第四章 BP神经网络
BP神经网络介绍

18
9
E 1 q
q t1
yt ct
ERME
18
10 4.4 BP神经网络学习算法
(1)计算中间隐含层各个神经元的净输入和输出
n
s j xiwij j i 1
bj f s j j=1,2,...,p
(2)计算输出层各个神经元的净输入和实际输出
p
lt v jtbj t
ct f lt t=1,2,...,q
第四章 误差反向传播神经网络
研16电子 陈晨 2017.4.11
4.1 误差反向网络的提出 4.2 BP神经网络结构基本思想
4.3 BP神经网络处理的单元模型
4.4 BP神经网络学习算法 4.5 BP网络的分析--梯度下降学习方法
4.6 BP人工神经网络模型的改进
18
3
4.1 误差反向网络的提出
1、非线性映射能力
1、存在局部极小问题
2、泛化能力
2、存在平坦区,收敛速度慢
3、容错能力
3、网络结构选择不一
18
13 4.6 BP人工神经网络模型的改进
1、BP 人工神经网络结构的自我调整 在BP人工神经网络拓扑结构中, 输入节点与输出节点
是由问题的本身决定的, 关键在于隐层的层数与隐节点的 数目。
(b1 , b2 , ⋯,bp) T ; 输出层净输入向量L=(l1,l2 , ⋯,lq)T,实际输出向量C=(c1,c2 ,
⋯,cq)T; θ={θj}(j=1,2 , ⋯,p}为隐层神经元引入阈值,γ={γt}(t=1,2...q)
为输出层神经元引入阈值;
输入层到隐层之间的权值矩阵 V = ( V1 , V2 , ⋯,V m) ,隐层到 输出层之间的权值矩阵 W = ( W1 ,ij
BP神经网络介绍

BP神经网络介绍
一、什么是BP神经网络
BP神经网络(Back Propagation Neural Network),简称BP网络,是一种多层前馈神经网络。
它对神经网络中的数据进行反向传播,以获得
最小化计算误差的参数,进而得到最终的分类结果。
一般来说,BP网络
由输入层、隐藏层和输出层组成,输入层将输入数据传递给隐藏层,隐藏
层再将这些数据传递给输出层,最终由输出层输出最终的类别结果。
BP网络的运算原理大致可以分为三个步骤:前向传播、误差反向传
播和参数调整。
在前向传播阶段,BP网络从输入层开始,将输入数据依
次传递给各个隐藏层,并将这些数据转化为输出结果。
在误差反向传播阶段,BP网络从后面向前,利用误差函数计算每层的误差,即:将误差从
输出层一层一层向前传播,以计算各层的权值误差。
最后,在参数调整阶段,BP网络以动量法更新网络中的权值,从而使网络更接近最优解。
二、BP神经网络的优缺点
1、优点
(1)BP神经网络具有非线性分类能力。
BP神经网络可以捕捉和利用
非线性的输入特征,从而进行非线性的分类。
(2)BP神经网络可以自动学习,并能够权衡它的“权衡”参数。
标准BP算法及改进的BP算法标准BP算法及改进的BP算法应用(1)

➢ 隐含层神经元数
➢ 初始权值的选取 ➢ 学习速率 ➢ 期望误差的选取
22
2020/3/6
网络的层数
理论上已经证明:具有偏差和至少一个S型隐含层 加上一个线性输出层的网络,能够逼近任何有理函 数
定理:
增加层数主要可以进一步的降低误差,提高精度, 但同时也使网络复杂化,从而增加了网络权值的训 练时间。
%输入向量P和目标向量T
P = -1:0.1:1
T = [-0.96 -0.577 -0.0729 0.377 0.641 0.66 0.461 0.1336 -0.201 -0.434 -0.5 -0.393 0.1647 0.0988 0.3072 0.396 0.3449 0.1816 -0.0312 -0.2183 -0.3201 ];
4.3 BP学习算法
假设输入为P,输入神经元有r个,隐含层内有s1个神经 元,激活函数为F1,输出层内有s2个神经元,对应的激 活函数为F2,输出为A,目标矢量为T
12
2020/3/6
4.3 BP学习算法
信息的正向传递
隐含层中第i个神经元的输出
输出层第k个神经元的输出
定义误差函数
13
4.4.2应用举例
1、用BP神经网络实现两类模式分类 p=[1 -1 -2 -4;2 1 1 0]; t=[0 1 1 0]; %创建BP网络和定义训练函数及参数 NodeNum=8;%隐含层节点数 TypeNum=1;%输出维数 Epochs=1000;%训练次数 TF1='logsig'; TF2='logsig';
D1=deltatan(A1,D2,W2);
[dWl,dBl]=learnbp(P,D1,lr);
BP神经网络PPT全文

输出层与隐含层的激活函数可以不同,并且输出层
各单元的激活函数可有所区别
2024/8/16
26
2 多层网络的表达能力
按照Kolmogorov定理,任何一个判决均可用 前式所示的三层神经网络实现。
即: 只要给定足够数量的隐含层单元、适 当的非线性函数、以及权值, 任何由输入向输 出的连续映射函数均可用一个三层前馈神经网络 实现。
神经网络的计算通过网络结构实现;
不同网络结构可以体现各种不同的功能;
网络结构的参数是通过学习逐渐修正的。
2024/8/16
7
(1)基本的人工神经元模型
McCulloch-Pitts神经元模型
输入信号;链接强度与权向量;
信号累积
2024/8/16
激活与抑制
8
人工神经元模型的三要素 :
一组连接 一个加法器 一个激励函数
➢ 树突(dendrites), 接收来自外接的信息 ➢ 细胞体(cell body), 神经细胞主体,信息加工 ➢ 轴突(axon), 细胞的输出装置,将信号向外传递,
与多个神经元连接 ➢突触 (synapsse), 神经元经突触向其它神经元(胞体 或树突)传递信号
2024/8/16
5
(2)生物神经元的基本特征
5 假定:第l层为当前处理层;
其前一层l 1、当前层l、后一层l 1的计算单元序号为i, j,k;
位于当前层第j个计算单元的输出为Olj,j 1,..., nl
前层第i个单元到本层第j个单元的连接权值为ilj , i 1,..., nl1
本层第j个单元到后层第k个单元的连接权值为
l 1 jk
,
连接权值,突触连接强度
bp神经网络的原理

bp神经网络的原理BP神经网络(也称为反向传播神经网络)是一种基于多层前馈网络的强大机器学习模型。
它可以用于分类、回归和其他许多任务。
BP神经网络的原理基于反向传播算法,通过反向传播误差来调整神经网络的权重和偏差,从而使网络能够学习和适应输入数据。
BP神经网络的基本结构包括输入层、隐藏层和输出层。
每个层都由神经元组成,每个神经元都与上一层的所有神经元连接,并具有一个权重值。
神经元的输入是上一层的输出,通过加权和和激活函数后得到输出。
通过网络中的连接和权重,每层的输出被传递到下一层,最终得到输出层的结果。
BP神经网络的训练包括两个关键步骤:前向传播和反向传播。
前向传播是指通过网络将输入数据从输入层传递到输出层,计算网络的输出结果。
反向传播是基于网络输出结果与真实标签的误差,从输出层向输入层逆向传播误差,并根据误差调整权重和偏差。
在反向传播过程中,通过计算每个神经元的误差梯度,我们可以使用梯度下降算法更新网络中的权重和偏差。
误差梯度是指误差对权重和偏差的偏导数,衡量了误差对于权重和偏差的影响程度。
利用误差梯度,我们可以将误差从输出层反向传播到隐藏层和输入层,同时更新每层的权重和偏差,从而不断优化网络的性能。
通过多次迭代训练,BP神经网络可以逐渐减少误差,并提高对输入数据的泛化能力。
然而,BP神经网络也存在一些问题,如容易陷入局部最优解、过拟合等。
为了克服这些问题,可以采用一些技巧,如正则化、随机初始权重、早停等方法。
总结而言,BP神经网络的原理是通过前向传播和反向传播算法来训练网络,实现对输入数据的学习和预测。
通过调整权重和偏差,网络可以逐渐减少误差,提高准确性。
BP神经网络概述

BP神经网络概述BP神经网络由输入层、隐藏层和输出层组成。
输入层接收外界输入的数据,隐藏层对输入层的信息进行处理和转化,输出层输出最终的结果。
网络的每一个节点称为神经元,神经元之间的连接具有不同的权值,通过权值的调整和激活函数的作用,网络可以学习到输入和输出之间的关系。
BP神经网络的学习过程主要包括前向传播和反向传播两个阶段。
前向传播时,输入数据通过输入层向前传递到隐藏层和输出层,计算出网络的输出结果;然后通过与实际结果比较,计算误差函数。
反向传播时,根据误差函数,从输出层开始逆向调整权值和偏置,通过梯度下降算法更新权值,使得误差最小化,从而实现网络的学习和调整。
BP神经网络通过多次迭代学习,不断调整权值和偏置,逐渐提高网络的性能。
学习率是调整权值和偏置的重要参数,过大或过小的学习率都会导致学习过程不稳定。
此外,网络的结构、激活函数的选择、错误函数的定义等也会影响网络的学习效果。
BP神经网络在各个领域都有广泛的应用。
在模式识别中,BP神经网络可以从大量的样本中学习特征,实现目标检测、人脸识别、手写识别等任务。
在数据挖掘中,BP神经网络可以通过对历史数据的学习,预测未来的趋势和模式,用于市场预测、股票分析等。
在预测分析中,BP神经网络可以根据历史数据,预测未来的房价、气温、销售额等。
综上所述,BP神经网络是一种强大的人工神经网络模型,具有非线性逼近能力和学习能力,广泛应用于模式识别、数据挖掘、预测分析等领域。
尽管有一些缺点,但随着技术的发展,BP神经网络仍然是一种非常有潜力和应用价值的模型。
BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂BP神经网络(Back Propagation Neural Network)是一种常用的人工神经网络模型,用于解决分类、回归和模式识别问题。
它的基本原理是通过反向传播算法来训练和调整网络中的权重和偏置,以使网络能够逐渐逼近目标输出。
1.前向传播:在训练之前,需要对网络进行初始化,包括随机初始化权重和偏置。
输入数据通过输入层传递到隐藏层,在隐藏层中进行线性加权和非线性激活运算,然后传递给输出层。
线性加权运算指的是将输入数据与对应的权重相乘,然后将结果进行求和。
非线性激活指的是对线性加权和的结果应用一个激活函数,常见的激活函数有sigmoid函数、ReLU函数等。
激活函数的作用是将线性运算的结果映射到一个非线性的范围内,增加模型的非线性表达能力。
2.计算损失:将网络输出的结果与真实值进行比较,计算损失函数。
常用的损失函数有均方误差(Mean Squared Error)和交叉熵(Cross Entropy)等,用于衡量模型的输出与真实值之间的差异程度。
3.反向传播:通过反向传播算法,将损失函数的梯度从输出层传播回隐藏层和输入层,以便调整网络的权重和偏置。
反向传播算法的核心思想是使用链式法则。
首先计算输出层的梯度,即损失函数对输出层输出的导数。
然后将该梯度传递回隐藏层,更新隐藏层的权重和偏置。
接着继续向输入层传播,直到更新输入层的权重和偏置。
在传播过程中,需要选择一个优化算法来更新网络参数,常用的优化算法有梯度下降(Gradient Descent)和随机梯度下降(Stochastic Gradient Descent)等。
4.权重和偏置更新:根据反向传播计算得到的梯度,使用优化算法更新网络中的权重和偏置,逐步减小损失函数的值。
权重的更新通常按照以下公式进行:新权重=旧权重-学习率×梯度其中,学习率是一个超参数,控制更新的步长大小。
梯度是损失函数对权重的导数,表示了损失函数关于权重的变化率。
bp神经网络

BP神经网络框架BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。
BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。
它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。
BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。
1BP神经网络基本原理BP神经网络的基本原理可以分为如下几个步骤:(1)输入信号Xi→中间节点(隐层点)→输出节点→输出信号Yk;(2)网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y 和期望输出值t之间的偏差。
(3)通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度取值Tjk,以及阈值,使误差沿梯度方向下降。
(4)经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练到此停止。
(5)经过上述训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线性转换的信息。
2BP神经网络涉及的主要模型和函数BP神经网络模型包括输入输出模型、作用函数模型、误差计算模型和自学习模型。
输出模型又分为:隐节点输出模型和输出节点输出模型。
下面将逐个介绍。
(1)作用函数模型作用函数模型,又称刺激函数,反映下层输入对上层节点刺激脉冲强度的函数。
一般取(0,1)内的连续取值函数Sigmoid函数:f x=11+e^(−x)(2)误差计算模型误差计算模型反映神经网络期望输出与计算输出之间误差大小的函数:Ep=12(tpi−Opi)2其中,tpi为i节点的期望输出值;Opi为i节点的计算输出值。
(3)自学习模型自学习模型是连接下层节点和上层节点之间的权重矩阵Wij的设定和修正过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章BP神经网络
Minsky和Papert的论点曾使许多人对神经网络的研究失去了信心,但仍有许多学者坚持这方面的研究。
Rumelhart、McClelland和他们的同事洞察到神经网络信息处理的重要性,于1985年发展了BP网络学习算法,实现了Minsky的多层网络设想。
BP网络是一种多层前馈型神经网络,其神经元的传递是S型函数,输出量为0到1之间的连续量,它可以实现从输入到输出的任意非线性映射。
由于权值的调整采用反向传播学习算法,因此也常称其为BP网络(Back Propagation Network)。
目前,在人工神经网络的实际应用中,绝大部分的神经网络模型都采用BP网络慢及其变化形式。
它也是前向网络的核心部分,体现了人工神经网络的精华。
BP网络主要用于以下四个方面。
1)函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数。
2)模式识别:用一个待定的输出向量将它与输入向量联系起来。
3)分类:把输入向量所定义的合适方式进行分类。
4)数据压缩:减少输出向量维数以便于传输或存储。
2.1人工神经网络
神经科学研究表明,生物神经系统是由大量的神经细胞或神经元广泛相互连接组成的,一个神经元与另一个神经元密切接触,传递神经冲动,实习信息传递。
人的大脑皮层由六个不同的功能区组成的,上面布满了大约1.4*1011个神经细胞,它相当于一万台大型计算机并行运行。
所以说,人脑是一个广泛相互连接的复杂非线性系统,这种系统具有特殊的信息处理功能。
人工神经网络(简称神经网络)是神经系统的模拟,包括了大脑神经系统的许多特征。
研究人的大脑的目的就是试图模拟人脑信息处理机制来设计新一代智能型计算机,所以,在工程上我们所研究的都是人工神经网络(Artificial Neural Network,简称ANN)的范畴。
为此,美国的神经网络学家Hecht Nielsen给出人工神经网络的一般定义:神经网络是由多个非常简单的处理单元彼此按某种方式相互连接而形成的计算机系统,该系统是靠其状态对外部输入信息的动态响应来处理信息的。
因此你就,我们所指的神经网络都是指人工神经网络。
2.2发展简史
最早用数学模型对神经系统中的神经元径向理论建模的是美国心理学家麦卡洛克(W.McCulloch)和数学家皮茨(W.Pitts)。
1943年,美国心理学家W.S.Mcculloch和数学家W.A.Pitts提出了一个非常简单的神经元模型——MP模型。
模型将神经元当作一个功能逻辑器件来对待,从而开创了神经网络模型的理论研究。
1957年,Roscnblatt在MP模型的基础上,提出了感知器(Perceptron)的概念,并第一次把神经网络的研究从纯理论的探讨付诸于工程实现。
感知器是第一个真正意义上的神经网络,包括了许多现代神经网络的基本原理,整个模型的结构大体上符合神经生理学知识。
Rosenblatt给出了两层感知器的收敛定理,并提出了引入隐层处理单元的三层感知器。
感知器模型的提出吸引了众多学者加入到神经网络的研究中了。
1959年,美国工程师威德罗(B.Widrow)和霍夫(M.Hoff)提出了自适应线性元件和被称为Widrow——Hoff学习规则(又称学习规则)的神经网络训练方法。
它是感知器的变化形式,尤其在修正权矢量的算法上进行了改进,不仅提高了训练收敛速度,而且还做成了硬件,并将训练厚的人工神经网络成功地用于抵消通讯中的回波和噪声,成为第一个用于
解决实际问题的人工神经网络。
1969年,人工智能创始人之一明斯基(M.Minsky)和帕伯特(S.Papert)在合著的《感知器》一书中对以单层感知器为代表的简单人工神经网络的功能及其局限性从数学上进行了深入的分析,使得当时许多神经网络研究者感到前途渺茫,客观上对神经网络理论的发展起了一定的消极作用。
1982年,美国学者霍普菲尔德(Hopfield)提出了一种反馈神经网络,用于联想记忆和优化计算。
1984年,Hopfield又提出了连续的Hopfield神经网络模型,将神经元的响应函数由离散的二值改为连续的模拟值。
1986年,儒默哈特(D.E.Rumelhart)等人提出了解决多层神经网络权值修正的算法——误差反向传播法(BP算法),成为当前应用最为广泛的神经网络模型,找到了解决明斯基和帕伯特提出的问题的办法,从而给人工神经网络添加了活力,使其得以全面迅速地恢复发展起来。
1987年6月在美国圣地亚哥召开了第一届世界神经网络会议,标志着神经网络研究在世界范围内形成了高潮。
进入90年代后,神经网络的国际会议连接不断。
1989年我国在广州召开了全国第一届神经网络信号处理会议1991年在南京召开了第三、四、五、六届C2N2大会。
智能控制作为一门新兴的交叉学科,在许多方面都优于传统控制,而智能控制中的人工神经网络由于模仿人类的神经网络,具有感知识别、学习、联想、记忆、推理等智能,更是有着广阔的发展前景。
其中最核心的是反向传播网络(Back Propagation Network),简称BP 网络。
本文介绍BP神经网络,并用两类不同的数据对该神经网络进行训练,然后运用训练后的网络对字符进行识别。
1011。