BP神经网络实验 Matlab

合集下载

基于遗传算法的BP神经网络MATLAB代码

基于遗传算法的BP神经网络MATLAB代码

基于遗传算法的BP神经网络MATLAB代码以下是基于遗传算法的BP神经网络的MATLAB代码,包括网络初始化、适应度计算、交叉运算、突变操作和迭代训练等。

1.网络初始化:```matlabfunction net = initialize_network(input_size, hidden_size, output_size)net.input_size = input_size;net.hidden_size = hidden_size;net.output_size = output_size;net.hidden_weights = rand(hidden_size, input_size);net.output_weights = rand(output_size, hidden_size);net.hidden_biases = rand(hidden_size, 1);net.output_biases = rand(output_size, 1);end```2.适应度计算:```matlabfunction fitness = calculate_fitness(net, data, labels)output = forward_propagation(net, data);fitness = sum(sum(abs(output - labels)));end```3.前向传播:```matlabfunction output = forward_propagation(net, data)hidden_input = net.hidden_weights * data + net.hidden_biases;hidden_output = sigmoid(hidden_input);output_input = net.output_weights * hidden_output +net.output_biases;output = sigmoid(output_input);endfunction result = sigmoid(x)result = 1 ./ (1 + exp(-x));end```4.交叉运算:```matlabfunction offspring = crossover(parent1, parent2)point = randi([1 numel(parent1)]);offspring = [parent1(1:point) parent2((point + 1):end)]; end```5.突变操作:```matlabfunction mutated = mutation(individual, mutation_rate) for i = 1:numel(individual)if rand < mutation_ratemutated(i) = rand;elsemutated(i) = individual(i);endendend```6.迭代训练:```matlabfunction [best_individual, best_fitness] =train_network(data, labels, population_size, generations, mutation_rate)input_size = size(data, 1);hidden_size = round((input_size + size(labels, 1)) / 2);output_size = size(labels, 1);population = cell(population_size, 1);for i = 1:population_sizepopulation{i} = initialize_network(input_size, hidden_size, output_size);endbest_individual = population{1};best_fitness = calculate_fitness(best_individual, data, labels);for i = 1:generationsfor j = 1:population_sizefitness = calculate_fitness(population{j}, data, labels);if fitness < best_fitnessbest_individual = population{j};best_fitness = fitness;endendselected = selection(population, data, labels);for j = 1:population_sizeparent1 = selected{randi([1 numel(selected)])};parent2 = selected{randi([1 numel(selected)])};offspring = crossover(parent1, parent2);mutated_offspring = mutation(offspring, mutation_rate);population{j} = mutated_offspring;endendendfunction selected = selection(population, data, labels) fitnesses = zeros(length(population), 1);for i = 1:length(population)fitnesses(i) = calculate_fitness(population{i}, data, labels);end[~, indices] = sort(fitnesses);selected = population(indices(1:floor(length(population) / 2)));end```这是一个基于遗传算法的简化版BP神经网络的MATLAB代码,使用该代码可以初始化神经网络并进行迭代训练,以获得最佳适应度的网络参数。

BP神经网络原理及其MATLAB应用

BP神经网络原理及其MATLAB应用

BP神经网络原理及其MATLAB应用BP神经网络(Back Propagation Neural Network)是一种基于梯度下降算法的人工神经网络模型,具有较广泛的应用。

它具有模拟人类神经系统的记忆能力和学习能力,可以用来解决函数逼近、分类和模式识别等问题。

本文将介绍BP神经网络的原理及其在MATLAB中的应用。

BP神经网络的原理基于神经元间的权值和偏置进行计算。

一个标准的BP神经网络通常包含三层:输入层、隐藏层和输出层。

输入层负责接收输入信息,其节点数与输入维度相同;隐藏层用于提取输入信息的特征,其节点数可以根据具体问题进行设定;输出层负责输出最终的结果,其节点数根据问题的要求决定。

BP神经网络的训练过程可以分为前向传播和反向传播两个阶段。

前向传播过程中,输入信息逐层传递至输出层,通过对神经元的激活函数进行计算,得到神经网络的输出值。

反向传播过程中,通过最小化损失函数的梯度下降算法,不断调整神经元间的权值和偏置,以减小网络输出与实际输出之间的误差,达到训练网络的目的。

在MATLAB中,可以使用Neural Network Toolbox工具箱来实现BP神经网络。

以下是BP神经网络在MATLAB中的应用示例:首先,需导入BP神经网络所需的样本数据。

可以使用MATLAB中的load函数读取数据文件,并将其分为训练集和测试集:```data = load('dataset.mat');inputs = data(:, 1:end-1);targets = data(:, end);[trainInd, valInd, testInd] = dividerand(size(inputs, 1), 0.6, 0.2, 0.2);trainInputs = inputs(trainInd, :);trainTargets = targets(trainInd, :);valInputs = inputs(valInd, :);valTargets = targets(valInd, :);testInputs = inputs(testInd, :);testTargets = targets(testInd, :);```接下来,可以使用MATLAB的feedforwardnet函数构建BP神经网络模型,并进行网络训练和测试:```hiddenLayerSize = 10;net = feedforwardnet(hiddenLayerSize);net = train(net, trainInputs', trainTargets');outputs = net(testInputs');```最后,可以使用MATLAB提供的performance函数计算网络的性能指标,如均方误差、相关系数等:```performance = perform(net, testTargets', outputs);```通过逐步调整网络模型的参数和拓扑结构,如隐藏层节点数、学习率等,可以进一步优化BP神经网络的性能。

BP神经网络matlab详细参数

BP神经网络matlab详细参数

BP神经⽹络matlab详细参数基于matlab BP 神经⽹络参数详解(1)⽣成BP ⽹络(,[1 2...],{ 1 2...},,,)net newff PR S S SNl TF TF TFNl BTF BLF PF =PR :由R 维的输⼊样本最⼩最⼤值构成的2R ?维矩阵。

[1 2...]S S SNl :各层的神经元个数。

{ 1 2...}TF TF TFNl :各层的神经元传递函数。

BTF :训练⽤函数的名称。

(2)⽹络训练[,,,,,] (,,,,,,)net tr Y E Pf Af train net P T Pi Ai VV TV =(3)⽹络仿真[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T =BP ⽹络的训练函数训练⽅法训练函数梯度下降法traingd 有动量的梯度下降法 traingdm ⾃适应lr 梯度下降法traingda⾃适应lr 动量梯度下降法 traingdx 弹性梯度下降法 trainrpFletcher-Reeves 共轭梯度法traincgfPloak-Ribiere 共轭梯度法 traincgp Powell-Beale 共轭梯度法 traincgb 量化共轭梯度法trainscg拟⽜顿算法trainbfg⼀步正割算法trainoss Levenberg-Marquardt trainlmBP⽹络训练参数训练参数参数介绍训练函数net.trainParam.epochs最⼤训练次数(缺省为10)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.goal训练要求精度(缺省为0)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.lr学习率(缺省为0.01)traingd、traingdm、traingda、traingdx、trainrp、traincgf、trainscg、trainbfg、trainoss、trainlmnet.trainParam.max_fail最⼤失败次数(缺省为5)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.min_grad最⼩梯度要求(缺省为1e-10)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.show显⽰训练迭代过程(NaN表⽰不显⽰,缺省为25)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.time最⼤训练时间(缺省为inf)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.mc动量因⼦(缺省0.9)traingdm、traingdxnet.trainParam.lr_inc学习率lr增长⽐(缺省为1.05)traingda、traingdxnet.trainParam.lr_dec学习率lr下降⽐(缺省为0.7)traingda、traingdxnet.trainParam.max_perf_inc表现函数增加最⼤⽐(缺省为1.04)net.trainParam.delt_inc权值变化增加量(缺省为1.2)trainrpnet.trainParam.delt_dec权值变化减⼩量(缺省为0.5)trainrpnet.trainParam.delt0初始权值变化(缺省为0.07)trainrpnet.trainParam.deltamax权值变化最⼤值(缺省为50.0)trainrpnet.trainParam.searchFcn⼀维线性搜索⽅法(缺省为srchcha)traincgf、traincgp、traincgb、trainbfg、trainoss net.trainParam.sigma因为⼆次求导对权值trainscg调整的影响参数(缺省值5.0e-5)/doc/cd3ed4b6f5335a8102d220e4.html mbda trainscgHessian矩阵不确定性调节参数(缺省为5.0e-7)net.trainParam.men_redtrainlm控制计算机内存/速uc度的参量,内存较⼤设为1,否则设为2(缺省为1)net.trainParam.mu trainlmµ的初始值(缺省为0.001)net.trainParam.mu_dec trainlmµ的减⼩率(缺省为0.1)net.trainParam.mu_inc trainlmµ的增长率(缺省为10)net.trainParam.mu_max trainlmµ的最⼤值(缺省为1e10)。

BP神经网络预测的matlab代码

BP神经网络预测的matlab代码

BP神经网络预测的matlab代码附录5:BP神经网络预测的matlab代码: P=[ 00.13860.21970.27730.32190.35840.38920.41590.43940.46050.47960.49700.52780.55450.59910.60890.61820.62710.63560.64380.65160.65920.66640.67350.72220.72750.73270.73780.74270.74750.75220.75680.76130.76570.7700]T=[0.4455 0.323 0.4116 0.3255 0.4486 0.2999 0.4926 0.2249 0.48930.2357 0.4866 0.22490.4819 0.2217 0.4997 0.2269 0.5027 0.217 0.5155 0.1918 0.5058 0.2395 0.4541 0.2408 0.4054 0.2701 0.3942 0.3316 0.2197 0.2963 0.5576 0.1061 0.4956 0.267 0.5126 0.2238 0.5314 0.2083 0.5191 0.208 0.5133 0.18480.5089 0.242 0.4812 0.2129 0.4927 0.287 0.4832 0.2742 0.5969 0.24030.5056 0.2173 0.5364 0.1994 0.5278 0.2015 0.5164 0.2239 0.4489 0.2404 0.4869 0.2963 0.4898 0.1987 0.5075 0.2917 0.4943 0.2902 ]threshold=[0 1]net=newff(threshold,[11,2],{'tansig','logsig'},'trainlm');net.trainParam.epochs=6000net.trainParam.goal=0.01LP.lr=0.1;net=train(net,P',T')P_test=[ 0.77420.77840.78240.78640.79020.7941 ] out=sim(net,P_test')友情提示:以上面0.7742为例0.7742=ln(47+1)/5因为网络输入有一个元素,对应的是测试时间,所以P只有一列,Pi=log(t+1)/10,这样做的目的是使得这些数据的范围处在[0 1]区间之内,但是事实上对于logsin命令而言输入参数是正负区间的任意值,而将输出值限定于0到1之间。

标准的BP神经网络算法程序MATLAB

标准的BP神经网络算法程序MATLAB

count=1;
while (count<=maxcount) %结束条件1迭代1000次
c=1;
while (c<=samplenum)
for k=1:outputNums
d(k)=expectlist(c,k); %获得期望输出的向量,d(1:3)表示一个期望向量内 的值
end
break;
end
count=count+1;%训练次数加1
end%第一个while结束
error(maxcount+1)=error(maxcount);
p=1:count;
pp=p/50;
plot(pp,error(p),"-"); %显示误差
deltv(i,j)=alpha*yitay(j)*x(i); %同上deltw
v(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j);
dv(i,j)=deltv(i,j);
end
end
c=c+1;
end%第二个while结束;表示一次BP训练结束
double tmp;
for i=1:inputNums
x(i)=samplelist(c,i); %获得输入的向量(数据),x(1:3)表一个训练向量
字串4
end
%Forward();
for j=1:hideNums
net=0.0;
for i=1:inputNums
net=net+x(i)*v(i,j);
dw=zeros(hideNums,outputNums); %10*3

BP神经网络matlab教程

BP神经网络matlab教程
第二步随机选取第个输入样本及对应期望输出第三步计算隐含层各神经元的输入和输出第四步利用网络期望输出和实际输出计算误差函数对输出层的各神经元的偏导hohoyiyiihih第五步利用隐含层到输出层的连接权值输出层的和隐含层的输出计算误差函数对隐含层各神经元的偏导数hohoihih第八步计算全局误差第九步判断网络误差是否满足要求
w
N 1 ho
w o (k )hoh (k )
N ho
2.4.2 BP网络的标准学习算法
第七步,利用隐含层各神经元的 h (k )和 输入层各神经元的输入修正连接权。
e e hih (k ) wih (k ) h (k ) xi (k ) wih hih (k ) wih w
p
i 1
h 1,2,
o 1,2,
,p
q
yio (k ) whohoh (k ) bo
o 1,2,
yoo (k ) f( yio (k ))
h 1
q
2.4.2 BP网络的标准学习算法
第四步,利用网络期望输出和实际输出, 计算误差函数对输出层的各神经元的偏导 o (k ) 数 。 ( w ho (k ) b ) e e yio yi (k )
输入样本---输入层---各隐层---输出层
判断是否转入反向传播阶段:
若输出层的实际输出与期望的输出(教师信号)不 符
误差反传
误差以某种形式在各层表示----修正各层单元 的权值
网络输出的误差减少到可接受的程度 进行到预先设定的学习次数为止
2.4.2 BP网络的标准学习算法
网络结构 输入层有n个神经元,隐含层有p个神经元, 输出层有q个神经元 变量定义 x x1, x2 , , xn 输入向量; 隐含层输入向量; hi hi1 , hi2 , , hi p 隐含层输出向量; ho ho1 , ho2 , , ho p 输出层输入向量; yi yi1 , yi2 , , yiq 输出层输出向量; yo yo1 , yo2 , , yoq 期望输出向量; d o d1 , d 2 , , d q

BP神经网络matlab实现的基本步骤

BP神经网络matlab实现的基本步骤

1、数据归一化2、数据分类,主要包括打乱数据顺序,抽取正常训练用数据、变量数据、测试数据3、建立神经网络,包括设置多少层网络(一般3层以内既可以,每层的节点数(具体节点数,尚无科学的模型和公式方法确定,可采用试凑法,但输出层的节点数应和需要输出的量个数相等),设置隐含层的传输函数等。

关于网络具体建立使用方法,在后几节的例子中将会说到。

4、指定训练参数进行训练,这步非常重要,在例子中,将详细进行说明5、完成训练后,就可以调用训练结果,输入测试数据,进行测试6、数据进行反归一化7、误差分析、结果预测或分类,作图等数据归一化问题归一化的意义:首先说一下,在工程应用领域中,应用BP网络的好坏最关键的仍然是输入特征选择和训练样本集的准备,若样本集代表性差、矛盾样本多、数据归一化存在问题,那么,使用多复杂的综合算法、多精致的网络结构,建立起来的模型预测效果不会多好。

若想取得实际有价值的应用效果,从最基础的数据整理工作做起吧,会少走弯路的。

归一化是为了加快训练网络的收敛性,具体做法是:1 把数变为(0,1)之间的小数主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。

2 把有量纲表达式变为无量纲表达式归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量比如,复数阻抗可以归一化书写:Z = R + jωL = R(1 + jωL/R) ,复数部分变成了纯数量了,没有量纲。

另外,微波之中也就是电路分析、信号系统、电磁波传输等,有很多运算都可以如此处理,既保证了运算的便捷,又能凸现出物理量的本质含义。

神经网络归一化方法:由于采集的各数据单位不一致,因而须对数据进行[-1,1]归一化处理,归一化方法主要有如下几种,供大家参考:1、线性函数转换,表达式如下:复制内容到剪贴板代码:y=(x-MinValue)/(MaxValue-MinValue)说明:x、y分别为转换前、后的值,MaxValue、MinValue分别为样本的最大值和最小值。

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)BP(Back Propagation)神经网络是一种常用的人工神经网络结构,用于解决分类和回归问题。

在本文中,将详细介绍如何使用MATLAB实现BP神经网络的实验。

首先,需要准备一个数据集来训练和测试BP神经网络。

数据集可以是一个CSV文件,每一行代表一个样本,每一列代表一个特征。

一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。

在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集划分为输入和输出。

假设数据集的前几列是输入特征,最后一列是输出。

可以使用以下代码来实现:```matlabdata = csvread('dataset.csv');input = data(:, 1:end-1);output = data(:, end);```然后,需要创建一个BP神经网络模型。

可以使用MATLAB的`patternnet`函数来创建一个全连接的神经网络模型。

该函数的输入参数为每个隐藏层的神经元数量。

下面的代码创建了一个具有10个隐藏神经元的单隐藏层BP神经网络:```matlabhidden_neurons = 10;net = patternnet(hidden_neurons);```接下来,需要对BP神经网络进行训练。

可以使用`train`函数来训练模型。

该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。

下面的代码展示了如何使用`train`函数来训练模型:```matlabnet = train(net, input_train, output_train);```训练完成后,可以使用训练好的BP神经网络进行预测。

可以使用`net`模型的`sim`函数来进行预测。

下面的代码展示了如何使用`sim`函数预测测试集的输出:```matlaboutput_pred = sim(net, input_test);```最后,可以使用各种性能指标来评估预测的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算智能实验报告
实验名称:BP神经网络算法实验
班级名称: 2010级软工三班
专业:软件工程
姓名:李XX
学号: XXXXXX*******
一、实验目的
1)编程实现BP神经网络算法;
2)探究BP算法中学习因子算法收敛趋势、收敛速度之间的关系;
3)修改训练后BP神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果,理解神经网络分布存储等特点。

二、实验要求
按照下面的要求操作,然后分析不同操作后网络输出结果。

1)可修改学习因子
2)可任意指定隐单元层数
3)可任意指定输入层、隐含层、输出层的单元数
4)可指定最大允许误差ε
5)可输入学习样本(增加样本)
6)可存储训练后的网络各神经元之间的连接权值矩阵;
7)修改训练后的BP神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果。

三、实验原理
1 明确BP神经网络算法的基本思想如下:
在BPNN中,后向传播是一种学习算法,体现为BPNN的训练过程,该过程是需要教师指导的;前馈型网络是一种结构,体现为BPNN的网络构架
反向传播算法通过迭代处理的方式,不断地调整连接神经元的网络权重,使得最终输出结果和预期结果的误差最小
BPNN是一种典型的神经网络,广泛应用于各种分类系统,它也包括了训练和使用两个阶段。

由于训练阶段是BPNN能够投入使用的基础和前提,而使用阶段本身是一个非常简单的过程,也就是给出输入,BPNN会根据已经训练好的参数进行运算,得到输出结果
2 明确BP神经网络算法步骤和流程如下:
1初始化网络权值
2由给定的输入输出模式对计算隐层、输出层各单元输出
3计算新的连接权及阀值,
4选取下一个输入模式对返回第2步反复训练直到网络设输出误差达到要求结束训练。

四、实验内容和分析
1.实验时建立三层BP神经网络,输入节点2个,隐含层节点2个,输出节
输入值输出
0.0 0.0 0.0
0.0 1.0 1.0
1.0 0.0 1.0
1.0 1.0 0.0
代码:
P=[0.0 0.0 1.0 1.0;0.0 1.0 0.0 1.0];%输入量矩阵
T=[0.0 1.0 1.0 0.0];%输出量矩阵
net=newff(minmax(P),T,[2 1],{'tansig','purelin'},'traingd');%创建名为net的BP神经网络
inputWeights=net.IW{1,1};%输入层与隐含层的连接权重
inputbias=net.b{2};%输入层与隐含层的阈值
net.trainParam.epochs=5000;%网络参数:最大训练次数为5000次
net.trainParam.goal=0.01;%网络参数:训练精度为0.001 net.trainparam.lr=0.5;%网络参数:学习设置率为0.5
net.trainParam.mc=0.6; %动量
[net,tr]=train(net,P,T); %训练
A=sim(net,P); %仿真
E=T-A; %误差
MSE=mse(E); %均方误差
训练结果:
训练次数5000,全局误差0.008364
2.输入测试样本为
输入层与隐含层连接权值为 隐含层与输出层连接权值为 隐含层神经元阈值为
输出层神经元阈值为
可见网络性能良好,输出结果基本满足识别要求。

3.改变学习因子
学习因子决定每一次循环训练中所产生的权值变化量。

大的学习因子可能导致系统的不稳定;但小的学习因子导致较长的训练时间,可能收敛很慢,不过能保证网络的误差值不跳出误差表面的低谷而最终趋于误差最小值。

所以一般情况下倾向于选取较小的学习速率以保证系统的稳定性。

4.改变输入层、隐含层、输出层的单元数
当隐含层节点个数为3时,相同训练样本和测试样本,得到测试结果为
net=newff(minmax(P),T,[3 1],{'tansig','purelin'},'traingd');%创建名为net的BP神经网络
训练次数5000,全局误差0.004126
可见,改变输入层、隐含层、输出层的单元数,即改变网络结构,可以改善网络性能,增加隐含层节点个数可以更好的提取模式特征,识别结果更精确,但网络复杂度增加,可能不稳定。

5.最大允许误差ε控制网络识别精度。

提高,但可能导致网络无法收敛到允许的误差范围。

net.trainParam.lr=0.05;
6.增加学习样本
在基本实验的基础上,增加一个学习样本0.1 1.0 1.0后,训练次数变增加为18982,全局误差为0.0099993,相同测试样本,测试结果为
在基本实验的基础上,增加一个学习样本0.1 1.0 1.0后,训练次数变增加为20000,全局误差为0.12568,相同测试样本,测试结果为
网络学习速度降低,识别精度大大提高。

另外,改变学习样本个数,将改变原有训练结果。

7.改变部分连接权值
网络性能被改变。

四、实验小结
通过这次实验,我对BP神经网络有了更为重要的理解。

明白了BP神经网络算法的基本步骤,会运用Matlab构建简单的BP神经网络。

同时,了解了BP神经网络各个参数的意义。

在实验过程中,通过改变参数的值,调整BP神经网络的输出结果。

相关文档
最新文档