正确的有()A.1个B.2个C.3个D.4个2、现有一个多边形,从该多边形的一个顶点出发,最多能画出2条对角线,则该多边形是()A.三角形B.四边形C.五边形D.八边形3、要用钉子在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意多枚4、下列结论中,不正确的是()A.两点确定一条直线B.两点之间的所有连线中,线段最短C.对顶角相等D.过一点有且只有一条直线与已知直线平行5、如图,货轮O在航行过程中,发现灯塔A在它北偏东30°的方向上,海岛B 在它南偏东60°方向上.则下列结论:①∠NOA=30°;②图中∠NOB的补角有两个,分别是∠SOB和∠EOA;③图中有4对互余的角;④货轮O在海岛B的西偏北30°的方向上.其中正确结论的个数有()A.1个B.2个C.3个D.4个6、边长为1的正六边形的内切圆的半径为()A.2B.1C.D.7、如图,下列说法中错误的是()A.OA方向是北偏东40°B.OB方向是北偏西15°C.OC方向是南偏西30°D.OD方向是东南方向8、一条船在灯塔的北偏东30°方向,那么灯塔在船的什么方向()A.南偏西30°B.西偏南40°C.南偏西60°D.北偏东30°9、如图所示,从O点出发的五条射线,可以组成小于平角的角的个数是( )A.4个B.8个C.9个D.10个10、小红家分了一套住房,她想在自己的房间的墙上钉一根细木条,挂上自己喜欢的装饰物,那么小红至少需要几根钉子使细木条固定()A.1根B.2根C.3根D.4根11、下图中标注的角可以用∠O来表示的是()A. B. C.D.12、在如图所示方位角中,射线OP表示的方向是()A.东偏南B.南偏东C.南偏西D.南偏西55°13、如果一条船在灯塔的北偏东60°方向,那么灯塔在船的()方向.A.南偏西60°B.南偏西30°C.北偏东60°D.北偏东30°14、木工师傅在锯木板时,往往先在木板两端固定两个点,用墨盒弹一根墨线然后再锯,这样做的数学道理是()A.两点确定一条直线B.两点之间线段最短C.在同一平面内,过直线外或直线上一点,有且只有一条直线垂直于已知直线D.经过已知直线外一点,有且只有一条直线与已知直线平行15、如图,已知线段,点在上,,是的中点,那么线段的长为()A. B. C. D.二、填空题(共10题,共计30分)16、计算:18°29′+39°47′=________.17、如图,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=________.18、从n边形的一个顶点可以引________ 条对角线,并将n边形分成________ 个三角形.19、如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D,已知CD=4,OD=3,求AB的长是________.20、点 A、B、C在直线 l 上, AB=4cm, BC=6cm,点 E 是 AB 中点,点 F 是 BC 的中点, EF= ________.21、圆的对称中心是________ .22、如图,AB是半圆O的直径,点C在半圆O上,AB=4cm,∠CAB=60°,P 是弧上的一个动点,连接AP,过C点作CD⊥AP于D,连接BD,在点P移动的过程中,BD的最小值是________.23、36.32°=________°________ ′________″.24、如图,点A、O、B在一条直线上,且∠AOC=50°,OD平分∠AOC ,则∠BOD=________度.25、计算38°42'+21°18'=________。
2024-2025学年北师大版(2024)数学七年级上册 第四章 基本平面图形 强化练习

第四章基本平面图形一、线段、射线、直线1.如图,将甲、乙两个尺子拼在一起,两端重合.如果甲尺确定是直的,那么乙尺一定不是直的.这个结论的数学依据是两点确定一条直线.2.如图,图中以B为一个端点的线段共有()A.2条B.3条C.4条D.5条3.下列说法正确的是()A.射线PA和射线AP是同一条射线B.射线OA的长度是12 cmC.直线ab,cd相交于点MD.两点确定一条直线4.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点.正确的有①③④(填序号).5.如图,下列不正确的几何语句是()A.直线AB与直线BA是同一条直线B.射线OA与射线OB是同一条射线C.射线OA与射线AB是同一条射线D.线段AB与线段BA是同一条线段6.如图,已知线段AB,点C在AB上,点P在AB外.(1)根据要求画出图形:画直线PA,画射线PB,线段PC;(2)在(1)问的基础上,写出图中的所有线段.7.(1)如图①,当线段AB上标出1个点时(A,B除外),图中共有3条不同的线段.(2)如图②,当线段AB上标出2个点时(A,B除外),图中共有6条不同的线段.(3)如图③,当线段AB上标出3个点时(A,B除外),图中共有10条不同的线段.(4)当线段AB上标出n个点时(A,B除外),线段AB上共有多少条不同的线段(用含有n的代数式表示)?二、线段的中点及相关计算1.如图,已知线段AB=10 cm,M是AB的中点,点N在AB上,NB=2 cm,那么线段MN的长为()A.5 cmB.4 cmC.3 cmD.2 cm2.(2023·茂名化州市期末)如图,点M是AB的中点,点N是BD的中点,AB=12 cm,BC=20 cm,CD=16 cm,则MN的长为()A.24 cmB.22 cmC.26 cmD.20 cm3.如图,B,C两点把线段MN分成三部分,其比为MB∶BC∶CN=2∶3∶4,点P是MN的中点.若MN=36 cm,则PC的长为()A.1 cmB.2 cmC.2.5 cmD.3 cm4.如图,线段AB=8,点M是线段AB的中点,C为线段AB上一点,N是线段AC的中点,且AC=3.2,求M,N两点间的距离.5.如图,已知点C是线段AB上的一点,且AC=2CB,点D是AB的中点,且AD=6.(1)求CD的长;(2)若点F是线段AB上的一点,且CF=1CD,求AF的长.26.点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12 cm,则线段BD的长为()A.10 cmB.8 cmC.10 cm或8 cmD.2 cm或4 cm三、角的比较与运算1.计算:(1)25.75°=25°45';(2)72.125°=72°7'30″.2.如图,钟表上10点整时,时针与分针所成的角是()A.30°B.60°C.90°D.120°3.如图,若射线OA的方向是北偏东40°,∠AOB=90°,则射线OB的方向是()A.南偏东50°B.南偏东40°C.东偏南50°D.南偏西50°4.如图,O为直线AB上的一点,∠COB=28°34',则∠1等于()A.151°26'B.161°26'C.151°34'D.161°34'5.当分针指向12,时针恰好与分针成30°的角,此时是()A.8点B.9点C.11点或1点D.2点或10点6.(2023·惠州一中期末)已知∠1=4°18',∠2=4.4°,则∠1<∠2(填“>”“<”或“=”).7.如图,关于图中四条射线的方向说法错误的是()A.OC的方向是南偏西25°B.OB的方向是北偏西15°C.OA的方向是北偏东35°D.OD的方向是东南方向8.下午5:30时,钟表表面的时针与分针的夹角是()A.10°B.15°C.20°D.25°9.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40',则∠2的度数是()A.27°40'B.62°20'C.57°40'D.58°20'四、多边形和圆的初步认识1.(2023·佛山禅城区期末)从六边形的一个顶点出发,可连出的对角线条数为()A.3B.4C.5D.62.七边形一共有14条对角线.3.(2022·广东)扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为π.π(结果保留π).4.如图,把一个圆分成三个扇形,其中面积最大的扇形的圆心角度数为162°;若圆的半径为2,则最大扇形的面积为955.若经过n边形的一个顶点的所有对角线可以将该n边形分成6个三角形,则n边形的对角线的条数为()A.20B.19C.18D.176.如图,在一个多边形内任意取一点,分别连接这一点与各顶点.(1)数一数,每一个多边形各被分成了多少个三角形?(2)总结一下,三角形的个数与多边形的边数有怎样的关系?7.将一个圆分割成三个扇形,它们的圆心角的度数之比为1∶2∶3.(1)求这三个扇形的圆心角的度数;(2)若这个圆的半径为6,求这三个扇形的面积(结果保留π).8.如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°.(1)求∠AOB的度数;(2)若OE=1,求扇形EOF的面积.9.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形。
基本平面图形典型例题

第四章基本平面图形练习题典型考题一: 线段的中点问题1.已知线段AB=10cm,在AB的延长线上取一点C,使AC=16cm,则线段AB的中点与AC的中点的距离为2.如果A,B,C三点在同一条直线上,且线段AB=4cm, BC=2cm,则那么A,C两点之间的距离为3.已知线段AB=20cm,在直线AB上有一点C,且BC=10cm,M是线段AC的中点,求线段AM的长.4.如图,点C在线段AB上,AC=8cm,CB=6cm,点M,N分别是AC,BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗典型考题二: 角的平分线问题1.已知:OC是∠AOB的平分线,若∠AOB=58°,则∠AOC=2.如图,OC是∠AOB的平分线,OD平分∠AOC,若∠COD=25°,则∠AOB的度数为3.如图,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,(1)求∠MON的度数。
(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数。
(3)如果(1)中∠BOC=β(β为锐角),其他条件不变,求∠MON的度数。
(4)从(1)(2)(3)的结果你能看出什么规律4.已知∠AOB=120°,∠AOC=30°,OM平分∠AOC,ON平分∠AOB,(1)求∠MON的度数;(2)通过(1)题的解法,你可得出什么规律5.已知∠AOB是一个直角,作射线OC,再分别∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC =70°时,求∠DOE的度数;(3)当射线OC在∠AOB外绕O点旋转时,画出图形,判断∠DOE的大小否发生变化若变化,说明理由;若不变,求∠DOE的度数.典型考题三: 时针分针夹角问题1.时钟在4点整时,分针与时针的夹角为度.2.时钟的分针从4点整开始,转过多少度分针才能与时针重合3.在4时和5时之间的哪个时刻,时钟的时针和分针成直角变式训练:试一试:o=_______度.1、3.76o=______度______分______秒;'"2232242、在直线AB上取C、D两个点,如图所示,则图中共有射线_____条。
北师大版(2024)七年级数学上册 第四章 基本平面图形 习题 第3课 线段中点的有关计算专题

9.如图,线段AB=16,C是线段AB的中点,D是线段 BC的中点. (1)如图1,求线段AD的长;
解:(1)因为C是线段AB的中点,D是线段BC的中点,
所以BC=AC= 1 AB,BD=1 BC,所以BD=1 AB.
2
2
4
因为AB=16,AD=AB-BD,所以AD=12.
(2)如图2,N是线段AC上的一点,且满足NC=3AN,求 DN的长;
6. 已知线段AB=7 cm,C是直线AB上的一点,且BC= 2 cm,则AC=__5_或__9__cm.
7.如图,已知线段AB=a, 延长BA至点C, 使AC= 1 AB
a
3
,D为线段BC的中点,则AD的长为3____.(用含a的
代数式表示)
8.已知M是线段AB的三等分点,E是AM的中点,AB= 12 cm,则线段AE长为____2_c_m__或__4_c_m______.
②如图4,当点M在点C右边时, 因为NC=6,MC=2,所以MN=NC+MC=8.
综上所述,MN的长为4或8.
10.如图,点C在线段AB上,图中三条线段中,若有一 条线段长是另一条线段长的两倍,则称点C是线段 AB的“巧分点”.已知AB=6,点C是线段AB的 “巧分点”,则BC=___2_或__4_或__3___.
第四章 基本平面图形 第3课 线段中点的有关计算专题
1. 如图,已知线段AB=10 cm,点N在AB上,NB=2 cm
, M是AB的中点,那么线段MN的长为
C ()
A.5 cm
B.4 cm
C.3 cm
D.2 cm
2.如图,C为线段AD上的一点,B为CD的中点,且 AD=10 cm,BD=2 cm,则AC=___6___cm.
第四章 基本平面图形 达标测试卷(含答案)北师大版(2024)数学七年级上册

第四章基本平面图形达标测试卷(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1. 下列各组图中所给的线段、射线、直线能相交的是()A B C D2.下列图形中,能用∠1,∠ACB,∠C三种方法表示同一个角的是()A B C D3. 若一个n边形从一个顶点最多能引出6条对角线,则n是()A. 5B. 8C. 9D. 104. 图1所示生产、生活中的现象,体现了基本事实“两点确定一条直线”的有()A.1个B.2个C.3个D.4个图15. 如图2,用同样大小的三角板比较∠A和∠B的大小,下列判断正确的是()A.∠A<∠B B.∠A>∠BC.∠A=∠B D.没有量角器,无法确定图2 图3 图46. 观察图3所示的图形,有下列说法:∠图中共有5条线段;∠射线AC 和射线CD 是同一条射线; ∠从A 地到D 地的所有路径中,线段AD 最短;∠直线AB 和直线BD 交于点B.其中正确的有( ) A .4个B .3个C .2个D .1个7. 如图4,OA 的方向是北偏东20°,OB 的方向是北偏西35°,OA 平分∠BOC ,则OC 的方向是( ) A .北偏东35° B .北偏东45°C .北偏东55°D .北偏东75°8. 如图5,A ,B ,C ,D 是直线上的顺次四点,M ,N 分别是线段AB ,CD 的中点,且MN=7 cm ,BC=4 cm ,则线段AD 的长为( )A .10 cmB .11 cmC .12 cmD .13 cm图5 图69. 图6-∠是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图6-∠所示,它是以O 为圆心,分别以OA ,OB 的长为半径,圆心角∠O =120°形成的扇面.若OA =5 m ,OB =3 m ,则阴影部分的面积为( ) A .316πm 2 B .38πm 2C .4π m 2D .3π m 210. 如图7,线段AB=40 cm ,线段CD=30 cm ,现将线段AB 和CD 放在同一条直线上,使点A 与点C 重合,此时两条线段中点之间的距离是( )A .5 cmB .35 cmC .10 cm 或70 cmD .5 cm 或35 cm图7二、填空题(本大题共6小题,每小题3分,共18分)11.在图8中共有m条射线,n条线段,则m+n的值是.图812.计算:23°38′41″+ 17°26′32″=.13. 如图9,钟表上显示的时刻是10点10分,再过20分钟,时针与分针所成的角的度数是_____________.图9 图1014. 将长方形纸片ABCD按图10所示的方式折叠,使得∠A′EB′=40°,其中EF,EG为折痕,则∠AEF+∠BEG的度数为_________________.15.如图11,已知线段AB=6 cm,延长线段BA至点C,使AC=32AB,若D,E分别是线段AB,BC的中点,则DE=cm.图11 图1216. 如图12,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线“.若∠AOB=60°,且射线OC 是∠AOB的“巧分线“,则∠AOC的度数为______________.三、解答题(本大题共6小题,共52分)17.(6分)如图13,B是线段AC上一点,D是线段AB的三等分点(D靠近B),E是线段BC的中点,若BE=51AC=3 cm,求线段DE的长.图13E DA BC18. (9分)如图14,平面内有四个点A,B,C,D,请利用直尺和圆规,根据下列语句画出符合要求的图,并保留作图痕迹.(1)画直线AB,射线AC,线段BC;(2)在直线AB上找一点M,使线段MD与线段MC之和最小;(3)在线段AD的延长线上截AE=3AD,连线段CE交直线AB于点F.图1419.(9分)如图15,O为直线AB上一点,OE是∠AOD的平分线,∠COD=90°.(1)若∠AOD=138°,求∠COE和∠AOC的度数;(2)若∠AOC=2∠COE,求∠AOC的度数.图1520.(9分)(1)如图16-∠,已知线段AB=8 cm,C是线段AB上一点,AC=3 cm,M是AB的中点,N是AC的中点.求线段MN的长;(2)如图16-∠,已知点O是直线AD上一点,射线OC,OE分别是∠AOB,∠BOD的平分线.①若∠AOC=20°,求∠COE的度数.②如果把条件“∠AOC=20°”去掉,那么∠COE的度数有变化吗?请说明理由.图1621.(9分)如图17,线段AB=24,动点P从A出发,以每秒2个单位长度的速度沿射线AB运动,M为线段AP的中点.设点P的运动时间为x秒.(1)秒后,PB=2AM;(2)当点P在线段AB上运动时,试说明2BM﹣PB为定值;(3)当点P在线段AB的延长线上运动时,N为线段BP的中点,求线段MN的长.图1722.(10分)已知∠AOB=120°,∠COD=80°,OM,ON分别是∠AOB,∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图18-∠,求∠MON的度数;(2)如果将图∠中的∠COD绕点O顺时针旋转n°(0<n<160),如图18-∠.则∠MON=__________;(用含n的代数式表示)(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小,将图∠中的OC绕着O点顺时针旋转m°(0<m<100),如图18-∠,求∠MON的度数.(用含m的代数式表示)图18附加题(20分,不计入总分)如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一个直角三角板(其中∠P=30°)的直角顶点放在点O处,一边OQ在射线OA上,另一边OP与OC都在直线AB的上方.将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)如图2,经过t秒后,OP恰好平分∠BOC.∠求t的值;∠此时OQ是否平分∠AOC?请说明理由.(2)若在三角板转动的同时,射线OC也绕点O以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由.(3)在(2)问的基础上,经过____________秒OC平分∠POB.(四川钟志能)第四章基本平面图形达标测试卷参考答案答案速览一、1. B 2. C 3. C 4. C 5. A 6. C 7. D 8. A 9. A 10. D二、11.9 12.41°5′13″ 13.135° 14.70° 15.2 16. 20°或30°或40°三、解答题见“答案详解”答案详解16. 20°或30°或40°解析:根据题意,有三种情况:①∠BOC=2∠AOC,此时∠AOC=20°;②∠AOB=2∠AOC,此时∠AOC=30°;③∠AOC=2∠BOC,此时∠AOC=40°.综上,∠AOC的度数为20°或30°或40°.因为E是线段BC的中点,所以BC=2BE=6 cm.所以AB=AC-BC=9 cm.所以DE=DB+BE=3+3=6(cm ).18. 解:(1)如图,直线AB ,射线AC ,线段BC 为所求作. (2)如图,点M 为所求作. (3)如图,点E ,F 为所求作.19.解:(1)因为∠AOD =138°,OE 是∠AOD 的平分线,所以∠AOE =∠EOD =21∠AOD = 21×138°=69°.因为∠COD =90°,所以∠COE =∠COD ﹣∠EOD =90°﹣69°=21°. 所以∠AOC =∠AOE ﹣∠COE =69°﹣21°=48°. (2)设∠COE=x°,则∠AOC=2x°.. 所以∠AOE =∠AOC + ∠COE =3x°.因为OE 是∠AOD 的平分线,所以∠AOE =∠EOD =3x°.所以∠COD =∠COE + ∠EOD =4x°=90°,解得x=22.5.所以∠AOC =2x°=45°.所以∠BOD=180°-∠AOB=180°-2∠AOC=180°-2×20°=140°.②∠COE 的度数没有变化.理由如下:(∠BOD+∠AOB ).所以∠COE 的度数没有变化. 21. 解:(1)6(2)因为M 是线段AP 的中点,AP =2x ,所以AM =21AP =x ,PB =AB ﹣AP =24﹣2x ,BM =24﹣x .所以2BM ﹣PB =2(24﹣x )﹣(24﹣2x )=24,即2BM ﹣PB 为定值24. (3)当点P 在线段AB 的延长线上运动时,点P 在点B 的右侧.因为M 是线段AP 的中点,AP =2x ,所以AM =PM =x ,PB =2x ﹣24.所以PN =21PB =x ﹣12. 所以MN =PM ﹣PN =x ﹣(x ﹣12)=12.所以∠MON=∠AOM-∠AON=60°-40°=20°. (2)20°+n°因为∠AOD=80°,∠AOC=m°,所以∠COD=∠AOD+∠AOC=80°+m°.m°. 附加题解:(1)∠因为∠AOC =30°,所以∠BOC =180°﹣30°=150°. 因为OP 平分∠BOC ,所以∠COP =21∠BOC =75°.所以∠COQ =90°﹣75°=15°. 所以∠AOQ =∠AOC ﹣∠COQ =30°﹣15°=15°.所以t =15°÷3°=5. ∠OQ 平分∠AOC .理由如下:因为∠COQ =15°,∠AOQ =15°,所以OQ 平分∠AOC . (2)5秒时OC 平分∠POQ .理由如下: 因为OC 平分∠POQ ,所以∠COQ =21∠POQ =45°. 根据旋转的速度,设∠AOQ =3°t ,∠AOC =30°+6°t . 由∠AOC ﹣∠AOQ =45°,可得30+6t ﹣3t =45,解得t =5. 所以5秒时OC 平分∠POQ .(3)370解析:设经过t 秒后OC 平分∠POB . 因为OC 平分∠POB ,所以∠BOC =21∠POB .因为∠AOQ +∠POB =90°,所以∠POB =90°﹣3°t .又∠BOC =180°﹣∠AOC =180°﹣(30°+6°t ),所以180﹣(30+6t )=21(90﹣3t ),解得t =370.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章基本平面图形练习题
典型考题一: 线段的中点问题
1.已知线段AB=10cm,在AB的延长线上取一点C,使AC=16cm,则线段AB的中点与AC的中点的距离为
2.如果A,B,C三点在同一条直线上,且线段AB=4cm, BC=2cm,则那么A,C两点之间的距离为
3.已知线段AB=20cm,在直线AB上有一点C,且BC=10cm,M是线段AC的中点,求线段AM的长.
4.如图,点C在线段AB上,AC=8cm,CB=6cm,点M,N分别是AC,BC的中点.
(1)求线段MN的长;
(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗并说明理由;ﻫ(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;ﻫ(4)你能用一句简洁的话,描述你发现的结论吗?
典型考题二: 角的平分线问题
1.已知:OC是∠AOB的平分线,若∠AOB=58°,则∠AOC=
2.如图,OC是∠AOB的平分线,OD平分∠AOC,若∠COD=25°,则∠AOB的度数为
3.如图,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,
(1)求∠MON的度数。
(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数。
(3)如果(1)中∠BOC=β(β为锐角),其他条件不变,求∠MON的度数。
(4)从(1)(2)(3)的结果你能看出什么规律?ﻫ
4.已知∠AOB=120°,∠AOC=30°,OM平分∠AOC,ON平分∠AOB,
(1)求∠MON的度数;
(2)通过(1)题的解法,你可得出什么规律?
5.已知∠AOB是一个直角,作射线OC,再分别∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;
(3)当射线OC在∠AOB外绕O点旋转时,画出图形,判断∠DOE的大小否发生变化若变化,说明理由;若不变,求∠DOE的度数.
典型考题三:时针分针夹角问题
1.时钟在4点整时,分针与时针的夹角为度.
2.时钟的分针从4点整开始,转过多少度分针才能与时针重合?
3.在4时和5时之间的哪个时刻,时钟的时针和分针成直角?
变式训练:
试一试:
1、3.76=______度______分______秒;'"223224=_______度.
2、在直线AB 上取C 、D 两个点,如图所示,则图中共有射线_____条。
3、 关于x 的方程1mx m x -=--有解,则m 的值是________.
4、 现在是9点20分,此时钟面上的时针与分针的夹角是_______.
5、 如图所示,小明把一块含60角的顶点A 逆时针旋转到DAE 的位置.若已量出∠CA E=100,
则∠DAB =_________
6、计算
(1)'"'"283246153648+ (2)()'"302315403-⨯
7、如图,直线AB,CD 相交于O ,∠BO C=80,O E是∠B OC 的角平分线,OF 是OE 的反向延长线.
(1)求∠2,∠3的度数.
(2)说明OF 平分∠AOD.
8、如图1,已知线段AB=12cm,点C为AB上的一个动点,点D,E分别是AC和BC的中点,(1)若点C恰好是AB中点,求DE的长.
(2)若AC=4cm,求DE的长.
(3)试说明不论AC取何值(不超过12cm),DE的长不变.
(4)知识迁移:如图2,已知∠AOB=120,过角的内部任一点C画射线OC,若OD,OE分别平分∠AOC和∠BOC,试说明∠DOE=60与射线OC的位置无关.
9、已知∠AOB:∠BOC=3:5,又OD、OE分别是∠AOB和∠BOC的平分线,若∠DOE=20,求∠AOB和∠BOC的度数。