matlab BP神经网络
Matlab工具箱中地BP与RBF函数

Matlab工具箱中的BP与RBF函数Matlab神经网络工具箱中的函数非常丰富,给网络设置适宜的属性,可以加快网络的学习速度,缩短网络的学习进程。
限于篇幅,仅对本章所用到的函数进展介绍,其它的函数与其用法请读者参考联机文档和帮助。
1 BP与RBF网络创建函数在Matlab工具箱中有如表1所示的创建网络的函数,作为示例,这里只介绍函数newff、newcf、newrb和newrbe。
表 1 神经网络创建函数(1) newff函数功能:创建一个前馈BP神经网络。
调用格式:net = newff(PR,[S1S2...S Nl],{TF1 TF2...TF Nl},BTF,BLF,PF)参数说明:•PR - R个输入的最小、最大值构成的R×2矩阵;•S i–S NI层网络第i层的神经元个数;•TF i - 第i层的传递函数,可以是任意可导函数,默认为 'tansig',可设置为logsig,purelin等;•BTF -反向传播网络训练函数,默认为 'trainlm',可设置为trainbfg,trainrp,traingd等;•BLF -反向传播权值、阈值学习函数,默认为 'learngdm';•PF -功能函数,默认为'mse';(2) newcf函数功能:创建一个N层的层叠(cascade)BP网络调用格式:net = newcf(Pr,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)参数同函数newff。
(3) newrb函数功能:创建一个径向基神经网络。
径向基网络可以用来对一个函数进展逼近。
newrb函数用来创建一个径向基网络,它可以是两参数网络,也可以是四参数网络。
在网络的隐层添加神经元,直到网络满足指定的均方误差要求。
调用格式:net = newrb(P,T,GOAL,SPREAD)参数说明:•P:Q个输入向量构成的R×Q矩阵;•T:Q个期望输出向量构成的S×Q矩阵;•GOAL:均方误差要求,默认为0。
基于MATLAB的BP神经网络实现研究

Mirc mp tr pi t n o. 2 N . ,0 6 co o ue l ai sV i2 , o 8 2 0 Ap c o
的 工 具 箱 。 在 神 经 网 络 工 具 箱 中 , 提供 了许 多 有 关 神 经 网 如 它 络 设 计 、 练 和仿 真 的 函数 。 户 只要 根据 自己 的需 要 调 用 相 训 用
图 1 三层 B P网 络 结 构 图
隐 层 输 入 层
输 出层
B 网 络 由正 向 传 播 和 反 向 传 播 组 成 , 正 向 传 播 阶 段 , P 在
和 仿 真 的 函数 和 方 便 、 友好 的 图形 用 户 界 面来 实现 B 网络 , 可 实 时 将 仿 真 结 果 可视 化 , 而 使 应 用B 网络 来 解 决许 多领 域 的 P 还 从 P
实际问题 变得非常方便和有效 。
关 ■ 词 :P 神 经 网 络 I B MATL ABI 真 仿 中 圈 分 类 号 : P13 T 8 文献标识码 : A
每一层神 经元 的状 态只影 响下一层神 经元 的状态 , 若在 输 出 层得不到期望的输 出值 , 则进行 误差的反 向传播 阶段 。 其具体
的学习过程和步骤如 下:
关 的程 序 , 而 免除 了编 写复杂 而庞 大 的算 法程 序 的困扰 。 从
20 0 4年 , MATL AB 的最 新 版本 产 品 MATL 7发 布 。 AB MAT — L 7在 编 程 和 代 码 效 率 、 图 和 可 视 化 、 学 运 算 、 据 读 AB 绘 数 数 写 等 方 面 都 有 了很 大 的 改 进 。
引言
人 工 神 经 网络 ( ric l ua Newok A A t ia Nerl t r , NN) f i 的理 论
Bp神经网络的Matlab实现

式, 同一层之 间不存 在相 互连接 , 隐层 可 以有 一层或 多层 . 层与层 之 间有 两种 信号在 流通 : 一种是 工 作信 号 ( 实线 表 示 )它是 施 加输 入信 号 后 用 , 向前传 播直 到在输 出端 产生 实 际输 出的信 号 , 是输 入 和权 值 的 函数 . 另
我们 可 以直观 、 便地进 行分 析 、 算 及仿 真 工作 _ . 经 网络 工 具箱 是 M tb以神 经 网 络 为基 础 , 方 计 2神 j aa l 包含 着 大
量B p网络 的作 用 函数和算 法 函数 , B 为 p网络 的仿 真研 究 提供 了便 利 的工 具 . 运用 神 经 网络 工具 箱 一般 按 照
21年 1 00 0月
湘 南 学 院 学报
J u n lo a g a o ra f Xin n n Umv  ̄i e t y
Oc . 2 0 t . 01 V0 . l No. J3 5
第 3 卷第 5期 1
B p神 经 网络 的 Ma a 现 t b实 l
石 云
一
输 入层
隐 层
输 出层
种是 误差信 号 ( 虚线 表示 )网络实 际输 出与期望 输 出间的差 值 即为 用 ,
图 1 典型 B p网络 模 型
误差 , 由输 出端开 始逐层 向后传 播 . p网络 的学 习过程 程 由前 向计 算 它 B
第2章MATLAB神经网络工具箱函数

表2-1 神经网络的通用函数和功能
函数名
功能
init( )
初始化一个神经网络
initlay( ) 层-层结构神经网络的初始化函数
initwb( ) 神经网络某一层的权值和偏值初始化函数
initzero( ) 将权值设置为零的初始化函数
train( )
神经网络训练函数
adapt( )
神经网络自适应训练函数
b=[0;-1];q=3;
%权值向量和一致化所需要的长度
Z=concur(b,q)
%计算一致化了的矩阵
X1=netsum(Z1,Z2),X2=netprod(Z1,Z2) %计算向量的和与积
结果显示:
Z= 0 0 0
-1 -1 -1
X1 = 0 4 6
-2 -2 2
X2 = -1 4 8
-15 -24 1
11
7. 权值点积函数dotprod( ) 网络输入向量与权值的点积可得到加权输入。函数
dotprod ( )的调用格式为: Z=dotprod (W,X)
式中,W为SR维的权值矩阵;X为Q组R维的输入向量; Z为Q组S维的W与X 的点积。 8. 网络输入的和函数netsum( )
网络输入的和函数是通过某一层的加权输入和偏值相 加作为该层的输入。调用格式:
第2章 MATLAB神经网络 工具箱函数
2.1 MATLAB神经网络工具箱函数 2.2 MATLAB神经网络工具箱的图形用户界面
1
利用神经网络能解决许多用传统方法无法解 决的问题。神经网络在很多领域中都有应用,以 实现各种复杂的功能。这些领域包括商业及经济 估算、自动检测和监视、计算机视觉、语音处理、 机器人及自动控制、优化问题、航空航天、银行 金融业、工业生产等。而神经网络是一门发展很 快的学科,其应用领域也会随着其发展有更大的 拓宽。
BP神经网络在智能雨刮器上的应用及MATLAB仿真研究

0 ’ 言 引
考 虑 到 大 雨 、大 雾 以及 其 他 天 气 的 影 响 , 汽 车 通 常 都 装 置 了 雨 刮 器 来 消 除 这 些 天 气 的影 响 。 为 了确 保 交 通 行 驶 和清 晰 的 玻 璃 窗 , 车 风 挡 的 汽 良好 视线 是 驾驶 员确 保 行 车 安全 的 必要 条 件 。据 统 计 报 道 ,全 世 界 雨 天 行 车有 7 %的事 故 是 由于 驾驶 员 手 动 操 作 雨 刷 器 而 引起 的 。传 统 的雨 刮 器 均 由驾 驶 者 来 控 制 .容 易 分 散 驾 驶 者 的 注 意
魏俞 涌 许 航 飞 , 一龙 2 , 张
(. 兴 职 业 技 术 学 院 机 电 与 汽 车分 院 , 1嘉 嘉兴 3 4 3 ; . 国计 量学 院 机 电学 院 , 州 3 0 1 ) 10 6 2 中 杭 10 8
摘
要: 在分析 了传统雨 刮器缺点的基础上 , 出了一种基于 B 提 P神 经网络 的模式 识别模型 , 专家 的 用
V0 _ No5 l28 . M a 201 v 2
科 技 通 报
B L I CE UL ET N 0F S I NCE AND T CHN0L GY E 0
第2 8卷 第 5 期
2 2年 5月 0l
B P神 经 网络在 智能雨刮器上 的应 用及 MA L B仿 真研 究 TA
经验数据训练它 , 并测试 了它 ; 出了 B 给 P神经 网络 的学 习过程及算法 。结 果表明这个基 于 B P神经 网 络的模型不使用精 确的数 学模 型即可有效处理智能雨 刮器系统的不 可靠性 和非线性 。
关 键 词 : 刮 器 ;P神 经 网络 ; P算 法 ; T A 雨 B B MA L B仿 真 中图 分 类 号 :P 7 T 22 文 献标 识 码 : A 文 章 编 号 :0 17 1 (0 2 0 — 16 0 10 — 19 2 1 )5 0 5 — 3
基于BP的数据分类PPT课件(MATLAB优化算法案例分析与应用教程)

图28-1 生物神经元
MATLAB优化算法案例分析与应用
•1 BP神经网络基本原理
BP(Back Propagation)神经网络是一种神经网络学习 算法。其由输入层、中间层、输出层组成的阶层型神经网络 ,中间层可扩展为多层。相邻层之间各神经元进行全连接, 而每层各神经元之间无连接,网络按有教师示教的方式进行 学习,当一对学习模式提供给网络后,各神经元获得网络的 输入响应产生连接权值(Weight)。然后按减小希望输出与 实际输出误差的方向,从输出层经各中间层逐层修正各连接 权,回到输入层。此过程反复交替进行,直至网络的全局误 差趋向给定的极小值,即完成学习的过程。
•3 BP网络的语音信号识别
分类误差
2 1.5
1 0.5
0 -0.5
-1 -1.5
-2 -2.5
-3 0
BP网络分类误差
50 100 150 200 250 300 350 400 450 500
语音信号
图28-4 误差信号
MATLAB优化算法案例分析与应用
•4 BP网络的蝴蝶花分类预测
算法步骤: Step 1,初始化数据,设定各层节点数、学习效率等值; Step 2,输入层FA输入样品,计算出隐层FB活动;
MATLAB优化算法案例分析与应用
•2 BP神经网络算法步骤
MATLAB程序代码--神经网络基础问题整理

MATLAB程序代码--神经网络基础问题整理所选问题及解答大部分来源于/bbs/资料大部分为江南一纪收集整理对其他参与整理的版友(不一一列举)及资料的原创者一并表示感谢因江南对神经网络的理解也不是很多错误之处难勉请谅解有什么问题可以来/bbs/的『人工神经网络专区』交流***************************************************************** 1神经网络的教材哪本比较经典神经网络原理Simon Haykin ? 叶世?史忠植译神经网络设计神经网络书籍神经网络模型及其matlab仿真程序设计周开利(对神经网络工具箱函数及里面神经网络工具箱的神经网络模型的网络对象及其属性做了详细的论述,后者在神经网络理论与matlab7实现那本书里面是没有的)神经网络理论与matlab7实现(这本书对初学这入门还是挺不错的,看过了,就对matlab神经网络工具箱有教好的了解)神经网络设计(我认为这是一本很好的书,讲理论不是很多,看过之后就会对神经网络的原理有更好的了解)神经网络结构设计的理论与方法(这本书对提高网络的泛化能力的一些方法做了讲述,并且书后有程序,对网络结构的设计应该是挺有帮助的)摘自给初学matlab神经网络的一点建议/bbs/read.php?tid=1111&keyword=2 神经网络理论的发展与前沿问题神经网络理论的发展与前沿问题刘永?摘要系统地论述了神经网络理论发展的历史和现状,在此基础上,对其主要发展趋向和所涉及的前沿问题进行了阐述.文中还作了一定的评论,并提出了新的观点.关键词神经网络理论,神经计算,进化计算,基于神经科学和数学的研?查看原文/bbs/read.php?tid=5374&keyword=%C9%F1%BE%AD%CD%F8%C2%E73 神经网络的权值和阈值分别是个什么概念??权值和阈值是神经元之间的连接,将数据输入计算出一个输出,然后与实际输出比较,误差反传,不断调整权值和阈值假如p1=[1 1 -1]';p2=[1 -1 -1]';属于不同的类须设计分类器将他们分开这里用单层神经元感知器初始权值w=[0.2 0.2 0.3] b=-0.3输出a1 a2a1=hardlims(w*p1+b)a2=hardlims(w*p2+b)如果不能分开,还须不断调整w,b这里说明一下权值w 阈值b 而已简单地说,阈值也可以看作一维权值,只不过它所对应的那一维样本永远是-1(也有的书上说是1),这样就把输入样本增加了一维,更有利于解决问题./bbs/read.php?tid=6078&keyword=%C9%F1%BE%AD %CD%F8%C2%E74 神经网络归一化看了研学和ai创业研发俱乐部神经网络版及振动论坛部分帖子内容,对归一化做一下整理,冒昧引用了一些他人的观点,有的未列出其名,请谅解-------------------------------------------------------------------------------------------------------关于神经网络归一化方法的整理由于采集的各数据单位不一致,因而须对数据进行[-1,1]归一化处理,归一化方法主要有如下几种,供大家参考:(by james)1、线性函数转换,表达式如下:y=(x-MinValue)/(MaxValue-MinValue)说明:x、y分别为转换前、后的值,MaxValue、MinValue分别为样本的最大值和最小值。
基于MATLAB的BP神经网络组合预测模型在公路货运量预测中的应用

果综 合起 来 ,以改善模 型 的拟 合能力 并 提高 预测 精 度 。 但 是 ,传 统 的 组 合 预 测 方 法 具 有 一 定 的 局 限
性。
济 意义 。可 见 ,公路 货运 量 的预测 举 足轻 重 ,可 靠
YANG Yu c o,W U Fe , YUAN Zh n— ho n— ha i e z u
( E e L b rt y fr U b n T a s ot in o p e S s m h o a d T c n lg ,B in i tn nv r t , MO K y a oa r o r a rnp r t C m lx yt s T e r n e h oo y e ig Ja o g U ies y o ao e y j o i B in 1 0 4 ,C ia e i 0 4 hn ) jg 0
或某 几个 方 面 ,反 映 了部分 因素 的影 响 。但公 路 货 运量 受到 多种 因素 的影 响 ,为 了最 大限 度地 反映 实 际情 况 ,可 采用组 合 预测 的方 法将各 种 单项 预测 结
运 输需 求预 测 是 公 路 网规 划 、区 域发 展 规 划 、
基 础建设 投 资决 策及 运输 生产 组织 管理 的基础 ,对 交 通运输 需 求 的预测 分析 具有 重大 的社 会 意义 和 经
关 键 词 :BP 经 网络 :货 运 量 :MAT AB;组 合 预 测 神 L 中图 分 类 号 :U4 1】 3 9 .1 文 献标 识码 :A 文章 编 号 : 1 0 — 7 6 2 0) 4 0 0 — 3 0 2 4 8 ( 01 0 — 2 7 0
DoI 1 3 6 / 1 0 — 7 62 1 .40 3 : 0.8 9i 0 2 4 8 .0 00 .6 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于MATLAB的BP神经网络工具箱函数最新版本的神经网络工具箱几乎涵盖了所有的神经网络的基本常用模型,如感知器和BP网络等。
对于各种不同的网络模型,神经网络工具箱集成了多种学习算法,为用户提供了极大的方便[16]。
Matlab R2007神经网络工具箱中包含了许多用于BP网络分析与设计的函数,BP网络的常用函数如表3.1所示。
3.1.1BP网络创建函数1) newff该函数用于创建一个BP网络。
调用格式为:net=newffnet=newff(PR,[S1S2..SN1],{TF1TF2..TFN1},BTF,BLF,PF)其中,net=newff;用于在对话框中创建一个BP网络。
net为创建的新BP神经网络;PR为网络输入向量取值范围的矩阵;[S1S2…SNl]表示网络隐含层和输出层神经元的个数;{TFlTF2…TFN1}表示网络隐含层和输出层的传输函数,默认为‘tansig’;BTF表示网络的训练函数,默认为‘trainlm’;BLF表示网络的权值学习函数,默认为‘learngdm’;PF表示性能数,默认为‘mse’。
2)newcf函数用于创建级联前向BP网络,newfftd函数用于创建一个存在输入延迟的前向网络。
3.1.2神经元上的传递函数传递函数是BP网络的重要组成部分。
传递函数又称为激活函数,必须是连续可微的。
BP网络经常采用S型的对数或正切函数和线性函数。
1) logsig该传递函数为S型的对数函数。
调用格式为:A=logsig(N)info=logsig(code)其中,N:Q个S维的输入列向量;A:函数返回值,位于区间(0,1)中;2)tansig该函数为双曲正切S型传递函数。
调用格式为:A=tansig(N)info=tansig(code)其中,N:Q个S维的输入列向量;A:函数返回值,位于区间(-1,1)之间。
3)purelin该函数为线性传递函数。
调用格式为:A=purelin(N)info=purelin(code)其中,N:Q个S维的输入列向量;A:函数返回值,A=N。
3.1.3BP网络学习函数1)learngd该函数为梯度下降权值/阈值学习函数,它通过神经元的输入和误差,以及权值和阈值的学习效率,来计算权值或阈值的变化率。
调用格式为:[dW,ls]=learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)[db,ls]=learngd(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)info=learngd(code)2)learngdm函数为梯度下降动量学习函数,它利用神经元的输入和误差、权值或阈值的学习速率和动量常数,来计算权值或阈值的变化率。
3.1.4BP网络训练函数1)train神经网络训练函数,调用其他训练函数,对网络进行训练。
该函数的调用格式为:[net,tr,Y,E,Pf,Af]=train(NET,P,T,Pi,Ai)[net,tr,Y,E,Pf,Af]=train(NET,P,T,Pi,Ai,VV,TV)2) traingd函数为梯度下降BP算法函数。
traingdm函数为梯度下降动量BP算法函数。
3.2BP网络在函数逼近中的应用3.2.1问题的提出BP网络由很强的映射能力,主要用于模式识别分类、函数逼近、函数压缩等。
下面将通过实例来说明BP网络在函数逼近方面的应用。
要求设计一个BP网络,逼近以下函数:g(x)=1+sin(k*pi/4*x),实现对该非线性函数的逼近。
其中,分别令k=1,2,4进行仿真,通过调节参数(如隐藏层节点个数等)得出信号的频率与隐层节点之间,隐层节点与函数逼近能力之间的关系。
3.2.2基于BP神经网络逼近函数步骤1:假设频率参数k=1,绘制要逼近的非线性函数的曲线。
函数的曲线如图3.2所示k=1;p=[-1:.05:8];t=1+sin(k*pi/4*p);plot(p,t,'-');title('要逼近的非线性函数');xlabel('时间');ylabel('非线性函数');图3.2要逼近的非线性函数曲线步骤2:网络的建立应用newff()函数建立BP网络结构。
隐层神经元数目n可以改变,暂设为n=3,输出层有一个神经元。
选择隐层和输出层神经元传递函数分别为tansig函数和purelin函数,网络训练的算法采用Levenberg–Marquardt算法trainlm。
n=3;net = newff(minmax(p),[n,1],{'tansig' 'purelin'},'trainlm');对于初始网络,可以应用sim()函数观察网络输出。
y1=sim(net,p);figure;plot(p,t,'-',p,y1,':')title('未训练网络的输出结果');xlabel('时间');ylabel('仿真输出--原函数-');同时绘制网络输出曲线,并与原函数相比较,结果如图3.3所示。
图3.3未训练网络的输出结果其中“”代表要逼近的非线性函数曲线;“‥‥‥”代表未经训练的函数曲线;因为使用newff()函数建立函数网络时,权值和阈值的初始化是随机的,所以网络输出结构很差,根本达不到函数逼近的目的,每次运行的结果也有时不同。
步骤3:网络训练应用train()函数对网络进行训练之前,需要预先设置网络训练参数。
将训练时间设置为50,训练精度设置为0.01,其余参数使用缺省值。
训练后得到的误差变化过程如图3.4所示。
图3.4训练过程net.trainParam.epochs=50; (网络训练时间设置为50)net.trainParam.goal=0.01;(网络训练精度设置为0.01)net=train(net,p,t);(开始训练网络)TRAINLM-calcjx, Epoch 0/50, MSE 9.27774/0.01, Gradient 13.3122/1e-010TRAINLM-calcjx, Epoch 3/50, MSE 0.00127047/0.01, Gradient 0.0337555/1e-010TRAINLM, Performance goal met.从以上结果可以看出,网络训练速度很快,经过一次循环跌送过程就达到了要求的精度0.01。
步骤4:网络测试对于训练好的网络进行仿真:y2=sim(net,p);figure;plot(p,t,'-',p,y1,':',p,y2, '--')title('训练后网络的输出结果');xlabel('时间');ylabel('仿真输出');绘制网络输出曲线,并与原始非线性函数曲线以及未训练网络的输出结果曲线相比较,比较出来的结果如图3.5所示。
图3.5 训练后网络的输出结果其中“”代表要逼近的非线性函数曲线;“‥‥‥”代表未经训练的函数曲线;“―――”代表经过训练的函数曲线;从图中可以看出,得到的曲线和原始的非线性函数曲线很接近。
这说明经过训练后,BP网络对非线性函数的逼近效果比较好。
3.2.3不同频率下的逼近效果改变非线性函数的频率和BP函数隐层神经元的数目,对于函数逼近的效果有一定的影响。
网络非线性程度越高,对于BP网络的要求越高,则相同的网络逼近效果要差一些;隐层神经元的数目对于网络逼近效果也有一定影响,一般来说隐层神经元数目越多,则BP网络逼近非线性函数的能力越强。
下面通过改变频率参数和非线性函数的隐层神经元数目来加以比较证明。
(1)频率参数设为k=2,当隐层神经元数目分别取n=3、n=6时,得到了训练后的网络输出结果如图3.6,3.7所示。
图3.6 当n=3时训练后网络的输出结果图3.7当n=6时训练后网络的输出结果其中“”代表要逼近的非线性函数曲线;“‥‥‥”代表未经训练的函数曲线;“―――”代表经过训练的函数曲线;(2)频率参数设为k=4,当隐层神经元数目分别取n=6、n=8时,得到了训练后的网络输出结果如图3.8,3.9所示。
图3.8 当n=6时训练后网络的输出结果图3.9 当n=8时训练后网络的输出结果其中“”代表要逼近的非线性函数曲线;“‥‥‥”代表未经训练的函数曲线;“―――”代表经过训练的函数曲线;(2)频率参数设为k=8,当隐层神经元数目分别取n=10、n=15时,得到了训练后的网络输出结果如图3.10,3.11所示。
图3.10 当n=10时训练后网络的输出结果图3.11 当n=15时训练后网络的输出结果其中“”代表要逼近的非线性函数曲线;“‥‥‥”代表未经训练的函数曲线;“―――”代表经过训练的函数曲线;3.2.4讨论通过上述仿真结果可知,当k=1,n=3时;k=2,n=6时;k=4,n=8时;k=8,n=15时,BP神经网络分别对函数取得了较好的逼近效果。
由此可见,n取不同的值对函数逼近的效果有很大的影响。
改变BP网络隐层神经元的数目,可以改变BP神经网络对于函数的逼近效果。
隐层神经元数目越多,则BP网络逼近非线性函数的能力越强。
3.3BP网络在样本含量估计中的应用3.3.1问题的提出这是一个神经网络在医学中应用的例子。
拟设计一台仪器,通过对血液样本进行光谱分析来测试血清中胆固醇水平。
共采集了264位病人的血液样本,对其光谱分析共发现21种光谱波长。
对这些病人,通过血清分离,同样也测量了hdl、ldl、vldl胆固醇水平。
(1)将数据导入Matlab工作空间,进行主要成分的分析。
数据文件为choles_all.ma t。
loadcholes_all %matlab中有一个choles_all.mat文件它包含了本问题需要的原始数据[pn,meanp,stdp,tn,meant,stdt]=prestd(p,t); %prestd 函数对样本数据作归一化处理[ptrans,sransMat]=prepca(pn,0.001);%利用 prepca 函数对归一化后的样本数据进行主元分析这里剔除了一些数据,只保留了所占99.9%的主要成分数据。
下面检验一下转换后数据矩阵的大小。
[R,Q]=size(ptrans)R =4Q =264从中可以看出通过主要成分分析,输入数据从21组减少到4组,由此可见原始数据有着很大的冗余度。
(2) 将这些数据分成几个部分,分别用于训练、验证和测试。
将数据的1/4用于验证、1/4用于测试,其余的用于训练网络。
采用等间隔的方式在原始数据中抽取出这些数据。