液压系统故障诊断方法综述

合集下载

液压系统常见故障的诊断方法

液压系统常见故障的诊断方法

液压系统常见故障的诊断方法液压系统是现代工业中最常用的力传递方式之一,其作用在于将液压介质通过各类液压元件将动力传递并执行各种工作。

但是,液压系统在使用过程中,可能会出现一些故障,影响其正常工作。

本文将介绍液压系统常见故障的诊断方法。

一、液压系统漏油液压系统漏油是比较常见的故障。

液压系统漏油会导致液压系统内压力下降,影响其正常工作。

漏油的位置可能在管路、密封件、阀体、油缸、油泵等部位。

诊断方法1、检查管路:液压系统漏油的位置较为常见的是管路部分,可逐组件检查管路胶垫、密封副、卡箍、螺母等是否松动,螺纹是否磨损是否捻曲变形,是否损坏等。

2、检查液压油缸:液压油缸也是液压系统漏油的常见部件,可先检查润滑油缸,再检查方向调节油缸,检查这两个部件是否能够正常工作。

然后,用一把手摇泵,将泵的输出压力时齿轮泵胶垫分别分离,然后观察液压油缸内部是否有液压油泄露的状况。

3、检查阀体:若对系统进行检查后漏油的表现仍未消失,那么可以再检查阀体是否出现了漏油的情况。

此时需将阀体进行近距离检查,以确定它是否有问题。

二、油液出现异物油液中浑浊、沉淀,或出现金属屑、沙粒等异物,对系统的性能损害较大。

诊断方法1、充油:首先应检查系统是否充油不足,缺油会导致系统工作不稳定。

2、排污:排污是比较常见的液压系统故障解决方法。

在排污时,油液会通过排污口排出,因此排污口有时能够充分显示液压系统内部的问题,在检查过程中应格外注意。

3、检查油泵:油泵是液压系统中需要进行检查的关键部件,它通过吸取油液、加压等工作,为液压系统的正常运行提供丰富的动力,因此它需要先检查油泵是否能够正常运转,并观察是否含有异物。

三、油温过高油温过高是液压系统常见的故障之一。

油温过高可能是由液压元件故障引起的,如失配的油缸、不易生气的油管等。

诊断方法1、检查液压系统的方式和设计是否合理:观察油泵、液压管路、油缸、阀门等是否存在故障或已经失效,同时检查油温计观测器的状况。

液压系统的故障诊断与维修

液压系统的故障诊断与维修

液压系统的故障诊断与维修液压系统是一种通过液体传递能量的系统,广泛应用于机械设备、工业生产以及航空航天等领域。

然而,由于液压系统的复杂性,故障的发生是不可避免的。

因此,了解液压系统的故障诊断与维修方法是非常重要的。

本文将详细介绍液压系统故障的常见原因和诊断方法,以及维修时需要注意的事项。

液压系统故障的常见原因:1.液压油污染:液压系统使用的液压油很容易受到外界污染物的影响。

污染物可能会阻塞液压油滤器,造成液压油的流动不畅,从而引起系统故障。

2.密封件老化:液压系统中的密封件容易随着时间的推移而老化。

老化的密封件会导致液压系统的泄漏,从而影响系统的正常运行。

3.高温问题:液压系统在长时间高温环境下运行,容易导致液压油温度过高,进而引起油封老化、内部泄漏等故障。

4.压力不稳定:液压系统的压力不稳定可能是由于泵的磨损、溢流阀不正常或是负载不平衡等原因造成的。

液压系统故障的常见诊断方法:1.检查液压油质量:首先需要检查液压系统中的液压油质量,判断是否被污染。

可以通过取样检测、化学分析等方法来确定液压油的质量,并及时更换污染严重的液压油。

2.检查泄漏问题:液压系统的泄漏问题是常见的故障之一。

通过检查液压系统中的密封件、管路连接等部位,找到泄漏的原因,并及时修复或更换受损的部件。

3.检查压力问题:如果液压系统的压力不稳定,可能是由于泵的磨损、溢流阀调节不当等原因造成的。

可以通过测量和调整压力来解决压力不稳定的问题。

4.检查液压系统的工作温度:液压系统长时间高温运行可能导致液压油老化,进而引起系统故障。

可以通过安装温度传感器,监测液压系统的工作温度,并及时采取降温措施。

液压系统维修需要注意的事项:1.安全第一:在进行液压系统维修时,必须确保安全。

断开电源,并将液压系统的压力释放完全,避免意外发生。

2.准备工具和备件:在进行液压系统维修前,需要准备好相应的工具和备件。

这样可以在需要时迅速更换受损的零部件,提高维修效率。

液压系统故障诊断的方法与步骤

液压系统故障诊断的方法与步骤

液压系统故障诊断的方法与步骤
液压系统是工业生产中常用的一种传动系统,但是其在使用过程中会出现故障,严重影响生产效率。

因此,液压系统故障诊断成为维护液压系统的重要环节。

本文将介绍液压系统故障诊断的方法与步骤。

一、液压系统故障的种类
液压系统故障可以分为机械故障和液压故障。

机械故障包括液压泵、油缸、阀门的损坏等;液压故障包括油液污染、泄漏、回油不畅等。

二、液压系统故障诊断的方法
1. 现场观察法:通过观察液压系统的工作状态,找出故障原因。

比如:液压系统无法工作,可能是油液不足或泵失效。

液压系统有异响或振动,可能是系统存在气体或是某个部件磨损。

2. 系统分析法:通过分析液压系统的结构、工作原理和工作参数,找出故障原因。

比如:液压缸无法运动,可以分析是液压泵输出压力不够,或是液压缸内部密封损坏。

3. 试验检测法:通过对液压系统进行试验检测,找出故障原因。

比如:对液压泵进行试验,检测泵的输出压力和流量是否正常。

三、液压系统故障诊断的步骤
1. 确认故障现象和发生时间。

2. 进行现场观察,找出故障原因。

3. 根据故障现象,分析液压系统的结构和工作原理,锁定故障
部件。

4. 进行试验检测,确认故障原因。

5. 修理或更换故障部件。

6. 对液压系统进行测试,确认故障已经解决。

维护液压系统是一项复杂的工作,在故障发生时,需要迅速采取有效措施,尽快恢复液压系统的正常工作状态。

液压系统故障诊断的方法和步骤可以帮助维护人员快速准确地找出故障原因,提高故障处理效率。

液压系统常见故障的诊断及消除方法

液压系统常见故障的诊断及消除方法

液压系统常见故障的诊断及消除方法液压系统是工程设备中非常重要的一个组成部分,常常用于提供大功率的传动和控制。

但是由于液压系统的复杂性和工作环境的复杂性,常常会出现各种故障。

本文将介绍液压系统常见故障的诊断及消除方法。

1.压力不足或无压力故障原因可能是液压泵失效、泵吸入空气、油箱液面过低等。

解决方法可以是检查液压泵的工作状态,检查泵入口是否有空气,检查油箱液面。

2.压力过高或超压故障原因可能是过载阀调节不当、过载阀损坏、压力调节阀失效等。

解决方法可以是调整过载阀的设置值、更换过载阀、检查压力调节阀。

3.泄漏泄漏是液压系统常见的故障之一,可能是密封件老化、螺纹松动、管路磨损等原因造成的。

解决方法可以是更换密封件、紧固螺纹、更换磨损的管路。

4.油温过高或过低油温过高可能是由于油液粘度过高、油液冷却器失效等原因造成的。

解决方法可以是更换合适的液压油、检查冷却器的工作状态。

油温过低可能是由于油液粘度过低、冷却器冷却不足等原因造成的。

解决方法可以是更换合适的液压油、检查冷却器的工作状态。

5.油液污染油液污染可能是由于油箱没有过滤装置、油液中杂质过多等原因造成的。

解决方法可以是安装合适的过滤装置、定期更换油液。

6.阀门卡死阀门卡死可能是由于阀芯与阀套间配合间隙过大、阀芯表面磨损等原因造成的。

解决方法可以是更换阀芯、研磨阀芯表面。

7.液压缸无法伸缩液压缸无法伸缩可能是由于缸内部部件损坏、密封件老化、液压系统压力不足等原因造成的。

解决方法可以是更换缸内部部件、更换密封件、检查液压系统压力。

8.油液乳化油液乳化可能是由于油液中含水过多、机械零件摩擦产生热量等原因造成的。

解决方法可以是更换干燥的液压油、检查液压系统的冷却状态。

以上是液压系统常见故障的诊断及消除方法的简要介绍,液压系统的故障诊断需要从系统整体入手,综合分析故障原因,采取相应的解决方法。

同时,定期检查和维护液压系统,保持系统的清洁和正常工作状态,可以预防故障的发生。

工程机械液压系统常见故障诊断与排除

工程机械液压系统常见故障诊断与排除

工程机械液压系统常见故障诊断与排除工程机械液压系统常见故障诊断与排除方法液压系统是工程机械中非常重要的一个组成部分,常见于挖掘机、装载机、推土机等设备中。

由于液压系统具有传动力大、灵活性好、反应速度快等优点,但同时也存在一些常见的故障问题。

本文将介绍工程机械液压系统常见故障的诊断与排除方法,希望能对有需要的读者有所帮助。

一、液压系统压力不稳定或无法建立压力不稳定或无法建立的故障可能有多个原因,常见的有以下几种情况:1. 液压泵故障:液压泵无法提供足够的流量或压力。

可能原因有泵中异物、泵内部密封件损坏、泵内部磨损、泵的齿轮间隙不合适等。

解决方法是清洗泵内异物、更换密封件、修复或更换泵的齿轮。

2. 液压阀故障:液压阀内部存在堵塞、卡阀、密封件老化等情况。

解决方法是清洗阀内异物、修复或更换卡阀、更换密封件。

3. 液压系统漏油:液压系统存在泄漏导致无法建压。

可能原因有管路接头松动、密封件老化、管路破损等。

解决方法是紧固松动的接头、更换密封件、修复或更换破损的管路。

4. 油箱液位不足:液压系统油位低导致无法建压。

解决方法是加注足够的液压油。

5. 油液粘度不合适:油液粘度过高或过低会导致液压系统无法正常工作。

解决方法是更换适合的液压油。

二、液压缸行程不稳定或无法正常工作液压缸行程不稳定或无法正常工作的故障可能有以下几种情况:1. 液压缸密封件老化破损:液压缸密封件破损会导致泄漏,从而使液压缸无法保持稳定的运动。

解决方法是更换密封件。

2. 液压缸活塞杆磨损:液压缸活塞杆磨损会导致泄漏,从而使液压缸无法正常工作。

解决方法是修复或更换活塞杆。

3. 液压缸活塞杆与缸体之间存在摩擦:液压缸活塞杆与缸体之间的摩擦增大会导致行程不稳定。

解决方法是修复或更换活塞杆。

4. 液压缸内部油液污染:液压缸内部油液污染会导致密封件磨损,从而使液压缸无法保持稳定的运动。

解决方法是清洗液压缸内部、更换密封件。

5. 液压缸杆端外力干扰:液压缸杆端受到外力干扰会导致行程不稳定。

「液压系统常见故障诊断方法」

「液压系统常见故障诊断方法」

「液压系统常见故障诊断方法」液压系统是现代工业中广泛应用的动力传输系统,它能够实现高效、精确和可靠的机械运动控制。

然而,由于液压系统的复杂性和高压工作环境,常常会发生各种各样的故障。

诊断液压系统故障是维修和维护工作中的重要一环。

本文将介绍液压系统常见的故障诊断方法。

1.观察和询问:在开始故障诊断之前,首先要观察系统的运行情况和询问操作人员有关故障的详细信息。

通过观察液压系统的外观、运行噪音和泄漏情况等,可以初步判断系统可能存在的故障类型。

与此同时,询问操作人员关于液压系统异常现象的时间、地点和操作过程等信息,有助于帮助诊断。

2.压力检测:液压系统中的压力是其正常运行的重要指标之一、通过使用压力表或压力传感器等工具对液压系统中的压力进行检测,可以判断系统的压力是否正常。

如果发现系统中其中一位置的压力异常偏低或偏高,那么可能存在堵塞、泄漏或阀门失灵等故障。

3.温度检测:液压系统的工作温度也是评判系统是否正常运行的重要指标之一、通过使用红外线测温仪或温度传感器等工具对液压系统中不同部位的温度进行检测,可以判断系统是否存在过热或过冷的情况。

过高或过低的温度可能表明液压系统中存在泄漏、堵塞或液压油不合适等故障。

4.声音诊断:液压系统中的异常声音通常是故障的重要表现。

例如,当液压泵工作时,如果听到异常噪音,那么可能是泵体内部存在异物或磨损等问题。

通过耳朵、声音分析仪或噪音传感器等工具对液压系统中的声音进行诊断,可以判断系统的哪个部位存在故障。

5.泄漏检测:泄漏是液压系统常见的故障之一,通常表现为液压油的不正常流失。

通过观察液压系统中是否有液压油的泄漏痕迹,可以初步判断系统是否存在泄漏。

同时,可以使用油滴检测仪或火焰检测仪等工具对液压系统中的泄漏情况进行更详细的检测和定位。

6.操作追踪:对液压系统中发生故障的具体操作过程进行追踪和记录是诊断故障的有效方法之一、通过重新模拟故障出现时的操作过程,可以帮助找出故障发生的具体原因。

液压系统的故障诊断常用方法

液压系统的故障诊断常用方法

一、液压系统的故障诊断常用方法1、经验诊断法现场诊断要求维修人员有一定的液压传动知识和实践经验。

在对一种新机型作故障诊断前,要认真阅读随机的使用维护说明书,以对该机液压系统有一个基本的认识。

通过阅读技术资料,掌握其系统的主要参数;熟悉系统的原理图,掌握系统中各元件符号的职能和相互关系,分析每个支回路的功用;对每个液压元件的结构和工作原理也应有所了解;分析导致某一故障的可能原因;对照机器了解每个液压元件所在的部位,以及它们之间的连接方式。

具体诊断故障时,应遵循“有外到内,先易后难”的顺序,对导致某一故障的可能原因逐一进行排查。

现场诊断液压系统故障的主要方法还是经验诊断法。

即为,维修人员利用已掌握的理论知识和积累的经验,结合本机实际,运用“问、看、听、摸、试”手段,快速的诊断出故障所在部位和原因的一种方法。

具体为:(1)、问“问”就是向操作手询问故障机器的基本情况。

主要了解机器有哪些异常现象;故障是突发的还是渐发的;使用中是否存在违规操作,维修保养情况;液压油牌号是否正确及更换的情况;故障发生的时机,即是在工作开始时还是在作业一段时间后才出现的,等等。

获得这些信息后,即可基本确定该液压系统所出现故障的特点。

一般来说,突发性故障,大多是因液压油过脏或弹簧折断造成阀封闭不严引起的;渐发性故障,则多数是因元件磨损严重或橡胶密封、管件老化而出现的。

吸油管松动或油箱油面太低等。

(2)、看“看”就是通过眼睛查看液压系统的工作情况。

如油箱内的油量是否符合要求,有无气泡和变色现象(机器的噪声、振动和爬行等常与油液中大量气泡有关);密封部位和管街头等处的漏油情况;压力表和油温表在工作中指示值的变化;故障部位有无损伤、连接渐脱落和固定件松动的现象。

当出现液压油外漏的故障时,在排除禁固螺栓扭力不足或不均匀后,在更换可能已严重磨损或损坏的油封前,还应检查其压力是否超限。

安装油封时,应检验油封型号和质量,并做到准确装配。

(3)、听“听”就是用耳朵检查液压系统有无异常响声。

液压系统故障诊断方法

液压系统故障诊断方法

液压系统故障诊断方法液压系统故障的诊断方法很多,但最常用的是感觉诊断法。

感觉诊断法是靠设备维修人员利用简单的诊断仪器和凭借个人的工作经验对液压系统故障进行诊断,判断发生故障的部位和原因。

1.直观检查法对于一些较为简单的故障,可以通过眼看、手摸、耳听和嗅闻等手段对零部件进行检查。

(1)视觉诊断法,是用眼睛来观察液压系统工作情况,观察液压系统各测压点的压力值、温度变化情况,检查油液是否清洁、油量是否充足。

观察液压阀及管路接头处、液压缸端盖处、液压泵传动轴处等是否有漏油现象。

观察从设备加工出的产品或所进行的性能试验,鉴别运动机构的工作状态、系统压力和流量的稳定性以及电磁阀的工作状态等。

(2)听觉诊断法,是用耳朵来判断液压系统或元件的工作是否正常等。

听液压泵和液压系统噪声是否过大;听溢流阀等元件是否有异常声音;听工作台换向时冲击声是否过大;听活塞是否有冲撞液压缸底的声音等。

(3)触觉诊断法,是用手触摸运动部件的温度和工作状态,用手触摸液压泵外壳、油箱外壁和阀体外壳的温度。

正常温度应在55℃左右,如果超过60℃以上就应检明原因。

用手触摸运动部件和油管,感觉有无明显振动。

(4)嗅觉诊断法,是用鼻子闻液压油是否有异味,若闻到液压油局部有焦臭味,说明液压泵等液压元件局部发热,导致液压油被烤焦冒烟,据此可判断其发热部位。

闻液压油是否有恶臭味或刺鼻的辣味,若有说明液压油已严重污染,不能再继续使用。

2、对换诊断法在维修现场缺乏诊断仪器或被查元件比较精密不宜拆开时,应采用此法。

先将怀疑出现故障地元件拆下,换上新件或其他机器上工作正常、同型号的元件进行试验,看故障能否排除即可作出诊断。

3、仪表测量检查法仪表测量检查法就是借助对液压系统各部分液压油的压力、流量和油温的测量来判断该系统的故障点。

在一般的现场检测中,由于液压系统的故障往往表现为压力不足,容易查觉;而流量的检测则比较困难,流量的大小只可通过执行元件动作的快慢作出错略的判断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液压系统故障诊断方法综述
摘要:在机械的动力系统中,大部分使用的都是液压传动系统,因此,液压系统的运转情况决定着整个机械系统运转健康与否,也是企业保持竞争力的重要条件。

在实际的机械维护中,由于环境的不同以及技术上的限制,往往不能及时发现机械出现的问题和隐患。

关键词:液压系统;故障;诊断
一、基于人的主观诊断法
基于人的主观诊断法主要是依靠简单的诊断仪器,凭借领域专家的实践经验,判断故障的部位和原因,并提出相应的排除方法。

这种方法又被称为简易诊断方法,它是设备维修部门普遍采用的方法,可以通过看、听、摸、闻、阅、问等方式,简单定性地判断液压系统工作的实际状况是否出现异常。

基于人的主观诊断法主要包括系统分析法、参数测量法、方框图分析法、鱼刺图分析法等。

其中,系统分析法是从液压系统的角度出发,根据液压系统的故障现象,以系统原理图作为指示,通过分析故障现象,确定故障所属回路,再确定发生故障的部件和元件,使故障分析和检查工作范围逐步缩小,以达到快速诊断及时排除故障的目的;参数测量法是通过检测液压系统的主要工作参数量,找出系统中工作参数值与设备正常工况值不符合的液压元件,从而判断故障的所在;方框图分析法是根据故障现象,罗列出可能发生这种故障的所有原因,然后根据现场实际工况,逐步找出故障原因;鱼刺图分析法是一种因果关系分析法,根据液压设备出现的故障进行分析,找出故障的主要因素,这种方法既能较快地找出故障主次原因,又能积累排除故障的经验。

二、基于信号分析的故障诊断方法
2.1基于油样分析的方法
液压系统中的污染物带有大量反映系统内部状态的信息。

因此,通过对油液中污染物成分鉴别和含量测定,可以了解液压系统油液的污染状况以及元件的工作状况,为液压系统的故障诊断和维护提供依据。

目前常用的油样分析技术和方法有以下两种。

(1)基于油液颗粒污染度的检测技术
显微镜检测技术:采用光学显微镜测定油液中污染颗粒的尺寸分布和浓度。

自动颗粒计数器:该项技术利用光学自动颗粒计数器将油液中悬浮的固体颗粒进行计数,间接测量油液的污染度。

由于光学自动颗粒计数器可能将油液中悬浮的微小气泡和水珠当作固体颗粒进行计数,因此,在测量前需要对油样进行脱气处理,以减少计数误差。

称重法:该方法主要利用油液的质量和密度之间的对应关系,通过测量单位体积的油液的质量和理论质量的比对,确定一定容量的油液所含污染物的总量。

铁谱分析法:主要用于鉴别油液中与磨损有关的磨屑,进行磨屑成分鉴定和含量测定。

利用铁谱分析可以得到定量的数据,也可以进行定性分析。

光谱法:该项技术能够给出油液中污染物各元素的成分、浓度,可辨别出液压系统的磨损状态及其部位,为预报初期故障提供了依据。

显微镜检测技术设备投资较少,且方法简单,但劳动强度大、费时、误差较大;自动颗粒计数器方法具有检测速度快、准确度高和操作简便等优点,但可能将油液中悬浮的微小气泡和水珠当作固体颗粒进行计数,精度较低;称重法使用设备简单,检测方便,但只能测定油液的污染物总量,无法掌握污染颗粒尺寸和分布特征;铁谱
分析可以得到定量的数据,也可以进行定性分析;光谱分析的精度较高,但成本较高。

(2)基于油液性能参数的检测技术
受潮气入侵、气蚀、腐蚀、液压元件各运动副间磨损等作用,液压油中金属、
非金属元素、氧化物的含量、形态发生变化,反映出液压系统中磨损、腐蚀及密封
状态;液压油的粘度、酸碱值等性能指标的改变也是系统状态发生变化的征兆之一。

油液性能参数检测技术根据经验和专家知识,建立基于液压油中性能变化与液压系
统及其元件状态间的关系库,运用神经网络、专家系统、模糊推理等推理机制,判
定和预测系统的故障。

2.2基于振动、噪声分析的方法
振动、噪声是液压系统在运行过程中伴随的必然现象,特别对液压泵来说,其壳体振动十分明显。

设备的振动、噪声信号中包含有大量丰富的故障信息,通过对信
号的分析可以获得许多有关元件的状态信息,有助于确定设备的工作状态,从而有
效地进行故障诊断。

目前对于利用振动、噪声分析进行设备故障诊断的研究较多,其理论和方法比
较完善。

常用的信号处理的特征提取方法有时域特征参数法、时差域特征法、概
率密度法、相关分析法、谱分析法、自功率谱分析法、倒频谱分析法、包络谱分
析法、主分量自回归谱提取法、AR谱参数提取法、小波分析等。

振动分析技术已成功地应用于旋转机械设备的故障诊断,在纯机械设备的故障诊断中取得了很大成功。

在液压系统中存在油液,其振动信号里包含了大量的噪声,既有机械振动,又有
流体振动,使得信号处理非常困难。

2.3基于数学模型的诊断方法
模型诊断方法是以现代控制理论和现代优化方法为指导,以系统的数学模型为
基础,利用观测器(组)、等价空间方程、Kalman滤波器、参数模型估计和辨识等方
法产生残差,然后基于某种准则或阈值对该残差进行评价和决策。

基于模型的诊断
方法能与控制系统紧密结合,是监控、容错控制、系统修复和重构的前提。

液压伺
服系统的故障诊断常采用基于数学模型的方法。

基于数学模型的诊断方法其准确性和精度主要取决于所建立模型的准确性。

目前该领域研究的重点是(线性和非线性)系统故障诊断的鲁棒性、故障可检测性
和可分离性,以及利用非线性理论进行非线性系统的故障诊断。

三、液压故障诊断技术的发展趋势
3.1经验知识和原理知识要紧密融合
若想加强液压故障智能诊断系统的能力,有关工作者要在研究液压系统故障诊断
系统期间,掌握有关的专业知识,另外,还要掌握液压系统的结构和主要功能,
要是在研究液压系统故障诊断期间,不重视对某一方面的研究的话,那么就会降
低诊断效果。

所以,相关工作者要把专业知识和诊断技能有效的融合到一起,然
后再把两者结合到故障诊断系统里,安排合理的分析形式,还要保证所有的分析
形式都可以单独运行,如此一来就可以慢慢的把液压系统故障诊断的系统的性能
进行加强,让它能够变成具备专家级知识的诊断系统。

3.2多种智能故障诊断方法的混合
目前,液压系统故障诊断系统都在朝着技术融合的方向发展,也就是说把多种技
术融合到一起,构成混合诊断系统。

在智能技术进行融合期间,包括把专家诊断
系统与神经网络采取有机融合,然后在里面加进模糊逻辑等。

混合智能诊断方式
的发展方向,就是要把传统的诊断系统转化为混合系统,把专家传播的知识转化
成系统自主学习以及分析的系统,把单纯的推理转换为混合推理系统等。

3.3虚拟现实技术会得到重视和应用
在多媒体技术之后,虚拟现实技术开始得到人们普遍的关注,此项技术的存在感、感知性等都比较强。

从表面进行分析,虚拟现实技术以及多媒体技术具有很多共同特征,所以人们能够更快的接受虚拟现实技术,不过虚拟现实技术可以让人们使用计算机来对很多的信息可视化,其属于交互性技术方式,和传统的人机界面采取对比的话能够发现,虚拟现实技术具有更好的应用价值。

结语:
总之,随着人工智能技术的发展,研究如何准确地实现自动化、智能化诊断系统就成为摆在学者面前的紧迫任务。

信息融合技术为故障诊断提供了一个诊断信息优化的强大工具,研究如何更有效地将信息融合技术应用于液压系统诊断领域,提高诊断系统的智能化程度,是液压系统故障诊断的研究方向。

参考文献:
[1]蒋均文.液压系统故障诊断步骤与方法[J].设备管理与维修,2018(06):70-71.
[2]赵玉洲.液压系统故障诊断技术发展研究[J].科技风,2018(04):95.
[3]吴木财.液压系统故障诊断分析[J].南方农机,2017,48(13):91+95.。

相关文档
最新文档