Matlab神经网络30个案例第16案例代码
在Matlab中实现神经网络的方法与实例

在Matlab中实现神经网络的方法与实例神经网络是一种模拟人类大脑神经系统的计算模型,它能够通过学习数据的模式和关联性来解决各种问题。
在计算机科学和人工智能领域,神经网络被广泛应用于图像识别、自然语言处理、预测等任务。
而Matlab作为一种功能强大的科学计算软件,提供了一套完善的工具箱,可以方便地实现神经网络的建模和训练。
本文将介绍在Matlab中实现神经网络的方法与实例。
首先,我们会简要介绍神经网络的基本原理和结构,然后详细讲解在Matlab中如何创建并训练神经网络模型,最后通过几个实例展示神经网络在不同领域的应用。
一、神经网络的原理和结构神经网络模型由神经元和它们之间的连接构成。
每个神经元接收输入信号,并通过权重和偏置进行加权计算,然后使用激活函数对结果进行非线性变换。
这样,神经网络就能够模拟复杂的非线性关系。
常见的神经网络结构包括前馈神经网络(Feedforward Neural Network)和循环神经网络(Recurrent Neural Network)。
前馈神经网络是最基本的结构,信号只能向前传递,输出不对网络进行反馈;而循环神经网络具有反馈连接,可以对自身的输出进行再处理,适用于序列数据的建模。
神经网络的训练是通过最小化损失函数来优化模型的参数。
常用的训练算法包括梯度下降法和反向传播算法。
其中,梯度下降法通过计算损失函数对参数的梯度来更新参数;反向传播算法是梯度下降法在神经网络中的具体应用,通过反向计算梯度来更新网络的权重和偏置。
二、在Matlab中创建神经网络模型在Matlab中,可以通过Neural Network Toolbox来创建和训练神经网络模型。
首先,我们需要定义神经网络的结构,包括输入层、隐藏层和输出层的神经元数量,以及每个神经元之间的连接权重。
例如,我们可以创建一个三层的前馈神经网络模型:```matlabnet = feedforwardnet([10 8]);```其中,`[10 8]`表示隐藏层的神经元数量分别为10和8。
MatLab神经网络仿真实例

主要内容
• 单层感知机 • 自适应线性神经元
单层感知机(1)
• 例1:使用单层感知器实现与门、或门
例1:单层感知机,与门(1)
P=[0 0 1 1;0 1 0 1] T=[0 0 0 1] plotpv(P,T) Bound=[-1 1;-1 1] nn=1 net=newp(Bound,nn) watchon plotpv(P,T) linehandle=plotpc(net.iw{1},net.b{1}) E=1 while(sse(E)) [net,Y,E]=adapt(net,P,T) linehandle=plotpc(net.iw{1},net.b{1},linehandle) drawnow pause end pause watchoff
例5:自适应线性元(3)
P3=[P1 P2] T3=[T1 T2] net=init(net) net.trainParam.epochs=2000 net.trainParam.goal=0.001 net=train(net,P3,T3) Y=sim(net,[P1 P2])
例6:自适应线性网络的学习
• 观察在不同学习率情形下的收敛情况
P=[1 1.5 1.2 -0.3;-1 2 3 -0.5;2 1 -1.6 0.9] T=[0.5 3 -2.2 1.4;1.1 -1.2 1.7 -0.4;3 0.2 -1.8 -0.4;-1 0.2 -1.0 0.6] Maxlr=maxlinlr(P) net=newlin([-3 3;-3 3;-3 3],4 ,0, 2*Maxlr) net=init(net) net.trainParam.epochs=50000 net.trainParam.goal=1e-8 net=train(net,P,T) Y=sim(net,P)
《精通Matlab神经网络》例10-16的新写法

《精通Matlab神经⽹络》例10-16的新写法
《精通Matlab神经⽹络》书中⽰例10-16,在创建BP⽹络时,原来的写法是:
net = newff(minmax(alphabet),[S1 S2],{'logsig' 'logsig'},'traingdx');
因为运⾏过程中有提⽰,⾃然想改成新写法(参考之前的随笔《》):
net = newff(alphabet, targets, S1, {'logsig', 'logsig'}, 'traingdx');
net.divideFcn = '';
很不幸的是,结局惨不忍睹:
于是开始对⽐研究……最终发现,新式写法还需要去掉输⼊输出的处理函数。
于是,到⽬前为⽌,为了让新式写法等价于旧式写法,在newff()之后还需要添加以下⼏笔:
net.divideFcn = '';
net.inputs{1}.processFcns = {};
net.outputs{2}.processFcns = {}; % 若有n个隐层,则此处下标为n+1
【浅析】新式实现中,newff()的默认处理函数有:fixunknowns, removeconstantrows, mapminmax。
其中罪魁祸⾸是mapminmax,因为它把[0,1]的输⼊数据映射到了[-1,1]区间。
⽽
我们根据问题的实际情况,即⼆值图像像素值范围是[0,1],从⽽使⽤了定义域也[0,1]的传递函数logsig(),和mapminmax()是不匹配的。
30个智能算法matlab代码

30个智能算法matlab代码以下是30个使用MATLAB编写的智能算法的示例代码: 1. 线性回归算法:matlab.x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];coefficients = polyfit(x, y, 1);predicted_y = polyval(coefficients, x);2. 逻辑回归算法:matlab.x = [1, 2, 3, 4, 5];y = [0, 0, 1, 1, 1];model = fitglm(x, y, 'Distribution', 'binomial'); predicted_y = predict(model, x);3. 支持向量机算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3];y = [1, 1, -1, -1, -1];model = fitcsvm(x', y');predicted_y = predict(model, x');4. 决策树算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = fitctree(x', y');predicted_y = predict(model, x');5. 随机森林算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = TreeBagger(50, x', y');predicted_y = predict(model, x');6. K均值聚类算法:matlab.x = [1, 2, 3, 10, 11, 12]; y = [1, 2, 3, 10, 11, 12]; data = [x', y'];idx = kmeans(data, 2);7. DBSCAN聚类算法:matlab.x = [1, 2, 3, 10, 11, 12]; y = [1, 2, 3, 10, 11, 12]; data = [x', y'];epsilon = 2;minPts = 2;[idx, corePoints] = dbscan(data, epsilon, minPts);8. 神经网络算法:matlab.x = [1, 2, 3, 4, 5];y = [0, 0, 1, 1, 1];net = feedforwardnet(10);net = train(net, x', y');predicted_y = net(x');9. 遗传算法:matlab.fitnessFunction = @(x) x^2 4x + 4;nvars = 1;lb = 0;ub = 5;options = gaoptimset('PlotFcns', @gaplotbestf);[x, fval] = ga(fitnessFunction, nvars, [], [], [], [], lb, ub, [], options);10. 粒子群优化算法:matlab.fitnessFunction = @(x) x^2 4x + 4;nvars = 1;lb = 0;ub = 5;options = optimoptions('particleswarm', 'PlotFcn',@pswplotbestf);[x, fval] = particleswarm(fitnessFunction, nvars, lb, ub, options);11. 蚁群算法:matlab.distanceMatrix = [0, 2, 3; 2, 0, 4; 3, 4, 0];pheromoneMatrix = ones(3, 3);alpha = 1;beta = 1;iterations = 10;bestPath = antColonyOptimization(distanceMatrix, pheromoneMatrix, alpha, beta, iterations);12. 粒子群-蚁群混合算法:matlab.distanceMatrix = [0, 2, 3; 2, 0, 4; 3, 4, 0];pheromoneMatrix = ones(3, 3);alpha = 1;beta = 1;iterations = 10;bestPath = particleAntHybrid(distanceMatrix, pheromoneMatrix, alpha, beta, iterations);13. 遗传算法-粒子群混合算法:matlab.fitnessFunction = @(x) x^2 4x + 4;nvars = 1;lb = 0;ub = 5;gaOptions = gaoptimset('PlotFcns', @gaplotbestf);psOptions = optimoptions('particleswarm', 'PlotFcn',@pswplotbestf);[x, fval] = gaParticleHybrid(fitnessFunction, nvars, lb, ub, gaOptions, psOptions);14. K近邻算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = fitcknn(x', y');predicted_y = predict(model, x');15. 朴素贝叶斯算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = fitcnb(x', y');predicted_y = predict(model, x');16. AdaBoost算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3];y = [0, 0, 1, 1, 1];model = fitensemble(x', y', 'AdaBoostM1', 100, 'Tree'); predicted_y = predict(model, x');17. 高斯混合模型算法:matlab.x = [1, 2, 3, 4, 5]';y = [0, 0, 1, 1, 1]';data = [x, y];model = fitgmdist(data, 2);idx = cluster(model, data);18. 主成分分析算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; coefficients = pca(x');transformed_x = x' coefficients;19. 独立成分分析算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; coefficients = fastica(x');transformed_x = x' coefficients;20. 模糊C均值聚类算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; options = [2, 100, 1e-5, 0];[centers, U] = fcm(x', 2, options);21. 遗传规划算法:matlab.fitnessFunction = @(x) x^2 4x + 4; nvars = 1;lb = 0;ub = 5;options = optimoptions('ga', 'PlotFcn', @gaplotbestf);[x, fval] = ga(fitnessFunction, nvars, [], [], [], [], lb, ub, [], options);22. 线性规划算法:matlab.f = [-5; -4];A = [1, 2; 3, 1];b = [8; 6];lb = [0; 0];ub = [];[x, fval] = linprog(f, A, b, [], [], lb, ub);23. 整数规划算法:matlab.f = [-5; -4];A = [1, 2; 3, 1];b = [8; 6];intcon = [1, 2];[x, fval] = intlinprog(f, intcon, A, b);24. 图像分割算法:matlab.image = imread('image.jpg');grayImage = rgb2gray(image);binaryImage = imbinarize(grayImage);segmented = medfilt2(binaryImage);25. 文本分类算法:matlab.documents = ["This is a document.", "Another document.", "Yet another document."];labels = categorical(["Class 1", "Class 2", "Class 1"]);model = trainTextClassifier(documents, labels);newDocuments = ["A new document.", "Another new document."];predictedLabels = classifyText(model, newDocuments);26. 图像识别算法:matlab.image = imread('image.jpg');features = extractFeatures(image);model = trainImageClassifier(features, labels);newImage = imread('new_image.jpg');newFeatures = extractFeatures(newImage);predictedLabel = classifyImage(model, newFeatures);27. 时间序列预测算法:matlab.data = [1, 2, 3, 4, 5];model = arima(2, 1, 1);model = estimate(model, data);forecastedData = forecast(model, 5);28. 关联规则挖掘算法:matlab.data = readtable('data.csv');rules = associationRules(data, 'Support', 0.1);29. 增强学习算法:matlab.environment = rlPredefinedEnv('Pendulum');agent = rlDDPGAgent(environment);train(agent);30. 马尔可夫决策过程算法:matlab.states = [1, 2, 3];actions = [1, 2];transitionMatrix = [0.8, 0.1, 0.1; 0.2, 0.6, 0.2; 0.3, 0.3, 0.4];rewardMatrix = [1, 0, -1; -1, 1, 0; 0, -1, 1];policy = mdpPolicyIteration(transitionMatrix, rewardMatrix);以上是30个使用MATLAB编写的智能算法的示例代码,每个算法都可以根据具体的问题和数据进行相应的调整和优化。
Matlab神经网络经典实例

clearclcclose allwarning off%数据输入huanghe_p=[370 503 434 575 490 420 560 640 558 343 326 405 446 423 422 697 598 377 435 472 451 667 601 689 541 485 425 389 382 707 422];huanghe_t=[515 713 586 753 720 567 717 987 810 489 453 589 639 568 595 982 849 519 615 652 599 941 893 999 758 701 630 561 520 1040 535];%归一化处理p=(huanghe_p-min(huanghe_p))/(max(huanghe_p)-min(huanghe_p));t=(huanghe_t-min(huanghe_t))/(max(huanghe_t)-min(huanghe_t));%网络有关参数EPOCHS=10000;GOAL=0.000005;LR=0.01;MAX_FAIL=100;%建立bp神经网络,并训练,仿真。
其中输入为p,输出为t%-------------------------隐层神经元确定-----------------------------s=3:15;%s 为常向量,表示神经元的个数res=zeros(size(s));%res将要存储误差向量,这里先置零pn=[p(1:5);p(6:10);p(11:15);p(16:20)];tn=[t(1:5);t(6:10);t(11:15);t(16:20)];for i=1:length(s)%7.0版本使用下面代码%输出层的神经元个数必须等于tn的行数%每层的传递函数可以自己指定%创建了2层网路,隐层s(i)(任意);输出层4(由tn决定不可改,但需输入)%net=newff(minmax(pn),[s(i),4],{'tansig','purelin'},'trainlm');%%7.6版本使用下面的代码%输出层神经元由tn决定,不需要输入,我们只需要确定输入层和隐层的神经元个数%所有层的传递函数都可以自己定义%创建3层网络,输入层8(任意);隐层s(i)(任意);输出层4(由tn决定,不可改,不需要输入)%%其实两个版本的区别在于7.6的bp网络创建函数直接给出了t,故最后一层不需要指定了,故相同的参数时,7.6的会多一层%net=newff(pn,tn,[4,s(i)],{'tansig','tansig','purelin'},'trainlm');net.iw{1,1}=zeros(size(net.iw{1,1}))+0.5;net.lw{2,1}=zeros(size(net.lw{2,1}))+0.75;net.b{1,1}=zeros(size(net.b{1,1}))+0.5;net.b{2,1}=zeros(size(net.b{2,1}));net.trainParam.epochs=EPOCHS;net.trainParam.goal =GOAL;net.trainParam.lr=LR;net.trainParam.max_fail=MAX_FAIL;net=train(net,pn,tn);y=sim(net,pn);e=tn-y;error=mse(e,net);res(i)=norm(error);end%选取最优神经元数,number为使得误差最小的隐层神经元个数[ttmp2,ind]=min(res);no=s(ind);%选定隐层神经元数目后,建立网络,训练仿真。
MATLAB_智能算法30个案例分析

MATLAB_智能算法30个案例分析1.线性回归:使用MATLAB的回归工具箱,对给定的数据集进行线性回归分析,获取拟合的直线方程。
2.逻辑回归:使用MATLAB的分类工具箱,对给定的数据集进行逻辑回归分析,建立分类模型。
3.K均值聚类:使用MATLAB的聚类工具箱,对给定的数据集进行K 均值聚类算法,将数据集分为多个簇。
4.支持向量机:使用MATLAB的SVM工具箱,对给定的数据集进行支持向量机算法,建立分类或回归模型。
5.决策树:使用MATLAB的分类工具箱,对给定的数据集进行决策树分析,建立决策模型。
6.随机森林:使用MATLAB的分类和回归工具箱,对给定的数据集进行随机森林算法,集成多个决策树模型。
7. AdaBoost:使用MATLAB的分类工具箱,对给定的数据集进行AdaBoost算法,提升分类性能。
8.遗传算法:使用MATLAB的全局优化工具箱,利用遗传算法进行优化问题的求解。
9.粒子群优化:使用MATLAB的全局优化工具箱,利用粒子群优化算法进行优化问题的求解。
10.模拟退火算法:使用MATLAB的全局优化工具箱,利用模拟退火算法进行优化问题的求解。
11.神经网络:使用MATLAB的神经网络工具箱,构建和训练多层感知机模型。
12.卷积神经网络:使用MATLAB的深度学习工具箱,构建和训练卷积神经网络模型。
13.循环神经网络:使用MATLAB的深度学习工具箱,构建和训练循环神经网络模型。
14.长短期记忆网络:使用MATLAB的深度学习工具箱,构建和训练长短期记忆网络模型。
15.GAN(生成对抗网络):使用MATLAB的深度学习工具箱,构建和训练生成对抗网络模型。
16.自编码器:使用MATLAB的深度学习工具箱,构建和训练自编码器模型。
17.强化学习:使用MATLAB的强化学习工具箱,构建和训练强化学习模型。
18.关联规则挖掘:使用MATLAB的数据挖掘工具箱,发现数据中的关联规则。
matlab 通用神经网络代码

matlab 通用神经网络代码学习了一段时间的神经网络,总结了一些经验,在这愿意和大家分享一下,希望对大家有帮助,也希望大家可以把其他神经网络的通用代码在这一起分享感应器神经网络、线性网络、BP神经网络、径向基函数网络%通用感应器神经网络。
P=[ -40; 1 50];%输入向量T=[1 1 0 0 1];%期望输出plotpv(P,T);%描绘输入点图像net=newp([-40 1;-1 50],1);%生成网络,其中参数分别为输入向量的范围和神经元感应器数量hold onlinehandle=plotpc{1},{1});a=1:25%训练次数[net,Y,E]=adapt(net,P,T);linehandle=plotpc{1},{1},linehandle);drawnow;end%通用newlin程序%通用线性网络进行预测time=0::5;T=sin(time*4*pi);Q=length(T);P=zeros(5,Q);%P中存储信号T的前5(可变,根据需要而定)次值,作为网络输入。
P(1,2:Q)=T(1,1:(Q-1));P(2,3:Q)=T(1,1:(Q-2));P(3,4:Q)=T(1,1:(Q-3));P(4,5:Q)=T(1,1:(Q-4));P(5,6:Q)=T(1,1:(Q-5));plot(time,T)%绘制信号T曲线xlabel('时间');ylabel('目标信号');title('待预测信号');net=newlind(P,T);%根据输入和期望输出直接生成线性网络a=sim(net,P);%网络测试figure(2)plot(time,a,time,T,'+')xlabel('时间');ylabel('输出-目标+');title('输出信号和目标信号');e=T-a;figure(3)plot(time,e)hold onplot([min(time) max(time)],[0 0],'r:')%可用plot(x,zeros(size(x)),'r:')代替hold offxlabel('时间');ylabel('误差');title('误差信号');%通用BP神经网络P=[-1 -1 2 2;0 5 0 5];t=[-1 -1 1 1];net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingd');%输入参数依次为:'样本P范围',[各层神经元数目],{各层传递函数},'训练函数'%训练函数traingd--梯度下降法,有7个训练参数.%训练函数traingdm--有动量的梯度下降法,附加1个训练参数mc(动量因子,缺省为%训练函数traingda--有自适应lr的梯度下降法,附加3个训练参数:lr_inc(学习率增长比,缺省为;% lr_dec(学习率下降比,缺省为;max_perf_inc(表现函数增加最大比,缺省为%训练函数traingdx--有动量的梯度下降法中赋以自适应lr的方法,附加traingdm和traingda 的4个附加参数%训练函数trainrp--弹性梯度下降法,可以消除输入数值很大或很小时的误差,附加4个训练参数:% delt_inc(权值变化增加量,缺省为;delt_dec(权值变化减小量,缺省为;% delta0(初始权值变化,缺省为;deltamax(权值变化最大值,缺省为% 适合大型网络%训练函数traincgf--Fletcher-Reeves共轭梯度法;训练函数traincgp--Polak-Ribiere共轭梯度法; %训练函数traincgb--Powell-Beale共轭梯度法%共轭梯度法占用存储空间小,附加1训练参数searchFcn(一维线性搜索方法,缺省为srchcha);缺少1个训练参数lr%训练函数trainscg--量化共轭梯度法,与其他共轭梯度法相比,节约时间.适合大型网络% 附加2个训练参数:sigma(因为二次求导对权值调整的影响参数,缺省为; % lambda(Hessian阵不确定性调节参数,缺省为% 缺少1个训练参数:lr%训练函数trainbfg--BFGS拟牛顿回退法,收敛速度快,但需要更多内存,与共轭梯度法训练参数相同,适合小网络%训练函数trainoss--一步正割的BP训练法,解决了BFGS消耗内存的问题,与共轭梯度法训练参数相同%训练函数trainlm--Levenberg-Marquardt训练法,用于内存充足的中小型网络net=init(net);%最大训练次数(前缺省为10,自trainrp后,缺省为100)%学习率(缺省为%限时训练迭代过程(NaN表示不显示,缺省为25)%训练要求精度(缺省为0)% 最大失败次数(缺省为5)% 最小梯度要求(前缺省为1e-10,自trainrp后,缺省为1e-6)% 最大训练时间(缺省为inf)[net,tr]=train(net,P,t); %网络训练a=sim(net,P) %网络仿真%通用径向基函数网络——%其在逼近能力,分类能力,学习速度方面均优于BP神经网络%在径向基网络中,径向基层的散步常数是spread的选取是关键%spread越大,需要的神经元越少,但精度会相应下降,spread的缺省值为1%可以通过net=newrbe(P,T,spread)生成网络,且误差为0%可以通过net=newrb(P,T,goal,spread)生成网络,神经元由1开始增加,直到达到训练精度或神经元数目最多为止%GRNN网络,迅速生成广义回归神经网络(GRNN)P=[4 5 6];T=[ ];net=newgrnn(P,T);%仿真验证p=;v=sim(net,p)%PNN网络,概率神经网络P=[0 0 ;1 1;0 3;1 4;3 1;4 1;4 3]';Tc=[1 1 2 2 3 3 3];%将期望输出通过ind2vec()转换,并设计、验证网络T=ind2vec(Tc);net=newpnn(P,T);Y=sim(net,P);Yc=vec2ind(Y)%尝试用其他的输入向量验证网络P2=[1 4;0 1;5 2]';Y=sim(net,P2);Yc=vec2ind(Y)%应用newrb()函数构建径向基网络,对一系列数据点进行函数逼近P=-1::1;T=[ ......];%绘制训练用样本的数据点plot(P,T,'r*');title('训练样本');xlabel('输入向量P');ylabel('目标向量T');%设计一个径向基函数网络,网络有两层,隐层为径向基神经元,输出层为线性神经元%绘制隐层神经元径向基传递函数的曲线p=-3:.1:3;a=radbas(p);plot(p,a)title('径向基传递函数')xlabel('输入向量p')%隐层神经元的权值、阈值与径向基函数的位置和宽度有关,只要隐层神经元数目、权值、阈值正确,可逼近任意函数%例如a2=radbas;a3=radbas(p+2);a4=a+a2*+a3*;plot(p,a,'b',p,a2,'g',p,a3,'r',p,a4,'m--')title('径向基传递函数权值之和')xlabel('输入p');ylabel('输出a');%应用newrb()函数构建径向基网络的时候,可以预先设定均方差精度eg以及散布常数sceg=;sc=1; %其值的选取与最终网络的效果有很大关系,过小造成过适性,过大造成重叠性net=newrb(P,T,eg,sc);%网络测试plot(P,T,'*')xlabel('输入');X=-1:.01:1;Y=sim(net,X);hold onplot(X,Y);hold offlegend('目标','输出')%应用grnn进行函数逼近P=[1 2 3 4 5 6 7 8];T=[0 1 2 3 2 1 2 1];plot(P,T,'.','markersize',30)axis([0 9 -1 4])title('待逼近函数')xlabel('P')ylabel('T')%网络设计%对于离散数据点,散布常数spread选取比输入向量之间的距离稍小一些spread=;net=newgrnn(P,T,spread);%网络测试A=sim(net,P);hold onoutputline=plot(P,A,'o','markersize',10,'color',[1 0 0]);title('检测网络')xlabel('P')ylabel('T和A')%应用pnn进行变量的分类P=[1 2;2 2;1 1]; %输入向量Tc=[1 2 3]; %P对应的三个期望输出%绘制出输入向量及其相对应的类别plot(P(1,:),P(2,:),'.','markersize',30)for i=1:3text(P(1,i)+,P(2,i),sprintf('class %g',Tc(i))) endaxis([0 3 0 3]);title('三向量及其类别')xlabel('P(1,:)')ylabel('P(2,:)')%网络设计T=ind2vec(Tc);spread=1;net=newgrnn(P,T,speard);%网络测试A=sim(net,P);Ac=vec2ind(A);%绘制输入向量及其相应的网络输出plot(P(1,:),P(2,:),'.','markersize',30)for i=1:3text(P(1,i)+,P(2,i),sprintf('class %g',Ac(i))) endaxis([0 3 0 3]);title('网络测试结果')xlabel('P(1,:)')ylabel('P(2,:)')。
MATLAB_智能算法30个案例分析

MATLAB_智能算法30个案例分析MATLAB是一种强大的数值计算和编程工具,教育和科研领域中广泛应用于数据分析、机器学习和智能算法的研究。
在本文中,我们将介绍30个MATLAB智能算法的案例分析,并探讨其用途和优势。
分析的案例包括分类、回归、聚类、神经网络和遗传算法等不同类型的智能算法。
1. K均值聚类:利用MATLAB中的kmeans函数对一组数据进行聚类分析,得到不同的簇。
2. 随机森林:利用MATLAB中的TreeBagger函数构建一个随机森林分类器,并通过测试数据进行分类预测。
3. 人工神经网络:使用MATLAB中的feedforwardnet函数构建一个人工神经网络,并通过训练集进行预测。
4. 遗传算法:利用MATLAB中的ga函数对一个优化问题进行求解,找到最优解。
5. 支持向量机:使用MATLAB中的svmtrain和svmclassify函数构建一个支持向量机分类器,并进行分类预测。
6. 极限学习机:使用MATLAB中的elmtrain和elmpredict函数构建一个极限学习机分类器,并进行分类预测。
7. 逻辑回归:使用MATLAB中的mnrfit和mnrval函数构建一个逻辑回归模型,并进行预测。
8. 隐马尔可夫模型:使用MATLAB中的hmmtrain和hmmdecode函数构建一个隐马尔可夫模型,对一系列观测数据进行预测。
9. 神经进化算法:利用MATLAB中的ne_train函数构建一个基于神经进化算法的神经网络分类器,并进行分类预测。
10. 朴素贝叶斯分类器:使用MATLAB中的NaiveBayes对象构建一个朴素贝叶斯分类器,并进行分类预测。
11. 高斯过程回归:使用MATLAB中的fitrgp函数构建一个高斯过程回归模型,并进行回归预测。
12. 最小二乘支持向量机:使用MATLAB中的fitcsvm函数构建一个最小二乘支持向量机分类器,并进行分类预测。
13. 遗传网络:利用MATLAB中的ngenetic函数构建一个基于遗传算法和人工神经网络的分类器,并进行分类预测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
%ART神经网络的数据分类—患者癌症发病预测
%%清空环境变量
clc
clear
%%录入输入数据
%载入数据并将数据分成训练和预测两类
load gene.mat;
data=gene;
P=data(1:40,:);
T=data(41:60,:);
%转置后符合神经网络的输入格式
P=P';
T=T';
%取输入元素的最大值和最小值Q:
Q=minmax(P);
%%网络建立和训练
%利用newc()命令建立竞争网络:2代表竞争层的神经元个数,也就是要分类的个数。
0.1代表学习速率。
net=newc(Q,2,0.1)
%初始化网络及设定网络参数:
net=init(net);
net.trainparam.epochs=20;
%训练网络:
net=train(net,P);
%%网络的效果验证
%将原数据回带,测试网络效果:
a=sim(net,P);
ac=vec2ind(a)
%这里使用了变换函数vec2ind(),用于将单值向量组变换成下标向量。
其调用的格式为:%ind=vec2ind(vec)
%其中,
%vec:为m行n列的向量矩阵x,x中的每个列向量i,除包含一个1外,其余元素均为0。
%ind:为n个元素值为1所在的行下标值构成的一个行向量。