北师大版七年级数学第四章基本平面图形复习与巩固
《基本平面图形》复习课

北师大版数学七年级上册第四章《基本平面图形》复习课教学设计E C A D BE C A D B 教 学 过 程 教 学 过 程 样,在接下来的复习总结中能更系统、更全面。
第二环节:知识回顾,形成体系通过提问课本基本内容并板书知识结构的形式复习本章知识。
设计意图:通过板书整章知识结构,让学生对本章知识之间的联系有更具体的认识,同时在课上对重点的内容进行提问,并着重板书,加深学生的记忆。
第三环节:小组交流, 释疑解惑本环节按知识点组织学生交流解惑、变式总结: 知识点一:线段、直线、射线出示以下两题的几何书写并变式提升:5、如图,在直线上顺次取A ,B ,C 三点,且线段AB=10cm, BC=4cm,O 是线段AC 的中点,求线段AO 的长.变式:在直线上取A ,B ,C 三点,且线段AB=10cm, BC=4cm,O 是线段AC 的中点,求线段AO 的长.6、如图,线段AC=14cm, BC=6cm,C 是线段AB 上一点,D 是线段AC 的中点,E 是线段BC 的中点,求线段DE 的长.变式:如图,线段AB=20cm,C 是线段AB 上一点,D 是线段AC 的中点,E 是线段BC 的中点,求线段DE 的长.设计意图:引导学生独立思考变式的题目,能根据已知条件画图并解决问题,初步体会分类讨论、整体的数学思想。
知识点二:角教学过程出示以下两题的几何书写并变式提升:5、如图,已知:∠AOB=70°,∠BOC=30°,OM平分∠AOC,求∠BOM的度数.变式:已知:∠AOB=70°,∠BOC=30°,OM平分∠AOC,求∠BOM的度数.6、如图,已知OM平分∠AOC,ON平分∠BOC, ∠AOC=40°,∠COB=60°,求∠MON的度数.变式:如图,已知OM平分∠AOC,ON平分∠BOC,∠AOB=100°,求∠MON的度数.设计意图:引导学生类比线段中解决问题的方法独立思考并解决变式的题目,再次体会分类讨论、整体的数学思想并感受数学中的类比思想。
2024-2025学年北师大版(2024)数学七年级上册 第四章 基本平面图形 课后作业

第四章基本平面图形一、比较线段的长短1.(2023·汕头金平区期末)如图,A,B是河l两侧的两个村庄,现要在河l上修建一个抽水站,使它到A,B两村庄的距离之和最小.数学老师说:连接AB,则线段AB与l的交点C即为抽水站的位置.其理由是:两点之间线段最短.2.如图,点B,C都在线段AD上,若AD=2BC,则()A.AB=CD B.AC-CD=BCC.AB+CD=BC D.AD+BC=2AC3.如图,A,B,C,D是一直线上的四点,则BC+CD=AD-AB,AB+CD=AD-BC.4.如图,已知线段a,b.求作:线段AB,使AB=2a+b.5.(2023·东莞期末)已知线段AB=10 cm,直线AB上有一点C,且BC=6 cm,AC的长为 4 cm或16 cm.6.已知线段AB=6 cm,点P到A,B两点的距离相等,则PA+PB的长()A.等于6 cm B.小于6 cmC.不小于6 cm D.大于6 cm7.(1)如图①,在四边形ABCD内找一点O,使它到四边形四个顶点的距离和OA+OB+OC+OD最小,并说出你的理由.由本题你得到什么数学结论?举例说明它在实际中的应用.(2)如图②,公路上有A1,A2,A3,A4,A5,A6,A7七个村庄,现要在这段公路上设一个车站,使这七个村庄到车站的路程总和最小,车站应建在何处?图②二、角的概念及表示方法1.(2023·湛江经开区期末)如图,下列说法:①∠1就是∠A;②∠2就是∠B;③∠3就是∠C;④∠4就是∠D.其中正确的是()A.①B.①②C.①②③D.①②③④2.下列图中的∠1也可以用∠O表示的是()3.如图,下列说法错误的是()A.∠AOB也可用∠O来表示B.∠β与∠BOC是同一个角C.图中共有三个角:∠AOB,∠AOC,∠BOC D.∠1与∠AOB是同一个角4.如图,将图中的角用不同方法表示出来,并对应填写在下表中:∠α∠β∠C∠θ∠ABC∠BAD5.如图,图中小于平角的角有()A.4个B.5个C.6个D.7个6.如图,请回答以下问题:(1)试用三个大写字母表示下列各角:∠2就是∠DBC,∠3就是∠BAD,∠4就是∠BDC;(2)图中共有9个角(除去平角),其中可以用一个大写字母表示的角有1个.7.如图,图中一共有几个角?它们应如何表示?8.(2023·河源紫金县期末)如图,在已知角的内部画射线,画1条射线,图中共有3个角;画2条射线,图中共有6个角;画3条射线,图中共有10个角;……若在角的内部画2 023条射线,图中共有 2 049 300个角.三、角的比较与运算1.如图,用“>”或“<”填空:(1)在图①中,∠AOB<∠AOC;(2)在图②中,∠POQ<∠ROQ.2.如图,OC平分∠AOB.(1)若∠1=22.5°,则∠2=22.5°,∠AOB=45°;(2)若∠AOB=60°,则∠1=30°.第2题图3.如图,点O是直线CD上的一点,以点O为端点在直线CD上方作射线OA和射线OB,若射线OA平分∠COB,∠DOB=110°,则∠AOB的度数是()第3题图A.32°B.35°C.40°D.42°4.(2024·揭阳惠来县期末)如图,用直尺和圆规作∠PCD=∠AOB,作图痕迹中,弧MN是()A.以点C为圆心,OE为半径的弧B.以点C为圆心,EF为半径的弧C.以点G为圆心,OE为半径的弧D.以点G为圆心,EF为半径的弧5.如图,∠AOC和∠BOD都是直角,且∠DOC=25°.则∠AOD=65°,∠AOB=155°.6.已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为() A.28°B.112°C.28°或112°D.68°7.把一副三角尺按如图所示的方法拼在一起,其中B,C,D三点在同一直线上,CM平分∠ACB,CN平分∠DCE,则∠MCN=127.5°.8.如图,∠AOB是直角,∠AOC=50°,ON是∠AOC的平分线,OM是∠BOC的平分线,求∠MON的度数.四、第四章复习1.下列说法中正确的有()①过两点有且只有一条直线;②连接两点的线段叫两点的距离;③有公共端点的两条射线组成的图形叫作角;④若AB=BC,则点B是AC的中点.A.1个B.2个C.3个D.4个2.如图,已知∠AOB,以点O为圆心,以任意长为半径画弧MN,分别交OA,OB于点M,N,再以点N为圆心,以MN长为半径画弧PQ,交弧MN于点C,画射线OC.若∠AOB=31°,则∠AOC的度数为62°.第2题图3.一个圆被分为1∶5两部分,则较大的弧所对的圆心角是300°.4.如图,点C在线段AB上,点D是AC的中点.如果CD=3 cm,AB=10 cm,那么BC的长为()A.3 cm B.3.5 cmC.4 cm D.4.5 cm5.34.37°=34°22'12″.∠BOC,则∠BOD=54°.6.(2023·梅州期末)如图,O是直线AB上的点,OD是∠COB的平分线,若∠AOC=23第6题图7.(2023·佛山南海区期末)下列时刻,钟表的时针与分针所成的夹角是锐角的是()A.11:15 B.9:00C.6:00 D.3:30AC,D,E分别为AC,AB的中点,则DE的长为4.5 cm.8.如图,已知点C为线段AB上的一点,AC=15 cm,CB=359.如图,O为直线AB上的一点,∠BOE=80°,直线CD经过点O.(1)如图①,若OC平分∠AOE,求∠AOD的度数;(2)如图②,若∠BOC=2∠AOC,OE平分∠COF,求∠COF的度数.。
北师大版七年级数学上册复习课件 第四章 基本的平面图形 (共39张ppt)

第四章复习
方法技巧 通过观察、分析、综合、归纳、概括、推理、判断等一 系列探索活动,解答有关探索规律的问题,探索规律性问题 的特点是问题的结论或条件不直接给出,需要逐步确定所求 的结论和条件.
数学·课标版(BS)
第四章复习
试卷讲练
考
平面图形是七年级数学的重要组成部分,在各类考
(4)分类:小于平角的角可按大小分成三类:当一个角等 于平角的一半时,这个角叫做_直__角__;大于 0°角小于直角的角 叫做_锐__角__;大于直角而小于平角的角叫做__钝__角__.
数学·课标版(BS)__点__引出的一条射线,把这个角分成两 个__相__等___的角,这条射线叫做这个角的平分线.
上 ” , 那 么 小 亮 可 以 对 小 明 说 : “ 你 在 我 的 ________ 方 向
上.”( A )
A.南偏西 30°
B.北偏东 30°
C.北偏东 60°
D.南偏西 60°
2.在一次航海中,在一艘货轮的北偏东 54°的方向上有一 艘渔船,那么货轮在渔船的_南__偏__西__5_4_°_方向上.
[解析] 钟表被分成 12 格,每格的度数是 30°, 30°×2.5=75°.
数学·课标版(BS)
第四章复习
方法技巧 计算钟面上时针与分针的夹角,关键是确定时针
与分针相隔几个格.
数学·课标版(BS)
第四章复习
►考点三 规律探索性问题
如图 4-2,平面内有公共端点 的六条射线 OA,OB,OC,OD,OE, OF,从射线 OA 开始按逆时针方向依 次在射线上写出数字 1,2,3,4,5,6,7,…. 则“17”在射线__O__E__上;“2013”在射 线__O__C__上.
北师大版数学七年级上册第四章平面图形 复习

则AC的长是( C )
A.2
B.8 C.2或8
D.15
.. . A C1 B
. C
m
数学思想:分类讨论
A.
(2)垂线段的性质
.
B
l
直线外一点与直线上各点连接的所有线段中,
垂线段最短. 简称:垂线段最短
七巧板的构成:
图案设计
1.把一根木条钉牢在墙壁上需要 2 个钉子,
根据是 两点确定一条直线
.
2.如图,军舰从港口沿OB方
向航行,它的方向是( D )
A.东偏南30°
B.南偏东60°
C.南偏西30°
西
1.七巧板游戏 2.图案设计
一.直线、射线、线段的联系以及它们的区别
名称 端点 可向几方 个数 延伸
线 段
2
不可 延伸
射
线1
1
长度是 否
可测量
可以
不行
图形
l
A
B
OM
符号 表示
线段AB 线段l 射线OM
直 线
无
2
不行
l
A
B
直线AB 直线l
1.如图,下列说法正确的有( C )
① 直线AB与直线BA是同一条直线; ② 射线AB与射线BA是同一条射线; ③ 线段AB与线段BA是同一条线段; ④ 图中有两条射线.
4.角的比较 1周角=2平角=4直角
5.角平分线的定义
从一个角的顶点引出的一条射线,把这个角 分成两个相等的角,这条射线叫做这个角的平分线.
推理格式:
B
AC 平分BAD
BAC = CAD
C
BAC = 1 BAD ,CAD = 1 BAD
北师大版(2024新版)七年级数学上册第四章课件:第四章 基本的平面图形 小结与复习

第四章 基本的平面图形 小结与复习
知识梳理
基 本 平 面 图 形
直线 两点确定一条直线
线段 射线
两点之间线段最短 线段的中点 线段比较长短
角的定义
角
角平分线
角比较大小
尺规作图
知识梳理
基 本 平 面 图 形
多边形
定义 对角线 正多边形
定义
圆
弧 扇形
圆心角
知识回顾
伸
是否 可以 度量
不能 度量
不能 度量
表示方法
表示 方法
备注
作图 描述
射线 AB
A,B两点 以A为端点
有序,端 作射线
点在前
AB
直线
AB 或直 线BA 或直线
a
A,B两点
无序
过A,B两点 作直线AB
知识回顾
2.两点确定一条直线 经过两点有且只有一条直线.
二、比较线段的长度 1.线段的基本事实 两点之间的所有连线中,线段__最__短___. 简述为:两点之间,线段__最__短____ .
基础巩固
4.下午2时15分到5时30分,时钟的时针转过的度数 为__9_7_.5_°_.
解析:时钟被分成12个大格,相当于把圆分成12等份, 每一等份等于30°. 分针转360°时,时针转一格,即30°. 从2时15分到5时30分,时针走了(3.5-0.25)格, 即30°×(3.5-0.25)=97.5°.
知识回顾
4.角的度量 (1)角的度量单位是度、分、秒. (2)它们之间的关系是六十进制的,即1°=60′,1′=60″.
5.方向角 借助角表示方向,通常以正北或正南为基准,配以偏 西或偏东的角度来描述方向.
第四章基本平面图形复习课课件+2024-2025学年北师大版数学七年级上册

解:(1)因为OE平分∠AOC,OF平分∠BOD, 所以∠AOC=2∠AOE=20°, 所以∠BOD=180°—∠AOC—∠COD=70°.
(2)因为∠AOC∶∠COB=2∶13,∠AOC+∠COB=180°, 所以∠AOC=180°× 2 =24°,
变式训练 1.一个扇形的面积是3π cm2,圆心角是120°,则此扇形的半 径是 3 cm. 2.扇形的半径为6 cm,面积为6π cm2,则该扇形的圆心角 为 60°.
的有关计算 例2 一节课45分钟,钟表的时针转过的角度是 22.5°.
·方法归纳· 时针1分钟转动0.5°,分针1分钟转动6°.
变式训练 1.5点20分时,时钟的时针和分针的夹角为 ( B ) A.30° B.40° C.45° D.50°
2.10.5°= 630 '= 37800 ″.
例 3 如 图 ,O 为 直 线 AB 上 一 点 ,∠COD=90°,OE 平 分 ∠AOC,OF平分∠BOD.
阅读本章的知识网络图.
线段的有关计算
例1 如图,A,B,C,D四点在同一条直线上,且AB=CD.
(1)比较线段的大小:AC
BD.(填“>”“=”或“<”)
(2)若BC=34AC,且AC=16 cm,求线段AD的长.
解:(1)=.
(2)因为BC=3AC,且AC=16 cm,
4
所以BC=3×16=12(cm),
多边形和圆的初步认识 例4 画出下列多边形的所有对角线.
解:略.
变式训练 从多边形的一个顶点出发引对角线,这些对角线把这个多边 形分割成了5个三角形,则这个多边形是 七 边形,共有对角线
北师大版七年级数学上册第四章《基本平面图形》精品复习课件

渝南田家炳中学欢迎您!
课堂练习:
一、图形个数问题
例1 如图,A,B,C,D为平面内每三点都
不在一条直线上的四点,那么过其中任意的两点,
可画出几条直线?若A,B,C,D,E为平面内
每三点都不在一条直线上的五点,则过其中任意 的两点可画几条直线?若是n个点呢?
渝南田家炳中学欢迎您!
解:对于已知四点,A点与其他三点共可确定3条直线,过
渝南田家炳中学欢迎您!
4. 比较线段的长短 线段长度的比较有两种方法: (1)叠合比较法,如比较线段AB,CD的长度,可将线段 AB,CD移到同一条射线上,使它们的端点A,C都与射线的端点重 合,再由点B与点D的位置关系,就可得出线段AB和CD的长度关 系. (2)度量比较法,先用刻度尺度量各线段的长度,再按照度量的 长度比较它们的长短.
渝南田家炳中学欢迎您!
二、线段长度的计算 例2 如图,线段AB=32cm,点C在AB上,
且AC∶CB=5∶3,点D是AC的中点,点O 是AB的中点,求DB与OC的长.
【解析】 从图上可以看出DB=AB-AD,而D是
AC的中点,AD= 1/2 AC,结合AC∶CB=5∶3,AB= 32 cm,故AC和BC可求,OC=OB-BC=1/2AB-BC.
渝南田家炳中学欢迎您!
三、时钟夹角问题
例3 钟表在3点半时,它的时针和分针所 成的锐角是( B )
A.70° B.75° C.85° D.90°
【解析】 可以画出草图,如图所示,要注 意的是3点半时,分针指在正下方6处,而时针 并非指在3处,而是在3与4的正中间,所以分 针和时针的夹角为90°- 1/2×30°=75°.
渝南田家炳中学欢迎您!
四、有关角度的计算
2024年秋新北师大七年级数学上册 第四章 基本平面图形 章末复习(课件)

由一条弧 AB 和经过这条弧的 B
端点的两条半径 OA,OB 所 组成的图形
圆心角
顶点在圆心的角
图例
A
O
复习题
知识技能
1.如图,在同一平面内有四个点 A,B,C,D,请用直尺 按下列要求作图:
(1)作射线 CD; (2)作直线 AD; (3)连接AB; (4)作直线 BD与直线 AC 相交于点O.
元素
概念
举例
图例
顶点 边 内角 对角线
相邻两条边的公 共端点 组成多边形的各 条线段
相邻两条边所组 成的角
连接不相邻两个 顶点的线段
点A,B,C,
D,E
D
线段AB,BC, E
CD,DE,EA
C
∠EAB,∠ABC ,
∠BCD ,∠CDE,
∠DEA
A
B
线段AC,AD 五边形ABCDE
2.正多边形 两个条件缺一不可
6. 如图,甲、乙、丙、丁四个扇形的面积之比为 1∶2∶3∶4,分别求出它们圆心角的度数。 解:甲、乙、丙、丁四个扇形的 圆心角的度数分别为
360
1
36, 360
2
72,
1+2+3+4
1+2+3+4
360
3
108,360
4
144
1+2+3+4
1+2+3+4
数学理解 7.如图,建筑工人砌墙时,经常先在两端立桩拉线,然 后沿着线砌墙,请你用数学知识解释这样做的道理。
a
A
B
O
A
m
A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本平面图形复习与巩固【学习目标】1.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;2. 掌握圆、扇形及多边形的概念及相关计算;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.【知识网络】【要点梳理】要点一、线段、射线、直线1.直线,射线与线段的区别与联系2.基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短. 要点进阶:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算 (1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。
(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB ==要点进阶:①线段中点的等价表述:如上图,点M 在线段AB 上,且有12AM AB =,则点M 为线段AB 的中点. ②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等.如下图,点M,N,P 均为线段AB 的四等分点.PNMBAAB PB NP MN AM 41==== 要点二、角 1.角的度量(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是DBA CBAbaba MBA角的两条边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点进阶:①角的两种定义是从不同角度对角进行的定义;②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示. (3)角度制及角度的换算1周角=360°,1平角=180°,1°=60′,1′=60″,以度、分、秒为单位的角的度量制,叫做角度制. 要点进阶:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同.②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行.③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60.(4)角的分类:(5)画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角. (2)借助量角器能画出给定度数的角. (3)用尺规作图法. 2.角的比较与运算(1)角的比较方法: ①度量法;②叠合法. (2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC 是∠AOB 的平分线,所以∠1=∠2=12∠AOB ,或∠AOB=2∠1=2∠2. 类似地,还有角的三等分线等.∠β 锐角 直角钝角平角 周角 范围0<∠β<90°∠β=90° 90°<∠β<180°∠β=180°∠β=360°3.方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.要点进阶:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小.(2)北偏东45°通常叫做东北方向,北偏西45°通常叫做西北方向,南偏东45°通常叫做东南方向,南偏西45°通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛.要点三、多边形和圆的初步认识1.多边形及正多边形:多边形是由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形.其中,各边相等、各角也相等的多边形叫做正多边形.如下图:要点进阶:(1)n边形有n个顶点、n条边,对角线的条数为(3)2n n.(2)多边形按边数的不同可分为三角形、四边形、五边形、六边形等.2. 圆及扇形:(1)圆:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.要点进阶:圆心确定圆的位置,半径确定圆的大小.(2)扇形:由一条弧AB和经过这条弧的端点的两条半径OA,OB所组成的图形叫做扇形.如下图:要点进阶:扇形OAB 的面积公式:;扇形OAB的弧长公式:180 nRlπ=.【典型例题】类型一、线段、射线、直线例1.下列判断错误的有( )①延长射线OA;②直线比射线长,射线比线段长;③如果线段PA=PB,则点P是线段AB的中点;④连接两点间的线段,叫做两点间的距离.A.0个 B.2个 C.3个 D.4个举一反三:【变式】平面上有五条直线,则这五条直线最多有_____交点,最少有_____个交点.类型二、角例2.如图:若∠AOB与∠BOC是一对邻补角,OD平分∠AOB,OE在∠BOC内部,并且∠BOE=∠COE,∠DOE=72°.则∠COE的度数是.举一反三:【变式】在同一平面内,若∠AOB=90°,∠BOC=40°,则∠AOB的平分线与∠BOC的平分线的夹角等于.例3.如图,C岛在A岛的北偏东45°方向,C岛在B岛的北偏西25°方向,则从C岛看A、B两岛的视角∠ACB的度数是()A.70° B.20° C.35° D.110°举一反三:【变式】考点办公室设在校园中心O点,带队老师休息室A位于O点的北偏东45°,某考室B位于O点南偏东60°,请在图(1)中画出射线OA、OB,并计算∠AOB的度数.例4.如图所示,时钟的时针由3点整的位置(顺时针方向)转过多少度时,与分针第一次重合.类型三、利用数学思想方法解决有关线段或角的计算1.方程的思想方法例5. 如图所示,B、C是线段AD上的两点,且32CD AB,AC=35cm,BD=44cm,求线段AD的长.2.分类的思想方法例6.同一直线上有A、B、C、D四点,已知AD=59DB,AC=95CB,且CD=4cm,求AB的长.类型四、多边形和圆例7.(1)操作与证明:如图所示,O 是边长为a 的正方形ABCD 的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O 处,并将纸板绕O 点旋转,求证:正方形ABCD 的边被纸板覆盖部分的总长度为定值a .(2)尝试与思考:如图a 、b 所示,•将一块半径足够长的扇形纸板的圆心角放在边长为a 的正三角形或边长为a 的正五边形的中心点处,并将纸板绕O 旋转,当扇形纸板的圆心角为________时,正三角形边被纸板覆盖部分的总长度为定值a ;当扇形纸板的圆心角为_______时,正五边形的边长被纸板覆盖部分的总长度也为定值a .D ECB A O(a) (b)【巩固练习】一、选择题1.下面说法错误的是( ) .A.M 是线段AB 的中点,则AB =2AMB.直线上的两点和它们之间的部分叫做线段C.一条射线把一个角分成两个角,这条射线叫做这个角的平分线D.同角的补角相等2.从点O 出发有五条射线,可以组成的角的个数是( ) . A. 4个 B. 5个 C. 7个 D. 10个3.用一副三角板画角,下面的角不能画出的是( ).A .15°的角B .135°的角C .145°的角D .150°的角4.已知:岛P 位于岛Q 的正西方,由岛P ,Q 分别测得船R 位于南偏东30°和南偏西45°方向上,符合条件的示意图是( )A .B .C .D .5.已知线段AB=8cm ,点C 是直线AB 上一点,BC=2cm ,若M 是AB 的中点,N 是BC 的中点,则线段MN 的长度为( )A .5cmB .5cm 或3cmC .7cm 或3cmD .7cm6. 平面内两两相交的6条直线,其交点个数最少为m 个,最多为n 个,则m+n 等于( ).A.12B.16C.20D.以上都不对7.一块等边三角形的木板,边长为1,若将木板沿水平线翻滚(如图),则点B 从开始至结束走过的路径长度为( ). A.3π2B.4π3C.4D.322+π8.如图,扇形OAB 的圆心角为90,且半径为R ,分别以OA ,OB 为直径在扇形内作半圆,P 和Q 分别表示两个阴影部分的面积,那么P 和Q 的大小关系是( ).A.P Q = B.P Q >C.P Q <D.无法确定QO A PCBABCBA C B二、填空题9.把34.27°用度、分、秒表示,应为 ° ′ ″.10.若∠α是它的余角的2倍,∠β是∠α的2倍,那么把∠α和∠β拼在一起(有一条边重合)组成的角是________度.11.已知圆的面积为281cm π,若其圆周上一段弧长为3cm π,则这段弧所对的圆心角的度数为 .12.平面上有四个点,无三点共线,以其中一点为端点,并且经过另一点的射线共有_______条.13.如图,点B 、O 、C 在同一条直线上,∠AOB =90°,∠AOE =∠BOD ,下列结论: ①∠EOD =90°;②∠COE =∠AOD ;③∠COE =∠BOD ;④∠COE+∠BOD =90°. 其中正确的是 .14.如图,∠AOB 是钝角,OC 、OD 、OE 是三条射线,若OC ⊥OA ,OD 平分∠AOB,OE 平分∠BOC ,那么∠DOE 的度数是 .15. 如图所示,实线部分是半径为9m 的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为.16.一根绳子弯曲成如下图1所示的形状.当用剪刀像下图2那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像下图3那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a ,b 之间把绳子再剪(n -1)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是 .三、解答题17.钟表在12点钟时三针重合,经过多少分钟秒针第一次将分针和时针所夹的锐角平分?18.图1图2图3……a a b19.如图,∠AOB=90°,∠AOC=30°,且OM平分∠BOC,ON平分∠AOC,(1)求∠MON的度数;(2)若∠AOB=α其他条件不变,求∠MON的度数;(3)若∠AOC=β(β为锐角)其他条件不变,求∠MON的度数;(4)从上面结果中看出有什么规律?20.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8,CB=6,求线段MN的长;(2)若点C为线段AB上任意一点,且满足AC+BC=a,请直接写出线段MN的长;(3)若点C为线段AB延长线上任意一点,且满足AC﹣CB=b,求线段MN的长.。