北师大版七年级数学上册第四单元基本平面图形知识点
北师大版七年级数学上册第四章 基本平面图形 比较线段的长短

C(A)
BD
探究新知
叠合法结论:
A
B
C (A)
BD
A
B
C(A)
(B)D
A
B
(A)C
DB
1. 若点 A 与点 C 重合,点 B 落 在C,D之间,那么 AB < CD.
2. 若点 A 与点 C 重合,点 B 与 点 D 重合 ,那么 AB = CD.
3. 若点 A 与点 C 重合,点 B 落在 CD 的延长线上,那么 AB
b. a
b
2a
b A 2a-b B
探究新知
知识点 4 线段的中点
A
MB
在一张纸上画一条线段,折叠纸片,使线段的端 点重合,折痕与线段的交点处于线段的什么位置?
探究新知
A
MB
如图,点M 把线段 AB 分成相等的两条线段AM 与BM, 点 M 叫做线段AB 的中点.类似地,还有线段的三等分点、 四等分点等.
如果在AB上画线段 BD=b,那么线段 AD 就是 a 与 b 的
差,记作AD= a-b .
a+b
a
b
A
a-b
D bB
C
巩固练习
1.如图,点B,C在线段 AD 上则AB+BC = A_C___; AD-CD = A__C_;BC=A_C__ -AB__ =BD___ -CD___.
A
B
C
D
2.如图,已知线段a,b,画一条线段AB,使AB=2a-
素养考点 2 利用比例或倍分关系求线段的长度 例2 如图,B,C是线段AD上两点,且AB:BC:CD=
3:2:5,E,F分别是AB,CD的中点,且EF=24,求线段
AB,BC,CD的长.
七年级数学北师大版上学期第四章基本平面图形(单元小结)

A.AC=BC
B.AC+BC=AB
C.AB=2AC
D.BC=
1 2
AB
4.如图所示,把一副三角板叠放在一起,则∠ACD=___1__5___°.
结论:一副三角板拼成角的度数是15的 倍数
考点专练
5.如图,C是线段AB上的一点,M是线段AC的中点,若AB =8 cm,BC=2 cm,求MC的长。
解: ∵ AB=8 cm,BC=2 cm, ∴AC=AB-BC=8-2=6cm
解:由(1)可知∠MON=1/2∠AOB.
因为∠AOB=α 所以∠MON=α/2
考点专练
(3)如果(1)中∠BOC=β(β为锐角),其他条件不 变,求∠MON的度数;
解:由(1)可∠MON=1/2∠AOB.
因为∠AOB=90° 所以∠MON=45°
考点专练
(4)从(1),(2),(3)的结果中能看出什么规律? 解: 分析(1),(2),(3)的结
名称 比较方法 图形
表示方法 中点或角平分线
线段 测量法、
视察法、 A 叠合法
a B
角 测量法、
A
视察法、
1
叠合法
O
B
线段AB 线段a
在线段上,并且把这条线 段分成两条相等线段的 点叫做这条线段的中点.
∠AOB ∠1 ∠O
从一个角的顶点引出的一 条射线,把这个角分成两 个相等的角,这条射线叫 做这个角的平分线.
又∵ M是线段AC的中点, ∴MC= 1 AC=3cm
2
12.【易错】画图计算: 在直线 l 上有 A,B,C 三点,使得 AB=4 cm,BC=6 cm.如果 点 O 是线段 AC 的中点,那么线段 OB 的长度是多少?
解:①如图:
北师大版七年级数学上册第四单元基本平面图形

第四章:基本平面图形知识梳理一、线段、射线、直线1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。
线段可以量出长度。
(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。
射线无法量出长度。
(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。
直线无法量出长度。
结论:直线、射线、线段之间的区别:联系:射线是直线的一部分。
线段是射线的一部分,也是直线的一部分 2、线段、射线、直线的表示方法(1)线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。
(2)射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。
(3)直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。
3、直线公理:过两点有且只有一条直线。
简称两点确定一条直线。
4、线段的比较 (1)叠合比较法;(2)度量比较法。
5、线段公理:“两点之间,线段最短”。
连接两点的线段的长度,叫做这两点的距离。
6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。
若C 是线段AB 的中点,则:AC=BC=21AB 或AB=2AC=2BC 。
例题:1、如果线段AB=5cm ,BC= 3cm ,那么A 、C 两点间的距离是( )A .8 cmB 、2㎝C .4 cmD .不能确定解:D 点拨:A 、B 、C 三点位置不确定,可能共线,也可能不共线.2、已知线段AB=20㎝,C 为 AB 中点,D 为CB 上一点,E 为DB 的中点,且EB=3 ㎝,则CD= ____cm .解:4 点拨:由题意,BC=0.5AB=10cm ,DB=2 EB=6cm ,则CD=BC -DB =10-6=4(cm )3、平面上有三个点,可以确定直线的条数是( )A 、1B .2C .3D .1或 3二、角1、角的概念:(1)角可以看成是由两条有共同端点的射线组成的图形。
北师大版七年级上册数学第四章基本的平面图形讲义(学生、家长、教师必备)

第四章基本平面图形■通关口诀:三线入门学几何;线段距离要分清。
温习数角数线段;中点角分三描述。
点点滴滴认识圆;六十进制作了解。
多边形与对角线;学习几何打基础。
比线比角要熟练;尺规作图知初步。
■正奇数学学堂第一讲:线段、射线、直线【知识点一】“三线”的基本概念{1.线段:不定义的基本概念。
两个特征:一是直的;二是有两个端点。
2.射线:把线段一方无限延长所形成的图形叫做射线。
三个特征:直的;一个端点;向一方无限延长。
3.直线:把线段向两方无限延长形成的图形叫做直线。
三个特征:直的;无端点;向两方无限延长。
4.注意:三线都是直的。
线段和射线都是直线的一部分。
区别在端点个数和是否延长及延长的方向。
〖母亲题示例〗1.填写下表:名称图例端点数延伸方向有无长度线段射线直线2.下图中哪个是线段,哪个是射线,哪个是直线?【知识点二】线段、射线、直线的表示方法。
1.线段:可以用表示两爹端点的大写字母或一个小写字母来表示。
名称+字母(无顺序)。
2.射线:可以用端点和射线上的另一点表示。
名称+字母(字母有顺序,端点字母必须在前)。
3.直线:可以用两个大写字母来表示。
也可以用一个小写字母来表示。
名称+字母(不讲顺序)。
4.注意:线段-字母相同即相同;射线:字母、顺序都相同,才能断定同一线;直线:字母相同即同线。
〖母亲题示例〗1.如图,A,B在直线l上,下列说法错误的是()A.线段AB和线段BA同一条线段B.直线AB和直线BA同一条直线C.射线AB和射线BA同一条射线D.图中以点A 为端点的射线有两条.【知识点三】直线的性质(老大:代表两个小弟。
)1.交点:两条直线相交,只有一个交点。
2.两点定线:经过两点有且只有一条直线。
(简记:两点确定一条直线)。
3.探求:过一点有无数条直线。
过两点以上不一定有直线。
但它们可以在一条直线上。
4.求交点:过平面内n条直线最多有(1)2n n —个交点。
5.数线段:①n个点= (1)2n n 条线段②n条基本线段:退乘法求线段数。
最新北师大版七年级数学上册第四单元基本平面图形知识点

第四章:基本平面图形知识梳理一、线段、射线、直线1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。
线段可以量出长度。
(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。
射线无法量出长度。
(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。
直线无法量出长度。
: 联系:射线是直线的一部分。
线段是射线的一部分,也是直线的一部分。
2、点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
3、直线的性质(1)直线公理:经过两个点有且只有一条直线。
简称两点确定一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
4、线段的比较(1)叠合比较法(用圆规截取线段);(2)度量比较法(用刻度尺度量)。
5、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。
若C 是线段AB 的中点,则:AC=BC=21AB 或AB=2AC=2BC 。
二、角1、角的概念:(1)角可以看成是由两条有共同端点的射线组成的图形。
两条射线叫角的边,共同的端点叫角的顶点。
(2)角还可以看成是一条射线绕着它的端点旋转所成的图形。
2、角的表示方法:角用“∠”符号表示,角的表示方法有以下四种: ①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B ,∠C 等。
北师大版七年级数学上册第四章基本平面图形全套教学课件

例 已知线段AB,用尺规作一条线段等于已知线段 AB.
AB ①先作一条射线A 'C ';
A'
C'
②用圆规量取已知线段AB的长度;
③在射线上截取A 'B ' =AB,线段A 'B '就是 所求的线 段.
探究新知
4.1 线段、射线、直线/
画一画
在直线上画出线段 AB=a ,再在 AB 的延长线
上画线段BC=b,线段AC 就是 a 与 b 的和,记作
(3) 画直线AB,交线段DC的延长线于点E;
(4) 连接线段AD,并将其反向延长.
A
解:如图所示
B
F
E
D
C
课堂检测
拓广探索题
往返于A、B两地的客车,中途停靠三个站,每
两站间的票价均不相同,问: (1)有多少种不同的票价? (2)要准备多少种车票?
解:画出示意图如下:
A CDE B
(1)图中一共有10条线段,故有10种不同的票价.
(4) 图中有几条射线?写出以点B为端点的射线.
AA
BB
C
解:(1) 1条,直线AB或直线AC或直线BC; (2) 3条,线段AB,线段BC,线段AC; (3) 是; (4) 6条.以B为端点的射线有射线BC、射线BA.
课堂检测
能力提升题
2. 如图,在平面上有四个点A,B,C,D ,根据下
列语句画图:(1) 做射线BC;(2) 连接线段AC,BD交于点F;
探究新知
4.1 线段、射线、直线/
讨论 你们平时是如何比较两个同学的身高的?
你能从比身高的方法中得到启示来比较两条线
段的长短吗?
170cm
北师大版数学七年级上册第四章基本平面图形线段、射线、直线课件

解:(1)如答图4-1-2,直线AB即为所求;
(2)如答图4-1-2,线段AC,BD即为所求; (3)如答图4-1-2,射线AD,BC即为所求.
典例精析
【例5】开会前工作人员进行会场布置,在主席台上由两人 拉着一条绳子,然后以“准绳”为基准摆放茶杯,这样做 的理由是( B ) A. 两点之间线段最短 B. 两点确定一条直线 C. 两点之间,直线最短 D. 过一点可以作无数条直线 思路点拨:两点确定一直线.
谢谢
典例精析
【例2】射线OA,OB表示同一条射线,下列图形正确的是 ( D)
举一反三
2. 如图4-1-1,则下列表示方法( D )
A. 都错误 C. 只有一个正确
B. 都正确 D. 有两个正确
典例精析
【例3】图4-1-2中共有线段( B )
A.8条
B.9条
C.10条
D.12条
举一反三
3. 如图4-1-3,不同的线段共有_____6___条.
举一反三
5. 下列现象:①用两个钉子就可以把木条固定在墙上;②
从A地到B地架设电线,总是尽可能沿着线段AB架设;③植树
时,只要确定两棵树的位置,就能确定同一行树所在的直线
;④把曲折的公路改直,就能缩短路程. 其中能用“两点确
定一条直线”来解释的现象有(B )
A. ①②
B. ①③
C. ②④ D. ③④
图4-1-3
典例精析
【例4】如图4-1-4,平面上四个点A,B,C,D,根据下列 语句作图:画直线AB;画射线BC;画线段CD;连接AD. (不 写作法)
解:如答图4-1-1.
思路点拨:线段、射线、直线的区分在于线段有两个 端点,射线有一个端点,直线没有端点.
北师大版七年级上册数学课件第四章 基本平面图形

线
直
向两方无限延伸
0
线
能否度量
联系
能 不能 不能
线段、射线是 直线上的一部
分
当堂小练
1.平面上有A、B、C三个点,过其中的任两点作直线, 小敏说能作三条;小聪说只能作一条;小真说都有可 能;你认为他们三人谁的说法对?
分析:
A
B
C
(1) 可以画三条直线
A
B
C
(2) 只能画一条直线
当堂小练
2.指出下图中线段、射线、直线分别有多少条?
可否度量 可度量 不可度量
不可度量
新课讲解
典例分析
例 1.如图中,共有几条线段?
分析:以A为左端点的线段有:线段AC、线段 AD、线段AB,以C为左端点的线段有: 线段CD、线段CB,以D为左端点的线段 有:线段DB.
解:共有6条线段.
新课讲解
知识点2 直线的基本事实
讨论
如果将细木条抽象成直线,将钉子抽象为点,你可 以得出什么结论?
0 11
22
33
44
55
66
77 88
新课讲解
知识点2 作一条线段等于已知线段
尺规作图:在数学中,我们常限定用无刻度的直尺和圆规 作图,这就是尺规作图,利用尺规作图可以将一条线段移 到另一条线段上.用直尺(无刻度)和圆规作一条线段等于 已知线段的步骤:
(1)利用直尺(无刻度)作一条射线AB;
新课讲解
课堂小结
线 段 的 性 质
两点之间距离 线段的性质
线段最短 线段的长度 比较线段长度方法
当堂小练
1.把一条弯曲公路改为直路,可以缩小路程,其理由是(A )
A.两点之间线段最短
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章:基本平面图形知识梳理一、线段、射线、直线1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。
线段可以量出长度。
(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。
射线无法量出长度。
(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。
直线无法量出长度。
: 联系:射线是直线的一部分。
线段是射线的一部分,也是直线的一部分。
2、点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
3、直线的性质(1)直线公理:经过两个点有且只有一条直线。
简称两点确定一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
4、线段的比较(1)叠合比较法(用圆规截取线段);(2)度量比较法(用刻度尺度量)。
5、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。
若C 是线段AB 的中点,则:AC=BC=21AB 或AB=2AC=2BC 。
二、角1、角的概念:(1)角可以看成是由两条有共同端点的射线组成的图形。
两条射线叫角的边,共同的端点叫角的顶点。
(2)角还可以看成是一条射线绕着它的端点旋转所成的图形。
2、角的表示方法:角用“∠”符号表示,角的表示方法有以下四种: ①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B ,∠C 等。
C④用三个大写英文字母表示任一个角,如∠BAD ,∠BAE ,∠CAE 等。
注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
3、角的度量:会用量角器来度量角的大小。
角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n 度记作“n °”。
把1°的角60等分,每一份叫做1分的角,1分记作“1′”, 1°=60′。
把1′的角60等分,每一份叫做1秒的角,1秒记作“1″”,1′=60″。
4、锐角、直角、钝角、平角、周角的概念和大小 ①平角:角的两边成一条直线时,这个角叫平角。
②周角:角的一边旋转一周,与另一边重合时,这个角叫周角。
③0°<锐角<90°,直角=90°,90°<钝角<180°,平角=180°,周角=360°。
④ 角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
5、画两个角的和,以及画两个角的差①用量角器量出要画的两个角的大小,再用量角器来画。
②三角板的每个角的度数,30°、60°、90°、45°。
6、角的平分线从角的顶点出发将一个角分成两个相等的角的射线叫角的平分线。
若BD 是∠ABC 的平分线,则有:∠ABD=∠CBD=21∠ABC ;∠ABC=2∠ABD=2∠CBD 7、拓展: 钟面角(1)钟面角是指时针与分针在某一时刻所成的角。
我们知道钟面数字从1到12共有12个大格,60个小格,而1周角=360°,所以钟面上每个大格对应360°÷12=30°的角,每个小格对应360°÷60=6°的角,这样,时针每走1小时对应30°的角,每走1分钟对应30°÷60=0.5°的角;分针每走1分钟对应6°的角。
(2)钟面角的计算公式:①当时针在分针前面时,钟面角=30°m+0.5°n -6°n ; ②当时针在分针后面时,钟面角=6°n -30°m -0.5°n ;其中m 表示时针所指钟面的时钟数,n 表示分针所指钟面的分钟数,即m 点n 分。
三、多边形和圆的初步认识 1、多边形的定义:三角形、四边形、五边形等都是多边形,它们都是由若干条不在同一直线上的 线段首尾依次相连组成的封闭平面图形。
2、多边形的基本元素顶点:如图,在多边形ABCDEF 中,点A,B,C,D,E,F 是多边形的顶点; 边:线段AB,BC,CD,DE,EF,FA 是多边形的边;内角:∠FAB, ∠ABC, ∠BCD, ∠CDE, ∠DEF, ∠AFE 是多边形的内角(可简称为多边形的角)。
对角线:如图,AD,AE 都是连接不相邻两个顶点的线段,像这样的线段叫做多边形的对角线。
3、正多边形各边相等,各角也相等的多边形叫做正多边形。
例如:正方形是正四边形,它的各边都相等,各角都是90°;等边三角形即正三角形,它的各边都相等,各角都是60°。
4、n 边形的分割(分割成三角形):(1)从某一顶点出发:)2(-n 个。
由此可得n 边形的内角和公式:︒⋅-180)2(n 。
(2)从一边上某一点出发:)1(-n 个。
(3)从内部任意一点出发:n 个 。
5、圆的概念(1)如图,平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆。
固定的端点O 称为圆心;线段OA 称为半径。
以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”。
(2)相关概念弧:圆上任意两点A ,B 之间的部分叫做圆弧,简称弧,记做⌒ AB,读作“圆弧AB ”或“弧AB ”。
扇形:由一条弧AB 和经过这条弧的端点的两条半径OA,OB 所组成的图形叫做扇形。
圆心角:顶点在圆心的角叫做圆心角。
课后作业1.下列说法正确的是( )A. 两点之间的连线中,直线最短B.若P 是线段AB 的中点,则AP=BPC. 若AP=BP, 则P 是线段AB 的中点D. 两点之间的线段叫做者两点之间的距离 2.如果线段AB=5cm,线段BC=4cm,那么A,C 两点之间的距离是( ) A. 9cm B.1cm C.1cm 或9cm D.以上答案都不对3.在直线L 上依次取三点M,N,P, 已知MN=5,NP=3, Q 是线段MP 的中点,则线段QN 的长度是( ) A. 1 B. 1.5 C. 2.5 D. 44.已知A 、B 两点之间的距离是10 cm ,C 是线段AB 上的任意一点,则AC 中点与BC 中点间距离是( ) A.3 cm; B.4 cm; C.5 cm; D.不能计算5.把两条线段AB 和CD 放在同一条直线上比较长短时,下列说法错误的是( ) A. 如果线段AB 的两个端点均落在线段CD 的内部,那么AB<CD B. 如果A,C 重合,B 落在线段CD 的内部,那么AB<CDC. 如果线段AB 的一个端点在线段CD 的内部,另一个端点在线段CD 的外部,那么AB 〉CDD. 如果B ,D 重合,A ,C 位于点B 的同侧,且A 落在线段CD 的外部,则AB 〉CD 6. 5点20分时,时钟的时针和分针的夹角为( ) A .30°B .40°C .45°D .50°7.如果从一个多边形的一个顶点出发,分别连接这个定点与其余各顶点,可将这个多边形分割成2013个三角形,那么此多边形的边数为 。
8.工人师傅在用方地砖铺地时,常常打两个木桩然后沿着拉紧的线铺地,这样地砖就铺得整齐,这是根据什么道理 .9. 如图,图中三角形的个数为_______。
10. 计算:48°39′+67°41′=_________;90°-78°19′40″=________11.方格纸中四个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为__________。
O AB第20题图ABC DE 12.将一张长方形纸片,按图中的方式折叠,BC ,BD 为折痕,求∠CBD 的度数。
13.归纳与猜想(1)观察图填空:图①中有 个角;图②中有 个角;图③中有 个角. (2)据图①~③猜想:从一个角内引n 条射线可组成几个角?14.如图,∠AOC 和∠BOD 都是直角,且∠AOB=150°,求∠COD 的度数。
15. 阅读下面文字,完成题目中的问题:①平面上没有直线时,整个平面是1部分;②当平面上画出一条直线时,就把平面分成2部分;③当平面上有两条直线时,最多把平面分成4部分;④当平面上有三条直线时,最多可以把平面分成7部分;… 完成下面问题: (1)根据上述事实填写下列表格平面上直线的条数 01 23… 平面被分成几部分…(2)当平面上有n 条直线时,最多可以把平面分成 部分. 16.如图已知点C 为AB 上一点,AC =12cm, CB =32AC ,D 、E 分别为AC 、AB 的中点求DE 的长。