第九章材料的力学性能_材料科学基础
《材料科学基础》课件

THANKS
感谢观看
稳定性
材料在化学环境中保持其组成和结构的能力。
腐蚀性
材料与化学物质反应的能力,一些材料容易受到腐蚀。
活性
材料参与化学反应的能力和程度。
耐候性
材料在各种气候条件下的稳定性,如耐紫外线、耐风雨等。
材料的力学性质
弹性模量
描述材料抵抗弹性变形的能力。
硬度
材料表面抵抗被压入或划痕的能力。
韧性
材料吸收能量并抵抗断裂的能力。
材料科学的发展历程
总结词
概述材料科学的发展历程,包括重要的里程碑和代表 性人物。
详细描述
材料科学的发展历程可以追溯到古代,如中国的陶瓷和 青铜器制作,古埃及的石材加工等。然而,材料科学作 为一门独立的学科是在20世纪中期才开始形成的。在 这个时期,一些重要的里程碑包括开发出高温超导材料 、纳米材料和光电子材料等新型材料,这些材料的出现 极大地推动了科技的发展。同时,一些杰出的科学家如 诺贝尔奖得主也在这个领域做出了卓越的贡献。随着科 技的不断进步,材料科学的发展前景将更加广阔。
。
绿色材料与可持续发展
绿色材料
采用环保的生产方式,开发具有环保性能的新型材料,如可降解 塑料、绿色建材等。
节能减排
通过采用新型材料和技术,降低能源消耗和减少污染物排放,实现 节能减排的目标。
可持续发展
推动材料科学的发展,实现经济、社会和环境的协调发展,促进可 持续发展。
非晶体结构与性质
非晶体的结构特征
非晶体中的原子或分子的排列是无序的,不遵循长程有序的晶体 结构。
非晶体的物理和化学性质
非晶体的物理和化学性质与晶体不同,如玻璃态物质具有较好的化 学稳定性和机械强度。
材料力学性能课件

温度与环境因素
应变速率与加载路径
应变速率和加载路径对材料的力学响 应具有重要影响,特别是在动态加载 条件下。
温度、湿度、腐蚀等环境因素对材料 的强度和塑性也有影响。
03 材料的硬度与韧性
硬度定义与分类
硬度定义
硬度是指材料抵抗被压入或刻划的能力。它是材料表面局部区域抵抗变形或破裂 的能力。
硬度分类
塑性ห้องสมุดไป่ตู้类
根据塑性变形的性质,可分为延性、 展性、韧性等。
强度与塑性的关系
01
强度与塑性相互关联,塑性好的 材料通常强度也较高,但两者之 间并非完全正相关。
02
在一定条件下,材料的强度和塑 性可能存在此消彼长的关系。
强度与塑性的影响因素
材料成分与组织结构
材料的化学成分和微观组织结构对其 力学性能有显著影响。
冲击试验
通过冲击试样来测定材料的冲击韧性、断裂 韧性等参数,适用于评估材料的韧性和脆性 断裂行为。
D
02 材料的强度与塑性
强度定义与分类
强度定义
材料抵抗外力而不发生失效的能力。
强度分类
根据外力类型,可分为抗拉强度、抗压强度、抗剪强度等。
塑性定义与分类
塑性定义
材料在外力作用下发生不可逆变形的 能力。
材料力学性能的测试方法
A
拉伸试验
通过拉伸试样来测定材料的弹性模量、屈服强 度、抗拉强度等参数,是最常用的力学性能测 试方法之一。
压缩试验
通过压缩试样来测定材料的抗压强度、弹 性模量等参数,适用于脆性材料和塑性材 料的测试。
B
C
弯曲试验
通过弯曲试样来测定材料的抗弯强度、挠度 等参数,适用于评估材料的弯曲性能和稳定 性。
力学材料类知识点总结

力学材料类知识点总结力学材料是研究各种材料在受力作用下的力学性能的一个重要领域,包括金属材料、塑料材料、陶瓷材料、复合材料和生物材料等。
力学材料的研究对于材料工程、结构设计、材料制备具有重要的意义。
在这篇总结中,我们将介绍一些力学材料的基本知识点,包括材料的力学性能、材料的力学测试方法、材料的损伤与断裂、材料的应用等方面的内容。
1. 材料的力学性能材料的力学性能是指材料在受力作用下所表现出的力学特性及其与力学参数之间的关系。
主要包括材料的弹性性能、塑性性能、断裂性能、疲劳性能等。
材料的力学性能直接影响到材料的应用领域和使用寿命。
弹性性能:材料的弹性性能是指材料在受力作用下的变形能力。
当受力作用停止后,材料能够恢复到原始形状和尺寸。
弹性模量是衡量材料弹性性能的重要参数,不同的材料具有不同的弹性模量。
塑性性能:材料的塑性性能是指材料在受力作用下的变形能力。
当受力超过一定程度时,材料会发生塑性变形并无法完全恢复原态。
屈服强度和延伸率是衡量材料塑性性能的重要参数。
断裂性能:材料的断裂性能是指材料在受力作用下的抗断裂能力。
断裂韧性、断裂强度和断裂伸长率是衡量材料断裂性能的重要参数。
疲劳性能:材料的疲劳性能是指材料在受循环加载作用下的抗疲劳性能。
疲劳寿命、疲劳极限和疲劳裂纹扩展速率是衡量材料疲劳性能的重要参数。
2. 材料的力学测试方法力学测试是研究材料力学性能的重要手段,通常包括拉伸试验、压缩试验、弯曲试验、扭转试验、硬度测试、冲击试验等。
这些测试方法能够准确地评估材料的力学性能,并为材料的应用提供有效的数据支持。
拉伸试验:拉伸试验是测定材料拉伸强度、屈服强度、断裂伸长率等参数的常用试验方法。
通过拉伸试验得到的应力-应变曲线能够反映材料的弹性行为和塑性行为。
压缩试验:压缩试验是测定材料在压缩状态下的力学性能参数,如压缩强度、屈服强度等。
压缩试验能够评估材料在受压状态下的表现情况。
弯曲试验:弯曲试验是测定材料在弯曲状态下的力学性能参数,如抗弯强度、屈服强度、弯曲模量等。
材料力学性能课件

当应力低于σe 时,应力与试样的应变成正比,应力去除,变形消失,即 试样处于弹性变形阶段,σe 为材料的弹性极限,它表示材料保持完全弹 性变形的最大应力。
当应力超过σe 后,应力与应变之间的直线关系被破坏,并出现屈服
平台或屈服齿。如果卸载,试样的变形只能部分恢复,而保留一部分残
余变形,即塑性变形,这说明钢的变形进入弹塑性变形阶段。σs称为材
第四节 金属的断裂
磨损、腐蚀、断裂是机件的三种主要失效形式。 裂纹过程包括:裂纹形式与扩展。
一、断裂的类型 根据断裂前塑性变化大小分类:
(一)韧性断裂和脆性断裂
韧性断裂:指金属断裂前产生明显的宏观塑性变形的断裂,
这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断消 耗能量。
中、低强度钢的光滑圆柱试样在室温下的 静拉伸断裂是典型的韧性断裂。
料的屈服强度或屈服点,对于无明显屈服的金属材料,规定以产生0.2%
残余变形的应力值为其屈服极限。
当应力超过σs后,试样发生明显而均匀的塑性变形,若使试样的应
变增大,则必须增加应力值,这种随着塑性变形的增大,塑性变形抗力
不断增加的现象称为加工硬化或形变强化。当应力达到σb时试样的均匀
变形阶段即告终止,此最大应力σb称为材料的强度极限或抗拉强度,它
弹性模量
定义:当应变为一个单位时,弹性模量即为弹性应力,即 产生100%弹性变形时所需要的应力。
这个定义对金属来讲是没有任何意义的,这是因为金属材 料所能产生的弹性变形量是很小的。
在弹性变形阶段,大多数金属的应力与应变之间符合虎克 定律的正比关系。它表示材料在外载荷下抵抗弹性变形的 能力。
韧性断裂的宏观断口同时具有上述三个区域,而脆性断口纤 维区很小,剪切唇几乎没有。
材料科学基础I__第九章-2__(回复与再结晶)教学文稿

通过刃型位错的攀移和滑移,使同号刃型位错沿垂直于滑移面 的方向排列成小角度的亚晶界。此过程称为多边(形)化。
多晶体金属塑性变形时, 滑移通常是在许多互相交 截的滑移面上进行,产生 由缠结位错构成的胞状组 织。因此,多边化后不仅 所形成的亚晶粒小得多, 而且许多亚晶界是由位错 网组成的。
右图: a) 缠结位错 b) 位错线伸直 c) 位错网络 d)Hale Waihona Puke 大的稳定网络三、回复退火的应用
回复退火主要用作去除残余应力,使冷变形的金属件在基本 保持应变硬化状态的条件下,降低其内应力,以免变形或开裂, 并改善工件的耐蚀性。
例如,冷拉钢丝卷制弹簧,在卷成弹簧后要在250~300进行退 火,以降低内应力并使其定型。
1、金相法 以显微镜观察到第一个新晶粒或晶界因凸出形核而出现锯齿状
边缘的退火温度定为再结晶温度。适用于变形量<10~15%的金 属与合金。 2、硬度法
以硬度开始显著降低的温度定为再结晶温度。有时也采用软化 50%的退火温度定为再结晶温度。 3、完全再结晶法
工业生产中常采用经过大变形量(>70%)的冷变形金属,经过1 小时完全再结晶退火的最低温度定为再结晶温度。
可见,再结晶温度是靠实验测出来的。
对于纯金属的再结晶温度,可用经验公式计算: Tr=(0.35~0.4)Tm
公式使用条件:工业纯金属,大变形量,退火时间0.5~1小时。
五、影响再结晶的因素
1、温度
加热温度越高,再结晶速度越快,产生一定体积分数的再结 晶组织需要的时间越短。
2、变形程度
变形程度越大,储能越多, 再结晶驱动力越大,因此变形 程度越大,再结晶速度越快。
《材料的力学性能》课件

# 材料的力学性能 材料力学性能的概念以及其重要性。
简介
材料力学性能是指材料在受力或变形时所表现出的力学行为。具体包括弹性模量、硬度、抗拉强度和延伸率、 疲劳性能以及韧性等多个方面。
弹性模量
弹性模量是衡量材料在受力后恢复原状的能力。它的测量方法有多种,如张拉试验、压缩试验等。弹性模量的 应用广泛,可以用于材料的设计和优化。
硬度
硬度是材料抵抗外界物体对其表面产生塑性变形的能力。硬度的测量方法有 多种,如洛氏硬度、布氏硬度等。不同硬度对应不同材料类型,可以用于材 料的鉴定。
抗拉强度和延伸率
抗拉强度是材料抵抗外界拉伸力量的能力,延伸率表示材料在被拉伸后能够 变长的程度。抗拉强度和延伸率的测量方法有多种,广泛应用于材料的性能 评估和周期性荷载作用时的抗性能。疲劳性能的测量方法有多种,影响因素包括材料的 应力集中、引入缺陷等。预测和评估疲劳寿命对材料的可靠性设计至关重要。
韧性
韧性是材料在受力时能够吸收大量能量而不断变形的能力。韧性的测量方法 有多种,如冲击试验等。韧性的应用广泛,特别适用于需要抵抗冲击的工程 材料。
总结
材料力学性能是衡量材料质量和可靠性的重要指标。通过评估材料的弹性、 硬度、抗拉强度和延伸率、疲劳性能以及韧性等性能指标,可以为材料的选 择、设计和优化提供指导。展望未来,材料力学性能的发展趋势包括多功能 材料的设计和制备,以及对环境和能源的可持续性要求。
材料科学基础第九章复习资料西南石油大学北京工业大学版

材料科学基础第九章复习资料西南⽯油⼤学北京⼯业⼤学版材料科学基础第九章1.弹性模量:产⽣弹性形变时所需的应⼒,⼯程上表征材料对弹性变形的抗⼒。
2.滞弹性:在弹性范围内,应变落后于应⼒的⾏为称为滞弹性。
3.普弹性:陶瓷材料,⾦属材料及玻璃态⾼分⼦材料在较⼩负荷下⾸先发⽣的形变。
特征:1:应⼒与应变符合线性关系及胡克定律。
2:加上或去除应⼒时,应变都能瞬时达到平衡4.⾼弹性:特点是弹性模量⼩、形变量⼤,变性具有热效应,伸长时放热,回缩时吸热,且在⼀定条件下表现出明显的松弛效应。
5.内耗:由于应变滞后于应⼒,在适当频率的外⼒作⽤下,应⼒-应变曲线就变成了封闭回线,这⼀过程将产⽣不可逆的能量消耗,回线所包围的⾯积就是应⼒循环⼀周所消耗的能量,称内耗。
10.施密特定律:==式中称为取向因⼦,记作。
ON、OP、OT,都在同⼀平⾯上时,则有,当时=,滑移处于最有利的位置,称为软取向。
当,称为硬取向。
11.临界分切应⼒:能引起滑移或孪⽣所需要的最⼩分切应⼒。
12.多系滑移:由临界分切应⼒定律可知,当对⼀个晶体施加外⼒时,可能会有两个以上的滑移系上的分切应⼒同时满⾜的条件,⽽使各⾃滑移⾯上的位错同时启动,这种现象称为多系滑移。
13.交滑移:螺位错因柏⽒⽮量与位错线平⾏,滑移⾯有⽆限多个。
因此当螺位错在某⼀⾯上的运动受阻时,可以离开这个⾯⽽沿另⼀个与原滑移⾯有相同滑移⽅向的晶⾯继续滑移,由于位错的柏⽒⽮量不变,为错在新的滑移⾯上仍按照原⽅向运动,这⼀过程就叫做交滑移。
14.主滑移系:当外⼒在某⼀滑移系上的分切应⼒值超过时,该滑移系开始启动,我们把这⼀滑移系称作主滑移系。
15.共轭滑移系:随着⼀次滑移的进⾏,晶体的取向相对于加载轴发⽣着变化,滑移到⼀定程度后,另⼀个等同的滑移系也能满⾜条件⽽参与滑移,该滑移系称为共轭滑移系。
16.扭折带:晶体在滑移和转动时,若在某些部位受阻,位错在那⾥堆积,使滑移和转动只发⽣在⼀个狭窄的带状区域,这个区域就叫做扭折带。
材料力学性能ppt课件

5.4 螺型位错模型
位错线//晶体滑移方向,位错线┻位错运动方向,晶 体滑移方向┻位错运动方向
5.5 位错的运动
位错运动的本质是塑性变形. 主要有滑移、攀移. 位错的滑移:位错在外力作用下在滑移面上的运动,导致永 久形变.滑移面应是晶面间距最大的密排面,滑移方向应是原 子密排方向.
螺型位错的滑移
(如:金刚石、石墨和金属) 1)原子在三维空间呈有规则的周期性重复排列. 2)固定熔点如铁熔点1538℃. 3)晶体性能随原子排列方位而改变,即单晶体具有各向异性. 4.1.2、非晶体及其特性
(如:塑料、玻璃、沥青) 1) 内部质点无规则的堆积在一起的物质称为非晶体; 2) 无固定熔点;各向同性
晶体 金刚石、金属 等
率和环境因素的联合作用下表现出的行为. 材料的力学性能:
材料在力作用下,所显示出的与弹性和非弹 性反应相关或涉及应力应变关系的性能.
影响材料力学性能的主要因素
内因:晶体学特性;化学成分;显微组织;内部缺陷; 残余应力等.
外因:温度;周围介质;加载方式;加载速率等. 不同外因(即服役工况)时,材料的力学性能将改变.
2 课程意义
工程设计 理论力学、材料力学
机器零部件设计依据:许用应力[]= s/ns 强度校核=N/A []
新材料研发 强度、韧性、经济性、工艺性、实用性等
失效分析 原因分析:力学性能、组织结构、成分等
“泰坦尼克”号
美国国家技术监督局: ➢ 遭遇冰山; ➢ 救生小船不足; ➢ 连接船体部分的固定
1.2 材料的性能 力学性能:强度、塑性、韧性等 、δ、HB、KIC; 物理性能:声、光、电、磁ρ、Tm、Cp、磁导等; 化学性能:可燃性、反应性、抗氧化性等;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章材料的力学性能第一节金属和无机非金属材料的力学性能1.1单向静拉伸试验和应力一应变图
1.1.1单向静拉伸试验及力-伸长曲线
图9-2
1.1.2典型的工程应力-应变曲线1.1.3真应力-真应变曲线
1.1.4弹性变行与弹性模量
(1) 弹性变形
(2) 弹性模量
萍性区域\
图9- 6原子间接合力随原子间距的变化
1.2强度
1.2.1比例极限c p 1.2.2弹性极限c e
1.2.3 弹性比功We
1.2.4屈服强度c s和条件屈服应力c
0.2
1.2.5抗拉强度c b
1.2.6断裂强度c f
1.3 塑性
1.3.1 有明显屈服点材料的塑性特征。
1.3.2 无明显屈服点材料的塑性特征。
1.3.3 材料塑性衡量指标
(1 )伸长率
(2)断面收缩率(书)
1.4 硬度
布氏硬度
维氏硬度
洛氏硬度
1.5 韧性(韧度)
1.5.1 摆锤冲击试验
(1)韧脆转变温度
(2)缺口敏感性
1.5.3 断裂韧性
1 )断裂力学与断裂韧性
⑷张开型(I型)裂纹⑸滑开型{II型)裂纹(C)Jff开型厲
型)裂纹
(2)影响材料断裂韧性的因素
(3) 断裂韧性的应用
材料选择
构件设计
优化产品
1.6疲劳强度
1.7蠕变
1.7.1蠕变曲线
1.7.2蠕变性能指标
(1) 蠕变极限
(2) 持久强度
1.8磨损与耐磨性
第二节高分子材料的力学性能2.1高分子材料的力学状态
2.1.1高分子材料的三种力学状态
玻璃态高弹态
粘流态
2.1.2 不同高分子材料的力学状态
(1) 线型非晶态高分子材料的力学状态
(2) 晶态高分子材料的力学状态
(3) 体型高分子材料的力学状态
2.1.3 高分子材料力学状态的实际意义
2.2 高分子材料的应力-应变行为
2.2.1 应力- 应变曲线
2.2.2 结构因素对应力- 应变行为的影响
(1) 相对分子质量
(2) 结晶
2.2.3 温度和应变速率对应力- 应变行为的影响非晶态高分子材料在不同温度时的应力一应变曲线高分子材料在不同加载速度时的应力一应变曲线
2.3 高分子材料的高弹性与粘弹性
2.3.1 高分子材料的高弹性
2.3.2 高分子材料的粘弹性
2.4 高分子材料的静态粘弹性——蠕变与应力
松弛2.4.1 高分子材料的蠕变
2.4.2 高分子材料的应力松弛
2.4.3 高分子材料蠕变与应力松弛的力学模型
2.5 高分子材料的动态粘弹性——滞后与内耗2.6. 高分子材料的强度
2.7 高分子材料的韧性
2.8 高分子材料减摩、耐磨性
第三节复合材料的力学性能
3.1 力学性能概貌
3.2 力学性能特征
高的比强度和比模量。
耐疲劳性能好
减震性好
高温性能好
耐磨性能好
第四节材料力学性能的综合比较4.1 密度
4.2 弹性模量
4.3 强度
4.4 材料强度及断裂韧性的综合比较
本章小结
材料的性能是指材料在外加载荷作用下表现出的抵抗特性。
材料性能这一概念包括材料的使用性能和加工性能。
使用性能是指材料制成零件或产品后,在使用过程中能适应或抵抗外界对它的力、化学、电磁、温度等作用而必须具有的能力,包括材料的力学性能、物理性能和化学性能。
材料的力学性能(描述材料在施加应力时的反应),包括各种强度、塑性、韧性、硬度以及断裂韧性等。
材料的拉伸试验是基本的测试方法,通过拉伸试验可以获得材料的各种力学性能指标,主要有;屈服强度、抗拉强度;断后伸长率;均匀延伸率和断面收缩率等。
工程上也称弹性模量为材科的刚度。
通过拉伸试验也可以揭示材料在静载荷作用下的变形,即弹性变形、塑性变形和断裂三个基本过程,还可以揭示材料的拉伸性能。
所谓拉伸性能, 是根据工程应力一应变曲线上某些特征点的应力和应变之值确定的。
拉伸性能包括材料的弹性、强度、塑件和韧性。
主要有:弹性模量;比例极限(条件比例极限);弹性极限(规定非比例伸长应力);弹性比功等。
根据断后延伸率和断面收缩率的相对大小, 可以判断金属材料拉伸时是否形成缩颈。
真应力与应变曲线反映了材料真实的受力状态,在颈缩开始后,真实应力远大于工程应力。
真实应力和真实应变曲线下的面积可反映材料的韧性大小。
强度是材料对塑性变形和断裂的抗力。
塑性表示材料在断裂前发生的不可逆的变形晕的多少。
韧性则表示断裂前单位体材料所吸收的变形和断裂能. 即外力所做的功,是材料强度和塑性的综合指标。
韧度(韧性)又分静力韧性、冲击韧性和断裂韧性。
硬度是材料表面局部抵抗变形的能力。
包括布氏硬度、维氏硬度和洛氏硬度疲劳失效与一次脆断不同,其损伤是逐渐积累。
蠕变是材料在一个固定载荷影响下缓慢的形变过程,
材料对磨损的抗力即为材料的耐磨性。
高分子材料由于其结构上的特殊性,在力学性能上与金属材料及无机非金属材料有许多不同之处。
线型非晶态高分子材料, 晶态高分子材料和体型高分子材料的三种力学状态和两个转变温度具有重要的实际意义。
高分子材料的应力-应变行为可分为软而弱、硬而脆、硬而强、软而韧和硬而韧等特征。
其结构因素对应力-应变行为有影响。
高分子材料在一定条件下表现出独特的力学性能一高弹性和粘弹性;由于高分子的链结构与聚集态结构的特殊性,高分子材料表现出特殊的静态粘弹性一一蠕变与应力松弛,及动态粘弹性
-- 滞后与内耗。
高分子材料的强度由分子链的化学键和分子链间的相互作用力构成。
高分子材料的强度平均比金属低得多,但由于其重量轻、密度小,许多高分子材料的比强度还是很高的。
影响高分子材料实际强度的因素很多,主要有高分子本身结构、结晶和取向、应力集中、增塑剂和填料和共聚和共混。
高分子材料的内在韧性较好,即在断裂前能吸收较大的能量,大多数塑料对金属、塑料对塑料的摩擦系数值一般在0.2~0.4范围内,但有一些塑料的摩擦系数很低。
部分塑料除了摩擦系数低以外,更主要的优点是磨损率低。
复合材料区别于单一材料的显著特征是材料性能的可设计性,复合材料的最大特点是各向异性,即沿纤维方向的强度和刚度远远高于垂直纤维方向的强
度和刚度。
高的比强度和比模量,耐疲劳性能好,减震性好,高温性能好和耐
磨性能好是复合材料的力学性能特征。
材料力学性能的综合比较可以为适当地选用材料提供理论依据
本章重点
材料强度、塑件和韧性的内涵,由拉伸试验获得材料的各种力学性能指标的基本概念,真应力与应变曲线的含义及作用。
韧度,静力韧性、冲击韧性,断裂韧性。
硬度的含义及种类,材料的疲劳失效,蠕变。
高分子材料结构上的特殊性,
力学性能上与金属材料及无机非金属材料的差异性,应力-应变行为的多种特种, 高分子材料的强度及韧性特征,复合材料的力学性能特征。
参考文献
[1] 谢希文等•材料科学基础[M].北京:北京航空航天大学出版社,1999.
[2] 杨瑞成等.材料科学与工程导论[M].哈尔滨:哈尔滨工业大学出版社,2002.
[3] 顾宜.材料科学与工程基础[M].北京:化学工业出版社2002.
[4] Harmer E. Davis. The testing of engineering materials[M]. McGraw-Hill,
C1982.
⑸袁海庆•材料力学[M].武汉:武汉工业大学出版社,2000.
⑹罗迎社.材料力学[M].武汉:武汉理工大学出版社,2001.
[7] 肖建中.材料科学导论[M].北京:中国电力出版社,2001.
[8] 谢志成.材料力学[M].北京:清华大学出版社,1993.
[9] 白明华.工程弹性力学基础[M].北京:机械工业出版社,1996.
[10] Askeland. The scienee and engineering of materials[M]. Pacific Grove, CA:
Cole-Thoms on Learni ng, 2003.
[11] P. Bartos. Bo nd in con crete[M]. Applied Scie nee Publishers, c1982.
[12] Callister, William D. Materials scie nee and engin eeri ng: an
introduction[M]. New York: Wiley, c2003.
[13] Kasap, S. O. Prin ciples of electro nic materials and devices[M].
Bosto n: McGraw-Hill, c2002
[14] Kalpakjia n. Manu facturi ng processes for engin eeri ng materials[M].
Upper Saddle River, N .J.: Pren tice Hall, c2003.
[15] Budinski. Engineering materials : properties and selection[M]. Upper Saddle River, NJ: Pren tice Hall, c2002.。