5 第5讲 绝对值不等式
绝对值不等式

绝对值不等式知识总结:1.绝对值三角不等式(1)定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立.(2)定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集:不等式 a >0 a =0 a <0 |x |<a (-a ,a ) ∅∅ |x |>a(-∞,-a )∪(a ,+∞)(-∞,0)∪(0,+∞)R(2)|ax +b |≤c (c >0)和|ax +b |≥c (c >0)型不等式的解法: ①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .题型一:绝对值不等式的解法例1:不等式1≤|2x -1|<2的解集为( )A.⎝ ⎛⎭⎪⎫-12,0∪⎣⎢⎡⎭⎪⎫1,32 B.⎝ ⎛⎭⎪⎫-12,32 C.⎝ ⎛⎦⎥⎤-12,0∪⎣⎢⎡⎭⎪⎫1,32 D .(-∞,0]∪[1,+∞)例2:若关于x 的不等式|x -1|-|x -3|>a 2-3a 的解集为非空数集,则实数a 的取值范围是( )A .1<a <2 B.3-172<a <3+172C .a <1或a >2D .a ≤1或a ≥2举一反三:变式1:设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A ,则a =________.变式2:不等式|x -2|+|x +2|≥5的解集为______________.题型二:利用绝对值不等式求最值例1:对于任意实数a 和b (b ≠0),不等式|a +b |+|a -b |≥|b |(|x -1|+|x -2|)恒成立,则实数x 的取值范围是________.例2:记max{p ,q }=⎩⎨⎧p ,p ≥q ,q ,p <q ,设M (x ,y )=max{|x 2+y +1|,|y 2-x +1|},其中x ,y ∈R ,则M (x ,y )的最小值是________.举一反三:变式1:若关于x 的不等式|x +t 2-2|+|x +t 2+2t -1|<3t 无解,则实数t 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-15,1 B .(-∞,0] C .(-∞,1]D .(-∞,5]变式2:(2020·浙江第二次联盟联考)定义min{x ,y }=⎩⎨⎧x ,x ≤y ,y ,x >y ,已知x 是不为2或8的实数,若S =min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2|x -2|,1|x -8|,则S 的最大值为________.题型三:绝对值不等式的综合应用例1:已知a ,b 为实数,不等式|x 2+ax +b |≤|x 2-7x +12|对一切实数x 都成立,则a +b =________.例2:已知函数f (x )=x |x -a |-1.①当a =1时,解不等式f (x )<x -1;②当x ∈(0,1]时,f (x )≤12x 2恒成立,求实数a 的取值范围.举一反三:变式1:已知函数f (x )=|x -2|,g (x )=-|x +3|+m .(1)解关于x 的不等式f (x )+a -1>0(a ∈R );(2)若函数f (x )的图象恒在函数g (x )图象的上方,求m 的取值范围.课后练习:1.不等式|2x -1|<3的解集是( ) A .(1,2) B .(-1,2)C .(-2,-1)D .(-∞,-2)∪(2,+∞)2.不等式|2x -1|-|x -2|<0的解集是( ) A .{x |-1<x <1} B .{x |x <-1} C .{x |x >1}D .{x |x <-1或x >1}3.对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为( ) A .5 B .4 C .8 D .74.已知数列{a n }为等差数列,且a 8=1,则2|a 9|+|a 10|的最小值为( ) A .3 B .2 C .1 D .05.设函数f (x )=|2x -1|,若不等式f (x )≥|a +1|-|2a -1||a |对任意实数a ≠0恒成立,则x 的取值范围是( )A .(-∞,-1]∪[3,+∞)B .(-∞,-1]∪[2,+∞)C .(-∞,-3]∪[1,+∞)D .(-∞,-2]∪[1,+∞)6.若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( ) A .5或8 B .-1或5 C .-1或-4D .-4或87.设函数f (x )=⎩⎪⎨⎪⎧2cos π2x ,|x |≤1,x 2-1,|x |>1.若|f (x )+f (x +l )-2|+|f (x )-f (x +l )|>2(l >0)对任意的实数x都成立,则正数l 的取值范围为( ) A .(0,23) B .(23,+∞) C .(0,23]D .[23,+∞)8.若a ,b ,c ∈R ,且|a |≤1,|b |≤1,|c |≤1,则下列说法正确的是( ) A.⎪⎪⎪⎪⎪⎪ab +bc +ca +32≥⎪⎪⎪⎪⎪⎪a 2 B.⎪⎪⎪⎪⎪⎪ab +bc +ca +32≥⎪⎪⎪⎪⎪⎪a -b 2 C.⎪⎪⎪⎪⎪⎪ab +bc +ca +32≥⎪⎪⎪⎪⎪⎪a -b -c 2 D .以上都不正确9.若关于x 的不等式|x |+|x +a |<b 的解集为(-2,1),则实数a =________,b =________.10.已知f (x )=⎪⎪⎪⎪⎪⎪x +1x -a +⎪⎪⎪⎪⎪⎪x -1x -a +2x -2a (x >0)的最小值为32,则实数a =________.11.当1≤x ≤3时,|3a +2b |-|a -2b |≤|a |⎝ ⎛⎭⎪⎫x +m x +1对任意的实数a ,b 都成立,则实数m 的取值范围是________.12.对任意的x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为________;若正实数x ,y ,z 满足x 2+2y 2+z 2=1,则t =433xy +2yz +xz 的最大值是________.13.已知函数f (x )=x -1,若|f (x )-1|+1|f (x -1)|-a >0对任意的x ∈R 且x ≠2恒成立,则实数a的取值范围为________;不等式|f (2x )|≤5-|f (2x -1)|的解集为__________.14.已知a >0,若集合A ={x ∈Z ||2x 2-x -a -2|+|2x 2-x +a -2|-2a =0}中的元素有且仅有2个,则实数a 的取值范围为______.15.已知a ,b ∈R ,f (x )=|2x +ax +b |,若对于任意的x ∈[0,4],f (x )≤12恒成立,则a +2b =________.。
绝对值的不等式

绝对值的不等式绝对值的不等式是数学中的一种重要概念,它在日常生活中也有着广泛的应用。
在不等式中,绝对值表示一个数与0的距离,因此它的结果始终为正数。
绝对值的不等式可以用来描述两个数之间的关系,掌握它的原理和应用对于我们做好数学和生活中的问题都非常有帮助。
首先,我们要了解绝对值的符号,用两条竖线括起来,例如|3|表示3的绝对值,也就是3与0的距离,即3。
如果一个数的绝对值大于另一个数的绝对值,那么这个数的大小也一定更大。
然后,要理解绝对值的不等式。
绝对值不等式的一般形式为|a|<b或|a|>b,其中a和b均为实数。
这意味着,如果|a|<b,那么a必须是一个离0足够近的实数,距离0小于b。
如果|a|>b,那么距离0更远,a的值越大或越小,a绝对值的结果越大。
接着,我们来看绝对值的不等式的应用。
在数学中,绝对值的不等式通常可用于解决不等式问题,如|x+2|<5,就可以用对称的形式把不等式拆分成两个绝对值不等式:-(x+2)<5和x+2<5。
这样,我们就可以得到-x<7和x<3两个解,取它们的交集,就得到了最终的解:-7<x<3。
在生活中,绝对值的不等式也有着广泛的应用。
例如,在购买商品时,我们需要对价格进行比较,绝对值的不等式可以帮助我们快速地比较两个价格的大小。
又如,在交通中,车速的不等式就是一种绝对值不等式,我们需要根据车速限制和实际行驶速度来调整车速,以保证自己和他人的安全。
总之,绝对值的不等式是数学中一个非常重要的概念,它在日常生活中也有着广泛的应用。
通过掌握绝对值的符号、原理和应用,我们可以更好地理解和解决数学问题,也可以更好地应对生活中的各种挑战,成为一个更加全面发展的人。
第五课时简单的绝对值方程与简单的绝对值不等式的解法

第5课时 简单的绝对值方程与简单的绝对值不等式的解法诸暨二中 高一数学备课组教学目标:1.掌握形如| x | = a (a ≥0)方程的解法;2.掌握形如| x – a | = b (b ≥0)方程的解法。
3.掌握一些简单的含绝对值的不等式的解法.教学重点:1.解形如| x | = a (a ≥0)和| x – a | = b (b ≥0)的方程。
2.解含绝对值不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式(组),难点是含绝对值不等式与其它内容的综合问题及求解过程中,集合间的交、并等各种运算.教学难点:解含绝对值方程及绝对值不等式时如何去掉绝对值教学方法:讲授法教学过程:一.复习提问:1.绝对值的代数和几何意义。
绝对值的代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。
a (a > 0)用字母表示为 | a | = 0 (a = 0)– a (a < 0)绝对值几何意义:||x 表示这个数的点离开原点的距离。
因此任何数的绝对值是非负数。
12||x x -是指数轴上12,x x 两点间的距离二.新课讲解:(一)简单的绝对值方程解法例1:解方程:(1) 19 – | x | = 100 – 10 | x |(2) 2||33||4x x +=- 解:(1) – | x | + 10 | x | = 100 – 19 (2) 2 | x | + 3 = 12 – 4 | x |9 | x | = 81 2 | x | + 4 | x | = 12 – 3| x | = 9 6 | x | = 9x = ±9 | x | = 1.5x = ±1.5例2、思考:如何解 | x – 1 | = 2分析:用换元(整体思想)法去解决,把 x – 1 看成一个字母y ,则原方程变为:| y | = 2,这个方程的解为 y = ±2,即 x – 1 = ±2,解得 x = 3或x = – 1.解: x – 1 = 2 或 x – 1 = – 2x = 3 x = – 1例题小结:形如| x – a | = b (b ≥0)的方程的解法:解: x – a = b 或 x – a = – bx = a + b x = a – b例3:解方程:| 2x – 1 | – 3 = 0解:| 2x – 1 | = 32x – 1 = 3 或 2x – 1 = – 32x = 4 2x = – 2x = 2 x = – 1* 把绝对值内的式子看成一个整体,用一个字母表示的方法叫换元法,形如| mx – n | = a (m ,n ,a 为已知数,且a ≥0)方程分为两步解(1) 先解 | y | = a (a ≥0)(2) 再解 mx – n = y 的方程解: mx – n = ±amx – n = a 或mx – n = – ax = n a m + x =n a m- 练习:解方程:3|21|62y -=(y = 2.5或– 1.5)(二)简单绝对值不等式的解法例4.解下列不等式:(1) | 3x ︱<2 (2) | x ︱>5 (3) | 2x – 1 |≤3(4)4|23|7x <-≤; (5)|2||1|x x -<+; (6)|21||2|4x x ++->.解:(4)原不等式可化为4237x <-≤或7234x -≤-<-,∴原不等式解集为17[2,)(,5]22-- . (5)原不等式可化为22(2)(1)x x -<+,即12x >,∴原不等式解集为1[,)2+∞. (6)当12x ≤-时,原不等式可化为2124x x --+->,∴1x <-,此时1x <-; 当122x -<<时,原不等式可化为2124x x ++->,∴1x >,此时12x <<; 当2x ≥时,原不等式可化为2124x x ++->,∴53x >,此时2x ≥. 综上可得:原不等式的解集为(,1)(1,)-∞-+∞ .(也可以用绝对值的几何意义来解)例5.(1)对任意实数x ,|1||2|x x a ++->恒成立,则a 的取值范围是(,3)-∞;(2)对任意实数x ,|1||3|x x a --+<恒成立,则a 的取值范围是(4,)+∞.解:(1)可由绝对值的几何意义或|1||2|y x x =++-的图象或者绝对值不等式的性质|1||2||1||2||12|3x x x x x x ++-=++-≥++-=得|1||2|3x x ++-≥,∴3a <;(2)与(1)同理可得|1||3|4x x --+≤,∴4a >.例6.已知{||23|}A x x a =-<,{|||10}B x x =≤,且A B ⊂≠,求实数a 的取值范围.解:当0a ≤时,A φ=,此时满足题意;当0a >时,33|23|22a a x a x -+-<⇒<<,∵A B ⊂≠, ∴3102173102a a a -⎧≥-⎪⎪⇒≤⎨+⎪≤⎪⎩, 综上可得,a 的取值范围为(,17]-∞.练习:1.||11x x x x >++的解集是(1,0)-;|23|3x x ->的解集是3(,)5-∞; 2.不等式||1||||a b a b +≥-成立的充要条件是||||a b >; 3.若关于x 的不等式|4||3|x x a -++<的解集不是空集,则a ∈(7,)+∞;三.教学小结与反思:1、解形如 | x | = a (a ≥0)的方程a > 0时, x = ±aa = 0时, x = 0a < 0时, 方程无解2、解形如| mx – n | = a (m ,n ,a 为已知数,且a ≥0)的方程mx – n = a 或mx – n = – ax = n a m + x =n a m- 3. || (0)x a a a x a <>⇔-<<,|| (0)x a a x a >>⇔>或x a <-.4.当0c >时,||ax b c ax b c +>⇔+>或ax b c +<-,||ax b c c ax b c +<⇔-<+<;当0c <时,||ax b c x R +>⇔∈,||ax b c x φ+<⇔∈.5.不等式的解法中体现了数学上的化归转化的思想,只要深刻理解这一点,一些陌生的不等式都有可快速化为熟悉的不等式,要注意转化过程要等价。
绝对值不等式

绝对值不等式绝对值不等式是数学中常见的一类不等式,它与绝对值的性质和运算相关。
通过研究绝对值不等式,我们可以解决许多实际问题,同时也提升了我们的数学思维和解题能力。
一、绝对值的定义绝对值是表示一个数离原点的距离。
对于一个实数x,它的绝对值记作|x|,定义如下:当x≥0时,|x|=x;当x<0时,|x|=-x。
例如,|5|=5,|-3|=3。
二、绝对值不等式的性质1. 绝对值的非负性质:对于任意实数x,有|x|≥0。
2. 绝对值的等价性:若|x|=0,则x=0。
3. 绝对值的三角不等式:对于任意实数x和y,有|x+y|≤|x|+|y|。
三、一元绝对值不等式的求解方法当我们遇到一元绝对值不等式时,可以采用以下两种方法求解:1. 列举法:根据不等式的性质及绝对值的定义,列举出满足不等式条件的数。
例题1:|x-2|<3根据绝对值的定义,可以得到以下两个不等式:x-2<3 ==> x<5;-(x-2)<3 ==> -x+2<3 ==> 2-x<3 ==> x>-1。
综合以上两个不等式的解,得到-1<x<5。
2. 分类讨论法:将绝对值拆分成正负两种情况,分别求解。
例题2:|2x-3|>4当2x-3>0时,可以得到以下不等式:2x-3>4 ===> 2x>7 ===> x>3.5。
当2x-3<0时,可以得到以下不等式:-(2x-3)>4 ===> -2x+3>4 ===> -2x>1 ===> x<-0.5。
综合以上两个情况的解,得到x>3.5或x<-0.5。
四、二元绝对值不等式的求解方法对于二元绝对值不等式,我们需要分别对两个变量进行分类讨论,并结合不等式的特点进行求解。
例题3:|x-2|+|y+1|<5当x-2>0且y+1>0时,可以得到以下不等式:x-2+y+1<5 ==> x+y<6。
绝对值与绝对值不等式

绝对值与绝对值不等式绝对值是数学中的一个重要概念,它表示一个数与零之间的距离。
绝对值可以用符号“| |”来表示,其内部的数值可为正数或负数。
绝对值有时会与不等式一起讨论,这就是我们所说的绝对值不等式。
一、绝对值的定义绝对值的定义非常简单,对于任意的实数a,它的绝对值为|a|,表示数a与0之间的距离,计算公式如下:若a ≥ 0 ,则|a| = a若a < 0 ,则|a| = -a例如,|5| = 5,|-3| = 3,|0| = 0。
绝对值的本质是将一个数的正负情况抹去,只关注它与零之间的距离。
二、绝对值不等式的定义绝对值不等式是指将绝对值与不等式相结合,表示一个数与另一个数之间的关系。
绝对值不等式的一般形式为:|a - b| < c其中a、b、c为实数,且c > 0。
这种不等式的含义是,表示a与b之间的距离小于c。
例如,|x - 2| < 3,表示x与2之间的距离小于3。
三、绝对值不等式的求解方法要解决绝对值不等式,我们需要掌握一些基本的求解技巧。
1. 消去绝对值符号当绝对值不等式中只含有一个绝对值符号时,我们可以通过判断绝对值内部的值的范围来消去绝对值符号。
例如,对于不等式|2x - 3| < 5,我们可以考虑两种情况:当2x - 3 ≥ 0时,|2x - 3| = 2x - 3,原不等式变为2x - 3 < 5,解得2x < 8,x < 4。
当2x - 3 < 0时,|2x - 3| = -(2x - 3),原不等式变为-(2x - 3) < 5,解得2x > -2,x > -1。
综合以上情况可得,x的取值范围为-1 < x < 4。
2. 利用绝对值的性质绝对值有一个重要的性质:|a - b| ≤ c等价于 -c ≤ a - b ≤ c。
例如,对于不等式|3x - 1| ≤ 2,我们可以利用这个性质进行求解:-2 ≤ 3x - 1 ≤ 2,-1 ≤ 3x ≤ 3,-1/3 ≤ x ≤ 1。
绝对值不等式的解法最全PPT

在每个区间上将原不等式转化为不含绝对值的不等式而解之, ③通过构成函数,利用函数的图象,体现了函数与方程的思想,从中可以发现,正确求出函数的零点并画出函数图象(有时需要考察函
数的单调性)是解题的关键.
(2)若不等体式f(x现)≤0的了解集分为{类x|x≤讨-1}论,求a思的值想. ,从中可以发现,以绝对值的“零点”
∴数轴上,点A1和B1之间的任何一点,到点A,B 的距离之和都小于5,
而A1的左边或B1的右边的任何一点,到点A,B 的距离之和都大于5,
课前探究学习
课堂讲练互动
例 2 . 解 不 等 式 |x2 5 x|6 .
解 : 原 不 等 式 6 x 2 5 x 6
x2
x
2
5x 5x
6 6
xx2 2 5 5xx 6 6 0 0 x12或 xx63
1x2 或 3x6 ,
原 不 等 式 的 解 集 为 ( 1 ,2 )( 3 ,6 ) .
xx 54或 或 xx 11或 1 1 xx 34
x 1 ,或 x 5 , 或 1 x 3 ,
原 不 等 式 的 解 集 为 { x |x 1 , 或 1 x 3 , 或 x 5 } .
课前探究学习
课堂讲练互动
例 3 . 解 不 等 式 |x 2 3 x 4 | x 1 .
变 式 练 习 : 解 不 等 式 1 |3 x 4 | 6 .
答 案 :[10,5) (1,2]
3 3 3 课前探究学习
课堂讲练互动
例 3 . 解 不 等 式 |x 2 3 x 4 | x 1 .
解 1 : 原 不 等 式 x x2 2 3 3 x x 4 4 x 0 1 或 x2 ( x2 3 x 3 x 4 4 ) 0 x 1
绝对值函数和绝对值不等式

绝对值函数和绝对值不等式典型例题:【过关习题4】1.【2018年学考选考十校联盟,☆☆】已知a,b是实数,则“|a|≤1且|b|≤1”是“|a+b|+|a-b|≤2”的.A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.【2018年绍兴高三适应性考试,,☆☆】已知a>0,函数f(x)=|x2+|x-a|-3|在区间[-1,1]上的最大值是2,则a=.3.【2018年温州二模,17,,☆☆☆】已知f(x)=x2-ax,|f(f(x))|≤1在[1,2]上恒成立,则实数a的最大值为.4.【2017年绍兴诸暨二模,,☆☆☆☆】已知函数f(x)=|x2+ax+b|在区间[0,c]内的最大值为M(a,b∈R,c>0为常数)且存在实数a,b,使得M取最小值2,则a+b+c=.5.【☆☆】设正实数x,y,则|x-y|+的最小值为.6.【2017年杭州二模,10,☆☆】设函数f(x)=x2+ax+b(a、b∈R)的两个零点为x1、x2,若|x1|+|x2|≤2,则.A.|a|≥1B.|b|≤1C.|a+2b|≥2D.|a+2b|≤27.【2017年浙江4月份学考,☆☆】已知a,b∈R,a≠1,则|a+b|+的最小值为.8.【2017年浙江绍兴市柯桥中学5月质检,8,☆☆】已知x,y∈R,则.A.若|x2+y|+|x-y2|≤1,则B.若|x2-y|+|x-y2|≤1,则C.若|x+y2|+|x2-y|≤1,则D.若|x+y2|+|x2+y|≤1,则9.【2016年浙江高考,8,☆☆☆】已知实数a、b、c,下面四个选项中正确的是.A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B.若|a2+b+c|+|a2+b-c|≤1,则a2+b2+c2<100C.若|a+b+c2|+|a+b-c2|≤1,则a2+b2+c2<100D.若|a2+b+c|+|a+b2-c|≤1,则a2+b2+c2<10010.【2017年杭州高级中学最后一模,17,☆☆】设实数x,y,z满足则|x|+|y|+|z|的最大值为.11.【2017年浙江名校协作体,7,☆】设f(x)=|2x-1|,若f(x)≥对任意的a≠0恒成立,则x的取值范围为.12.【2016年浙江样卷,☆】已知f(x)=ax2+bx+c,a、b、c∈R,且a≠0,记M(a,b,c)为|f(x)|在[0,1]上的最大值,则的最大值是.13.【☆☆】设函数f(x)=|x2+ax+b|,若对任意的实数a、b,总存在x0∈[0,4]使得f(x0)≥m成立,则实数m的取值范围是.14.【2017年浙江缙云、富阳、长兴联考,☆☆☆】已知函数f(x)=-x3-3x2+x,记M(a,b)为函数g(x)=|ax+b-f(x)|(a>0,b∈R)在[-2,0]上的最大值,则M(a,b)的最小值为.15.【2017年杭州一模,9,☆☆☆】设函数f(x)=x2+ax+b,记M为函数y=|f(x)|在[-1,1]上的最大值,N为|a|+|b|的最大值,则.A.若M=,则N=3B.若M=,则N=3C.若M=2,则N=3D.若M=3,则N=316.【2017年诸暨,☆☆☆】设函数f(x)=|ax+2+b|,若对任意的x∈[0,4],函数f(x)≤恒成立,则a+2b=.17.【浙江省绍兴市2017届高三二模,17,☆☆☆】已知对任意实数x都有|a cos2x+b sin x+c|≤1恒成立,则|a sin x+b|的最大值为.18.【浙江省嘉兴市2016届高三教学质量测试(二),14,☆☆】设max{a,b}=,已知x,y∈R,m+n=6,则F=max的最小值为.19.【☆☆】已知f(x)=ax2+bx+c(a≠0),若对任意的|x|≤1,都有|f(x)|≤1,则|a|+|b|+|c|的最大值为.20.【2014年湖南高考,☆☆】在直角平面坐标系xOy中,O为原点,A(-1,0),B(0,),C(3,0),动点D满足||=1,则|++|的最大值为.21.【浙江省2017年预赛,10,☆☆☆】已知f(x)=若方程f(x)+2+|f(x)-2|-2ax-4=0有三个不等的实数根x1,x2,x3,且x1<x2<x3,若x3-x2=2(x2-x1),则a=.22.【2006年辽宁,☆】已知函数f(x)=(sin x+cos x)-|sin x-cos x|,则f(x)的值域为.23.【2008年江西,☆】函数y=tan x+sin x-|tan x-sin x|在区间内的图像是.24.【浙江省绍兴市2015年高三教学质量调测,15,☆☆☆】当且仅当x∈(a,b)∪(c,d)(b≤c)时,函数f(x)=2x2+x+2的图像在函数g(x)=|2x+1|+|x-t|的下方,则b-a+d-c的取值范围为. 25.【2016高考浙江文数,☆☆】已知平面向量a,b,|a|=1,|b|=2,a·b=1.若e为平面单位向量,则|a·e|+|b·e|的最大值是______.26.【2014年四川预赛,9,☆☆】已知a、b为实数,对任何满足0≤x≤1的实数x,都有|ax+b|≤1成立,则|20a+14b|+|20a-14b|的最大值是.27.【2014年黑龙江预赛,14,☆☆】已知f(x)=g(x)=|x-k|+|x-1|,若对任意的x1,x2∈R,都有f(x1)≤g(x2)成立,则实数k的取值范围为.28.【2014年全国联赛,3,☆☆】若函数f(x)=x2+a|x-1|在[0,+∞)上单调递增,则实数a的取值范围是.29.【2015年湖北预赛,1,☆☆】若对任意实数x,|x+a|+|x+1|≤2a恒成立,则实数a的最小值为.30.【2016年山东预赛,1,☆☆☆】方程x=|x-|x-6||的解为.31.【2016年陕西预赛,12,☆☆】设x∈R,则函数f(x)=|2x-1|+|3x-2|+|4x-3|+|5x-4|的最小值为.32.【2016年浙江预赛,11,☆☆☆】设a∈R,方程||x-a|-a|=2恰有三个不同的实数根,则a=.33.【1982年全国,4,☆☆】由曲线|x-1|+|y-1|=1确定的曲线所围成的图形的面积是.A.1B.2C.πD.434.【2017年江苏预赛,5,,☆☆】定义区间[x1,x2]的长度为x2-x1.若函数y=|log2x|的定义域为[a,b],值域为[0,2],则区间[a,b]的长度的最大值和最小值的差为.35.【2018年浙江预赛,8,☆】设f(x)=|x+1|+|x|-|x-2|,则f(f(x))+1=0有个不同的解.36.【2015年全国,6,☆☆】在平面直角坐标系xOy中,点集K={(x,y)|(|x|+3|y|-6)(3|x|+|y|-6)≤0}所对应的平面区域的面积为.37.【2008年湖南预赛,9,☆☆☆】在平行直角坐标系中,定义点P(x1,y1),Q(x2,y2)之间的“直角距离”为d(P,Q)=|x1-x2|+|y1-y2|.若C(x,y)到点A(1,3)、B(6,9)的“直角距离”相等,其中实数x、y满足0≤x≤10,0≤y≤10,则所有满足条件点C的轨迹的长度之和为.38.【2014年湖北预赛,4,☆☆】在直角坐标系中,曲线|x-1|+|x+1|+|y|=3围成的图形的面积是.39.【2017年金华十校期末调研考试,9,☆☆】设x、y∈R,下列不等式成立的是.A.1+|x+y|+|xy|≥|x|+|y|B.1+2|x+y|≥|x|+|y|C.1+2|xy|≥|x|+|y|D.|x+y|+2|xy|≥|x|+|y|40.【2017年绍兴市高三教学质量调测,9,☆☆☆】记min{x,y}=设f(x)=min{x2,x3},则.A.存在t>0,|f(t)+f(-t)|>f(t)-f(-t)B.存在t>0,|f(t)-f(-t)|≥f(t)-f(-t)C.存在t>0,|f(1+t)+f(1-t)|>f(1+t)+f(1-t)D.存在t>0,|f(1+t)-f(1-t)|>f(1+t)-f(1-t)41.【浙江省2016届高三下学期第二次五校联考(理),18,☆☆☆】已知函数f(x)=ax2+bx+c,g(x)=c|x|+bx+a,对任意x∈[-1,1],|f(x)|≤.(I)求|f(2)|的取值范围;(II)证明:对任意的x∈[-1,1],都有|g(x)|≤142.【浙江省嘉兴市2016届高三期末考试,20,☆☆☆】已知函数f(x)=-x2+2bx+c,,设函数g(x)=|f(x)|在区间[-1,1]上的最大值为M.(I)若b=2,试求出M;(II)若M≥k对任意的b,c恒成立,试求出k的最大值.43.【2016四川预赛,16,☆☆☆☆】已知a为实数,函数f(x)=|x2-ax|-ln x,请讨论函数f(x)的单调性.。
绝对值不等式

绝对值不等式重点:形如|ax+b|<c,|ax+b|>c(c>0)的不等式.难点:应用数形结合的思想解不等式,在解决含有字母系数的不等式时,如何进行分类讨论.例1.解下列关于x的不等式:<1>|x|<2<2>|x|<a<3>|x-3|<2<4>|2-3x|>4分析:解含有绝对值号的不等式关键问题是如何去掉绝对值号,从代数形式考虑可利用绝对值的定义,从几何意义入手可利用数轴上点的距离,如果再深入考虑还可利用函数图象去解决问题.解:<1>|x|<2可化为下面两个不等式组:①或②①的解为0≤x<2 ②的解为-2<x<0∴|x|<2的解为-2<x<2.或从绝对值的几何意义去考虑:|x|<2,即到原点距离小于2的所有点, ∴|x|<2的解为:-2<x<2.<2>当a>0时,|x|<a的解为:-a<x<a.当a=0时,|x|<a无解. 当a<0时,|x|<a无解. ∴原不等式的解当a>0时,为-a<x<a. 当a≤0时,为空集.<3>由原不等式可得:-2<x-3<2 同加3得:1<x<5.<4>由原不等式可得:2-3x>4或2-3x<-4. 解得原不等式的解为:x<-或x>2.小结:例1中从|x|<2到|x|<a,应注意|x|<2中2所能代表的一类数,将2换成a以后,右边变成了一个代数式,可代表任意实数,这时由|x|<2所得结论能否推广到|x|<a,是必须考虑的问题.有些学生认为a≤0时无解就只写a>0时的情况即可,应该认识到无解也是不等式的解的一种情况.另外由|x|<a到|x-3|<2,必须树立换元的思想,通过换元将复杂形式化为简单的形式,通过换元又可将未知的问题转化为已知问题去解决.例1中的几个问题若换个角度从函数图象去考虑也可得到如下解法.解:<1>欲解|x|<2. 作出y=|x|的图象,再作出直线y=2交y=|x|图象于点A,B.此时|x|<2的解即y=|x|的纵坐标小于2时的横坐标的取值范围.将y=2代入y=|x|可求出A(-2,2)B(2,2). ∴|x|<2的解为-2<x<2.<2><3>略. <4>欲解|2-3x|>4. 作出y=|2-3x|图象, 作出y=4交y=|2-3x|图象于A,B两点.要求|2-3x|>4的解即y=|2-3x|图象的纵坐标大于4时的横坐标的取值.将y=4代入y=|2-3x|求出A(-,4)B(2,4). ∴原不等式的解为:x<-或x>2.注:虽然初三学过一些函数及其图象的知识,但在解决新问题时能够应用这些函数及图象知识,对刚入高一的学生而言比较困难,但数形结合的思想,函数的思想是非常重要的数学思想方法,应逐步渗透.例2.解下列关于x的不等式:<1>|2x-1|<a<2>|ax-2|≤1解:<1>①当a>0时,原不等式化为:-a<2x-1<a 解得:<x<②当a=0时,无解. ③当a<0时,无解. ∴当a>0时,原不等式的解<x<. a≤0时,原不等式无解.<2>原不等式化为:-1≤ax-2≤1, 同加2得:1≤ax≤3. ①当a>0时,≤x≤②当a=0时,无解.③当a<0时, ≤x≤.小结:解含有字母系数的不等式需要分情况讨论,尤其要注意最后分情况表示解时,有些可以合并成一个形式表达,并且讨论时不要有遗漏,也不要有重复现象出现.思考:对于例2中两个问题应用数形结合的方法应如何解决.例3.解不等式:|x-3|+|x+2|>6.分析:<1>解绝对值不等式关键问题是去绝对值号,基本方法之一是应用定义化为同解的不等式组.<2>要去掉两个绝对值号,应分别考虑两个绝对值内式子的符号,其关键是两个绝对值号内式子取零时x的值,这两个值是两个分界点.<3>两个不同的分界点的x值,将实数轴上的点分为三段,在每一段上都可以去掉两个绝对值号.解:原不等式可化为下面三个不等式组: s①或②③不等式组①的解为:x<-. 不等式组②的解为:无解. 不等式组③的解为:x>.注:<1>原不等式的解是不等式组①②③三个解的并,即三个不等式组的解之间用“或”联系.<2>有时学生在分情况去绝对值号时常写成以下形式: 当x<-2时,-(x-3)-(x+2)>6,∴x<-.容易忽略x<-2这个条件,即两不等式之间用“且”来联系.<3>此不等式也可用数轴上的点的距离即绝对值几何意义去解.只需将|x-3|和|x+2|分别看到数轴上点到3和到-2两点的距离,所求|x-3|+|x+2|>6的解即到3和到-2两点距离之和大于6的点的x值范围.例4.如果关于x的不等式|ax+1|≤b的解是-≤x≤,求a,b的取值.解:当b≤0时,|ax+1|≤b无解. 当b>0时, |ax+1|≤b化为-b≤ax+1≤b. 则有:-1-b≤ax≤b-1.<1>当a>0时,≤x≤. ∵原不等式解为-≤x≤.则有: 解得: 与b>0,a>0不符,舍去.<2>当a<0时, ≤x≤. 由已知则有: 解得:<3>当a=0时,|ax+1|≤b,只需b≥1时,x为任意实数与已知-≤x≤不符.∴a=-2,b=2.本周小结:本周主要内容是含绝对值的不等式,应掌握基本方法,注重数形结合.本周参考练习:解下列关于x的不等式:<1>3|2x-1|<|2x-1|+<2>(1+|x|)(|2x+1|-4)>0<3>≤0<4>≥8<5>|x-2|+|x+2|<10.本周练习参考答案:<1>分析:首先移项合并,然后求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5讲 绝对值不等式1.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集 a >0 a =0 a <0 |x |<a {x |-a <x <a } ∅∅ |x |>a{x |x >a 或x <-a }{x |x ∈R 且x ≠0}R①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c . 2.绝对值三角不等式定理1:如果a ,b 是实数,那么|a +b |≤|a |+|b |.当且仅当ab ≥0时,等号成立. 定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |.当且仅当(a -b )(b -c )≥0时,等号成立.上述定理还可以推广得到以下几个不等式: (1)|a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |; (2)||a |-|b ||≤|a +b |≤|a |+|b |; (3)||a |-|b ||≤|a -b |≤|a |+|b |.[疑误辨析]判断正误(正确的打“√”,错误的打“×”) (1)若|x |>c 的解集为R ,则c ≤0.( ) (2)不等式|x -1|+|x +2|<2的解集为∅.( )(3)对|a +b |≥|a |-|b |当且仅当a >b >0时等号成立.( ) (4)对|a |-|b |≤|a -b |当且仅当|a |≥|b |时等号成立.( ) (5)对|a -b |≤|a |+|b |当且仅当ab ≤0时等号成立.( ) 答案:(1)× (2)√ (3)× (4)× (5)√ [教材衍化]1.(选修4-5P20T7改编)不等式3≤|5-2x |<9的解集为________.解析:由题意得⎩⎪⎨⎪⎧|2x -5|<9,|2x -5|≥3,即⎩⎪⎨⎪⎧-9<2x -5<9,2x -5≥3或2x -5≤-3, 解得⎩⎪⎨⎪⎧-2<x <7,x ≥4或x ≤1,所以不等式的解集为(-2,1]∪[4,7). 答案:(-2,1]∪[4,7)2.(选修4-5P20T8改编)不等式|x -1|-|x -5|<2的解集是________.解析:①当x ≤1时,原不等式可化为1-x -(5-x )<2,所以-4<2,不等式恒成立,所以x ≤1;②当1<x <5时,原不等式可化为x -1-(5-x )<2,所以x <4,所以1<x <4; ③当x ≥5时,原不等式可化为x -1-(x -5)<2,该不等式不成立. 综上,原不等式的解集为{x |x <4}. 答案:{x |x <4} [易错纠偏](1)含参数的绝对值不等式讨论不清; (2)存在性问题不能转化为最值问题求解.1.若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =________.解析:因为|kx -4|≤2,所以-2≤kx -4≤2,所以2≤kx ≤6.因为不等式的解集为{x |1≤x ≤3},所以k =2.答案:22.若关于x 的不等式|a |≥|x +1|+|x -2|存在实数解,则实数a 的取值范围是________. 解析:由于|x +1|+|x -2|≥|(x +1)-(x -2)|=3,所以|x +1|+|x -2|的最小值为3.要使原不等式有解,只需|a |≥3,则a ≥3或a ≤-3. 答案:(-∞,-3]∪[3,+∞)绝对值不等式的解法(1)(2020·嘉兴市高考模拟)已知f (x )=x -2,g (x )=2x -5,则不等式|f (x )|+|g (x )|≤2的解集为________;|f (2x )|+|g (x )|的最小值为________.(2)解不等式|x +3|-|2x -1|<x2+1.【解】 (1)因为f (x )=x -2,g (x )=2x -5, 所以|f (x )|+|g (x )|≤2, 即|x -2|+|2x -5|≤2,x ≥52时,x -2+2x -5≤2,解得52≤x ≤3, 2<x <52时,x -2+5-2x ≤2,解得x ≥1,即2<x <52,x ≤2时,2-x +5-2x ≤2,解得x ≥53,即53≤x ≤2.综上,不等式的解集是[53,3];|f (2x )|+|g (x )|=|2x -2|+|2x -5|≥|2x -2-2x +5|=3,故|f (2x )|+|g (x )|的最小值是3. 故填[53,3],3.(2)①当x <-3时,原不等式化为-(x +3)-(1-2x )<x2+1,解得x <10,所以x <-3.②当-3≤x <12时,原不等式化为(x +3)-(1-2x )<x 2+1,解得x <-25,所以-3≤x <-25.③当x ≥12时,原不等式化为(x +3)-(2x -1)<x2+1,解得x >2,所以x >2.综上可知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-25或x >2.|x -a |+|x -b |≥c (或≤c )型不等式的解法(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(-∞,a ],(a ,b ],(b ,+∞)(此处设a <b )三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集.(2)几何法:利用|x -a |+|x -b |>c (c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体,|x -a |+|x -b |≥|x -a -(x -b )|=|a -b |.(3)图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.设函数f (x )=|x -a |.(1)当a =2时,解不等式f (x )≥7-|x -1|;(2)若f (x )≤1的解集为[0,2],求a 的值. 解:(1)当a =2时,不等式为|x -2|+|x -1|≥7,所以⎩⎪⎨⎪⎧x <1,2-x +1-x ≥7或⎩⎪⎨⎪⎧1≤x ≤2,2-x +x -1≥7或⎩⎨⎧x >2x -2+x -1≥7, 所以不等式的解集为(-∞,-2]∪[5,+∞). (2)f (x )≤1即|x -a |≤1,解得a -1≤x ≤a +1,而f (x )≤1的解集是[0,2],所以⎩⎪⎨⎪⎧a -1=0a +1=2,解得a =1.绝对值不等式性质的应用(1)(2020·宁波市九校联考)已知f (x )=|x +1x -a |+|x -1x-a |+2x -2a (x >0)的最小值为32,则实数a =________.(2)(2020·宁波效实中学高三模拟)确定“|x -a |<m 且|y -a |<m ”是“|x -y |<2m ”(x ,y ,a ,m ∈R )的什么条件.【解】 (1)f (x )=|x +1x -a |+|x -1x -a |+2x -2a ≥|(x +1x -a )-(x -1x -a )|+2x -2a=|2x |+2x -2a =2x +2x -2a ≥22x·2x -2a =4-2a . 当且仅当2x =2x ,即x =1时,上式等号成立.由4-2a =32,解得a =54.故填54.(2)因为|x -y |=|(x -a )-(y -a )|≤|x -a |+|y -a |<m +m =2m , 所以“|x -a |<m 且|y -a |<m ”是“|x -y |<2m ”的充分条件.取x =3,y =1,a =-2,m =2.5,则有|x -y |=2<5=2m ,但|x -a |=5,不满足|x -a |<m=2.5,故“|x-a|<m且|y-a|<m”不是“|x-y|<2m”的必要条件.故为充分不必要条件.两数和与差的绝对值不等式的性质(1)对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.(2)该定理可强化为||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.1.若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是________.解析:由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,所以只需a≤3即可.故a的取值范围为(-∞,3].答案:(-∞,3]2.(2020·温州模拟)已知a,b,c∈R,若|a cos2x+b sin x+c|≤1对x∈R成立,则|a sin x +b|的最大值为________.解析:由题意,设t=sin x,t∈[-1,1],则|at2-bt-a-c|≤1恒成立,不妨设t=1,则|b+c|≤1;t=0,则|a+c|≤1,t=-1,则|b-c|≤1,若a,b同号,则|a sin x+b|的最大值为|a+b|=|a+c+b-c|≤|a+c|+|b-c|≤2;若a,b异号,则|a sin x+b|的最大值为|a-b|=|a+c-b-c|≤|a+c|+|b+c|≤2;综上所述,|a sin x+b|的最大值为2.答案:2绝对值不等式的综合应用与证明(2020·杭州学军中学高三模拟)已知函数f(x)=ax2+bx+c(a,b,c∈R),当x∈[-1,1]时,|f(x)|≤1.(1)求证:|b|≤1;(2)若f(0)=-1,f(1)=1,求实数a的值.【解】(1)证明:由题意知f(1)=a+b+c,f (-1)=a -b +c , 所以b =12[f (1)-f (-1)].因为当x ∈[-1,1]时,|f (x )|≤1, 所以|f (1)|≤1,|f (-1)|≤1, 所以|b |=12|f (1)-f (-1)|≤12[|f (1)|+|f (-1)|]≤1. (2)由f (0)=-1,f (1)=1可得c =-1,b =2-a , 所以f (x )=ax 2+(2-a )x -1.当a =0时,不满足题意,当a ≠0时, 函数f (x )图象的对称轴为x =a -22a ,即x =12-1a. 因为x ∈[-1,1]时,|f (x )|≤1,即|f (-1)|≤1,所以|2a -3|≤1,解得1≤a ≤2. 所以-12≤12-1a ≤0,故|f ⎝⎛⎭⎫12-1a |= |a ⎝⎛⎭⎫12-1a 2+(2-a )⎝⎛⎭⎫12-1a -1|≤1. 整理得|(a -2)24a+1|≤1,所以-1≤(a -2)24a +1≤1,所以-2≤(a -2)24a ≤0,又a >0,所以(a -2)24a ≥0,所以(a -2)24a=0,所以a =2.(1)研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,转化为分段函数,然后数形结合解决是常用的思维方法.(2)对于求y =|x -a |+|x -b |或y =|x -a |-|x -b |型的最值问题利用绝对值三角不等式更方便.形如y =|x -a |+|x -b |的函数只有最小值,形如y =|x -a |-|x -b |的函数既有最大值又有最小值.(3)证明含有绝对值的不等式的思路:①充分利用含绝对值的不等式的性质;②证题过程还应考虑添、拆项的技巧,以上两步骤用活,此类问题可快速破解.1.设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A .(1)求a 的值;(2)求函数f (x )=|x +a |+|x -2|的最小值. 解:(1)因为32∈A ,且12∉A .所以⎪⎪⎪⎪32-2<a , 且⎪⎪⎪⎪12-2≥a , 解得12<a ≤32,又因为a ∈N *,所以a =1.(2)因为f (x )=|x +1|+|x -2|≥|(x +1)-(x -2)|=3. 当且仅当(x +1)(x -2)≤0即-1≤x ≤2时取到等号, 所以f (x )的最小值为3.2.设f (x )=x 2-x +b ,|x -a |<1,求证:|f (x )-f (a )|<2(|a |+1). 证明:f (x )-f (a )=x 2-x -a 2+a =(x -a )(x +a -1),所以|f (x )-f (a )|=|(x -a )(x +a -1)|=|x -a |·|x +a -1|<|x +a -1|=|x -a +2a -1|≤|x -a |+|2a -1|≤|x -a |+2|a |+1<2|a |+2=2(|a |+1).所以|f (x )-f (a )|<2(|a |+1).[基础题组练]1.(2020·嘉兴期中)不等式1≤|2x -1|<2的解集为( ) A.⎝⎛⎭⎫-12,0∪⎣⎡⎭⎫1,32 B.⎝⎛⎭⎫-12,32 C.⎝⎛⎦⎤-12,0∪⎣⎡⎭⎫1,32 D .(-∞,0]∪[1,+∞)解析:选C.由题意得,⎩⎪⎨⎪⎧-2<2x -1<22x -1≥1或2x -1≤-1,解得:-12<x ≤0或1≤x <32,故不等式的解集是⎝⎛⎦⎤-12,0∪⎣⎡⎭⎫1,32,故选C. 2.(2020·温州高三第二次适应性考试)不等式|x -1|+|x +1|<4的解集是( ) A .{x |x >-2} B .{x |x <2} C .{x |x >0或x <-2}D .{x |-2<x <2}解析:选D.根据题意,原不等式等价于⎩⎪⎨⎪⎧x ≤-1,1-x -x -1<4或⎩⎪⎨⎪⎧-1<x ≤1,1-x +x +1<4或⎩⎪⎨⎪⎧x >1,x -1+x +1<4,解之取并集即得原不等式的解集为{x |-2<x <2}.3.(2020·绍兴高三质量检测)对任意实数x ,若不等式|x +2|+|x +1|>k 恒成立,则实数k 的取值范围是( )A .(-∞,0)∪[2,+∞)B .[-2,-1]∪(0,+∞)C .(-∞,1)D .(-∞,1]解析:选C.因为|x +2|+|x +1|≥|x +2-x -1|=1,所以当且仅当k <1时,不等式|x +2|+|x +1|>k 恒成立.4.(2020·绍兴市诸暨市高考模拟)已知f (x )=x 2+3x ,若|x -a |≤1,则下列不等式一定成立的是( )A .|f (x )-f (a )|≤3|a |+3B .|f (x )-f (a )|≤2|a |+4C .|f (x )-f (a )|≤|a |+5D .|f (x )-f (a )|≤2(|a |+1)2解析:选B.因为f (x )=x 2+3x ,所以f (x )-f (a )=x 2+3x -(a 2+3a )=(x -a )(x +a +3),所以|f (x )-f (a )|=|(x -a )(x +a +3)|=|x -a ||x +a +3|,因为|x -a |≤1,所以a -1≤x ≤a +1,所以2a +2≤x +a +3≤2a +4,所以|f (x )-f (a )|=|x -a ||x +a +3|≤|2a +4|≤2|a |+4,故选B.5.(2020·绍兴市柯桥区高三期中)已知x ,y ∈R ,( ) A .若|x -y 2|+|x 2+y |≤1,则(x +12)2+(y -12)2≤32B .若|x -y 2|+|x 2-y |≤1,则(x -12)2+(y -12)2≤32C .若|x +y 2|+|x 2-y |≤1,则(x +12)2+(y +12)2≤32D .若|x +y 2|+|x 2+y |≤1,则(x -12)2+(y +12)2≤32解析:选B.对于A ,|x -y 2|+|x 2+y |≤1,由(x +12)2+(y -12)2≤32化简得x 2+x +y 2-y ≤1,二者没有对应关系;对于B ,由(x 2-y )+(y 2-x )≤|x 2-y |+|y 2-x |=|x -y 2|+|x 2-y |≤1,所以x 2-x +y 2-y ≤1,即(x -12)2+(y -12)2≤32,命题成立;对于C ,|x +y 2|+|x 2-y |≤1,由(x +12)2+(y +12)2≤32化简得x 2+x +y 2+y ≤1,二者没有对应关系;对于D ,|x +y 2|+|x 2+y |≤1,化简(x -12)2+(y +12)2≤32得x 2-x +y 2+y ≤1,二者没有对应关系.故选B.6.不等式|x -1|+|x +2|≥5的解集为________.解析:由⎩⎪⎨⎪⎧x ≤-2,-(x -1)-(x +2)≥5得x ≤-3;由⎩⎪⎨⎪⎧-2<x <1,-(x -1)+(x +2)≥5得无解; 由⎩⎪⎨⎪⎧x ≥1,(x -1)+(x +2)≥5得x ≥2. 即所求的解集为{x |x ≤-3或x ≥2}. 答案:{x |x ≤-3或x ≥2}7.对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为________. 解析:|x -2y +1|=|(x -1)-2(y -1)|≤|x -1|+|2(y -2)+2|≤1+2|y -2|+2≤5,即|x -2y +1|的最大值为5.答案:58.(2020·温州市高三高考模拟)若关于x 的不等式|x |+|x +a |<b 的解集为(-2,1),则实数对(a ,b )=________.解析:因为不等式|x |+|x +a |<b 的解集为(-2,1),所以⎩⎪⎨⎪⎧2+|-2+a |=b 1+|1+a |=b,解得a =1,b =3.答案:(1,3)9.(2020·绍兴市柯桥区高三模拟)对任意x ∈R 不等式x 2+2|x -a |≥a 2恒成立,则实数a 的取值范围是________.解析:因为不等式x 2+2|x -a |≥a 2对任意的x ∈R 恒成立, ①x ≥a 时,(x +a )(x -a )+2(x -a )≥0, (x -a )(x +a +2)≥0,因为x -a ≥0,因此只需x +a +2≥0,x ≥-(a +2), -(a +2)≤a ,解得a ≥-1. ②x <a 时,(x +a )(x -a )-2(x -a )≥0, (x -a )(x -2+a )≥0,因为x -a <0,只需x ≤2-a ,2-a ≥a ,解得a ≤1. 综上所述:-1≤a ≤1. 答案:[-1,1]10.(2020·宁波市六校联盟模拟)已知函数f (x )=|x +a |+|x -2|.当a =-4时,不等式f (x )≥6的解集为________;若f (x )≤|x -3|的解集包含[0,1],则实数a 的取值范围是________.解析:当a =-4时,f (x )≥6,即|x -4|+|x -2|≥6,即⎩⎨⎧x ≤24-x +2-x ≥6或⎩⎨⎧2<x <44-x +x -2≥6或⎩⎨⎧x ≥4x -4+x -2≥6,解得x ≤0或x ≥6.所以原不等式的解集为(-∞,0]∪[6,+∞). 由题可得f (x )≤|x -3|在[0,1]上恒成立. 即|x +a |+2-x ≤3-x 在[0,1]上恒成立,即-1-x ≤a ≤1-x 在[0,1]上恒成立.即-1≤a ≤0. 答案:(-∞,0]∪[6,+∞) [-1,0]11.若函数f (x )=|x +1|+2|x -a |的最小值为5,求实数a 的值.解:由于f (x )=|x +1|+2|x -a |,当a >-1时,f (x )=⎩⎪⎨⎪⎧-3x +2a -1,x <-1,-x +2a +1,-1≤x ≤a ,3x -2a +1,x >a .作出f (x )的大致图象如图所示,由函数f (x )的图象可知f (a )=5,即a +1=5,所以a =4.同理,当a ≤-1时,-a -1=5,所以a =-6.所以实数a 的值为4或-6.12.已知函数f (x )=|x -3|-|x -a |.(1)当a =2时,解不等式f (x )≤-12; (2)若存在实数x ,使得不等式f (x )≥a 成立,求实数a 的取值范围.解:(1)因为a =2,所以f (x )=|x -3|-|x -2|=⎩⎪⎨⎪⎧1,x ≤2,5-2x ,2<x <3,-1,x ≥3,所以f (x )≤-12等价于 ⎩⎪⎨⎪⎧x ≤2,1≤-12或⎩⎪⎨⎪⎧2<x <3,5-2x ≤-12或⎩⎪⎨⎪⎧x ≥3,-1≤-12,解得114≤x <3或x ≥3,所以不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥114. (2)由不等式的性质可知f (x )=|x -3|-|x -a |≤|(x -3)-(x -a )|=|a -3|,所以若存在实数x ,使得不等式f (x )≥a 成立,则|a -3|≥a ,解得a ≤32,所以实数a 的取值范围是⎝⎛⎦⎤-∞,32. [综合题组练]1.已知a ∈R ,函数f (x )=⎪⎪⎪⎪x +4x -a +a 在区间[1,4]上的最大值是5,则a 的取值范围是________.解析:因为x ∈[1,4],所以x +4x ∈[4,5],①当a ≤92时,f (x )max =|5-a |+a =5-a +a =5,符合题意;②当a >92时,f (x )max =|4-a |+a =2a -4=5,所以a =92(矛盾),故a 的取值范围是⎝⎛⎦⎤-∞,92. 答案:⎝⎛⎦⎤-∞,92 2.(2020·浙江省五校协作体联考)已知函数f (x )=|2x -a |+a .(1)若不等式f (x )≤6的解集为{x |-2≤x ≤3},求实数a 的值;(2)在(1)的条件下,若存在实数t ,使f ⎝⎛⎭⎫t 2≤m -f (-t )成立,求实数m 的取值范围.解:(1)由|2x -a |+a ≤6,得|2x -a |≤6-a ,所以a -6≤2x -a ≤6-a ,即a -3≤x ≤3,所以a -3=-2,所以a =1.(2)因为f ⎝⎛⎭⎫t 2≤m -f (-t ),所以|t -1|+|2t +1|+2≤m ,令y =|t -1|+|2t +1|+2,则y =⎩⎨⎧-3t +2,t ≤-12,t +4,-12<t <1,3t +2,t ≥1.所以y min =72,所以m ≥72. 3.(2020·杭州高考科目教学质检)已知函数f (x )=|x -4|+|x -a |(a <3)的最小值为2.(1)解关于x 的方程f (x )=a ;(2)若存在x ∈R ,使f (x )-mx ≤1成立,求实数m 的取值范围.解:(1)由f (x )=|x -4|+|x -a |≥|x -4-(x -a )|=|a -4|(当(x -4)(x -a )≤0时取等号),知|a -4|=2,解得a =6(舍去)或a =2.方程f (x )=a 即|x -4|+|x -2|=2,由绝对值的几何意义可知2≤x ≤4.(2)不等式f (x )-mx ≤1即f (x )≤mx +1,由题意知y =f (x )的图象至少有一部分不在直线y=mx +1的上方,作出对应的图象观察可知,m ∈(-∞,-2)∪⎣⎡⎭⎫14,+∞.4.(2020·温州校级月考)已知函数f (x )=x 2+|x -t |.(1)当t =1时,求不等式f (x )≥1的解集;(2)设函数f (x )在[0,2]上的最小值为h (t ),求h (t )的表达式.解:(1)当t =1时,f (x )=x 2+|x -1|.因为f (x )≥1,所以当x ≥1时,x 2+x -1≥1,所以x ≥1或x ≤-2.所以x ≥1.当x <1时,x 2-x +1≥1,所以x ≥1或x ≤0.所以x ≤0.综上,不等式的解集为{x |x ≥1或x ≤0}.(2)因为f (x )=x 2+|x -t |,x ∈[0,2],所以当t ≥2时,f (x )=x 2-x +t ,h (t )=f ⎝⎛⎭⎫12=t -14, 当t ≤0时,f (x )=x 2+x -t ,h (t )=f (0)=-t ,当0<t <2时,f (x )=⎩⎪⎨⎪⎧x 2-x +t ,x ∈[0,t ]x 2+x -t ,x ∈(t ,2]. 所以h (t )=⎩⎨⎧t -14,12≤t <2t 2,0<t <12. 所以h (t )=。