BP神经网络地设计实例(MATLAB编程)

合集下载

基于遗传算法的BP神经网络MATLAB代码

基于遗传算法的BP神经网络MATLAB代码

基于遗传算法的BP神经网络MATLAB代码以下是基于遗传算法的BP神经网络的MATLAB代码,包括网络初始化、适应度计算、交叉运算、突变操作和迭代训练等。

1.网络初始化:```matlabfunction net = initialize_network(input_size, hidden_size, output_size)net.input_size = input_size;net.hidden_size = hidden_size;net.output_size = output_size;net.hidden_weights = rand(hidden_size, input_size);net.output_weights = rand(output_size, hidden_size);net.hidden_biases = rand(hidden_size, 1);net.output_biases = rand(output_size, 1);end```2.适应度计算:```matlabfunction fitness = calculate_fitness(net, data, labels)output = forward_propagation(net, data);fitness = sum(sum(abs(output - labels)));end```3.前向传播:```matlabfunction output = forward_propagation(net, data)hidden_input = net.hidden_weights * data + net.hidden_biases;hidden_output = sigmoid(hidden_input);output_input = net.output_weights * hidden_output +net.output_biases;output = sigmoid(output_input);endfunction result = sigmoid(x)result = 1 ./ (1 + exp(-x));end```4.交叉运算:```matlabfunction offspring = crossover(parent1, parent2)point = randi([1 numel(parent1)]);offspring = [parent1(1:point) parent2((point + 1):end)]; end```5.突变操作:```matlabfunction mutated = mutation(individual, mutation_rate) for i = 1:numel(individual)if rand < mutation_ratemutated(i) = rand;elsemutated(i) = individual(i);endendend```6.迭代训练:```matlabfunction [best_individual, best_fitness] =train_network(data, labels, population_size, generations, mutation_rate)input_size = size(data, 1);hidden_size = round((input_size + size(labels, 1)) / 2);output_size = size(labels, 1);population = cell(population_size, 1);for i = 1:population_sizepopulation{i} = initialize_network(input_size, hidden_size, output_size);endbest_individual = population{1};best_fitness = calculate_fitness(best_individual, data, labels);for i = 1:generationsfor j = 1:population_sizefitness = calculate_fitness(population{j}, data, labels);if fitness < best_fitnessbest_individual = population{j};best_fitness = fitness;endendselected = selection(population, data, labels);for j = 1:population_sizeparent1 = selected{randi([1 numel(selected)])};parent2 = selected{randi([1 numel(selected)])};offspring = crossover(parent1, parent2);mutated_offspring = mutation(offspring, mutation_rate);population{j} = mutated_offspring;endendendfunction selected = selection(population, data, labels) fitnesses = zeros(length(population), 1);for i = 1:length(population)fitnesses(i) = calculate_fitness(population{i}, data, labels);end[~, indices] = sort(fitnesses);selected = population(indices(1:floor(length(population) / 2)));end```这是一个基于遗传算法的简化版BP神经网络的MATLAB代码,使用该代码可以初始化神经网络并进行迭代训练,以获得最佳适应度的网络参数。

Bp神经网络的Matlab实现

Bp神经网络的Matlab实现
现 了具 有 函数 逼 近 功 能 的 B p网络 设 计 . 关 键 词 : p神 经 网 络 ; aa 仿 真 ;函数 逼 近 B M fb l 中 图分 类 号 : P 8 . T 39 1 文献标识码 : A 文 章 编 号 :17 —87 (00 0 —08 —0 62 132 1 )5 06 3
式, 同一层之 间不存 在相 互连接 , 隐层 可 以有 一层或 多层 . 层与层 之 间有 两种 信号在 流通 : 一种是 工 作信 号 ( 实线 表 示 )它是 施 加输 入信 号 后 用 , 向前传 播直 到在输 出端 产生 实 际输 出的信 号 , 是输 入 和权 值 的 函数 . 另
我们 可 以直观 、 便地进 行分 析 、 算 及仿 真 工作 _ . 经 网络 工 具箱 是 M tb以神 经 网 络 为基 础 , 方 计 2神 j aa l 包含 着 大
量B p网络 的作 用 函数和算 法 函数 , B 为 p网络 的仿 真研 究 提供 了便 利 的工 具 . 运用 神 经 网络 工具 箱 一般 按 照
21年 1 00 0月
湘 南 学 院 学报
J u n lo a g a o ra f Xin n n Umv  ̄i e t y
Oc . 2 0 t . 01 V0 . l No. J3 5
第 3 卷第 5期 1
B p神 经 网络 的 Ma a 现 t b实 l
石 云

输 入层
隐 层
输 出层
种是 误差信 号 ( 虚线 表示 )网络实 际输 出与期望 输 出间的差 值 即为 用 ,
图 1 典型 B p网络 模 型
误差 , 由输 出端开 始逐层 向后传 播 . p网络 的学 习过程 程 由前 向计 算 它 B

用matlab编BP神经网络预测程序

用matlab编BP神经网络预测程序

求用matlab编BP神经网络预测程序求一用matlab编的程序P=[。

];输入T=[。

];输出% 创建一个新的前向神经网络net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm')% 当前输入层权值和阈值inputWeights=net_1.IW{1,1}inputbias=net_1.b{1}% 当前网络层权值和阈值layerWeights=net_1.LW{2,1}layerbias=net_1.b{2}% 设置训练参数net_1.trainParam.show = 50;net_1.trainParam.lr = 0.05;net_1.trainParam.mc = 0.9;net_1.trainParam.epochs = 10000;net_1.trainParam.goal = 1e-3;% 调用TRAINGDM 算法训练BP 网络[net_1,tr]=train(net_1,P,T);% 对BP 网络进行仿真A = sim(net_1,P);% 计算仿真误差E = T - A;MSE=mse(E)x=[。

]';%测试sim(net_1,x) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%不可能啊我200928对初学神经网络者的小提示第二步:掌握如下算法:2.最小均方误差,这个原理是下面提到的神经网络学习算法的理论核心,入门者要先看《高等数学》(高等教育出版社,同济大学版)第8章的第十节:“最小二乘法”。

3.在第2步的基础上看Hebb学习算法、SOM和K-近邻算法,上述算法都是在最小均方误差基础上的改进算法,参考书籍是《神经网络原理》(机械工业出版社,Simon Haykin著,中英文都有)、《人工神经网络与模拟进化计算》(清华大学出版社,阎平凡,张长水著)、《模式分类》(机械工业出版社,Richard O. Duda等著,中英文都有)、《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)。

BP神经网络matlab详细参数

BP神经网络matlab详细参数

BP神经⽹络matlab详细参数基于matlab BP 神经⽹络参数详解(1)⽣成BP ⽹络(,[1 2...],{ 1 2...},,,)net newff PR S S SNl TF TF TFNl BTF BLF PF =PR :由R 维的输⼊样本最⼩最⼤值构成的2R ?维矩阵。

[1 2...]S S SNl :各层的神经元个数。

{ 1 2...}TF TF TFNl :各层的神经元传递函数。

BTF :训练⽤函数的名称。

(2)⽹络训练[,,,,,] (,,,,,,)net tr Y E Pf Af train net P T Pi Ai VV TV =(3)⽹络仿真[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T =BP ⽹络的训练函数训练⽅法训练函数梯度下降法traingd 有动量的梯度下降法 traingdm ⾃适应lr 梯度下降法traingda⾃适应lr 动量梯度下降法 traingdx 弹性梯度下降法 trainrpFletcher-Reeves 共轭梯度法traincgfPloak-Ribiere 共轭梯度法 traincgp Powell-Beale 共轭梯度法 traincgb 量化共轭梯度法trainscg拟⽜顿算法trainbfg⼀步正割算法trainoss Levenberg-Marquardt trainlmBP⽹络训练参数训练参数参数介绍训练函数net.trainParam.epochs最⼤训练次数(缺省为10)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.goal训练要求精度(缺省为0)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.lr学习率(缺省为0.01)traingd、traingdm、traingda、traingdx、trainrp、traincgf、trainscg、trainbfg、trainoss、trainlmnet.trainParam.max_fail最⼤失败次数(缺省为5)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.min_grad最⼩梯度要求(缺省为1e-10)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.show显⽰训练迭代过程(NaN表⽰不显⽰,缺省为25)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.time最⼤训练时间(缺省为inf)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.mc动量因⼦(缺省0.9)traingdm、traingdxnet.trainParam.lr_inc学习率lr增长⽐(缺省为1.05)traingda、traingdxnet.trainParam.lr_dec学习率lr下降⽐(缺省为0.7)traingda、traingdxnet.trainParam.max_perf_inc表现函数增加最⼤⽐(缺省为1.04)net.trainParam.delt_inc权值变化增加量(缺省为1.2)trainrpnet.trainParam.delt_dec权值变化减⼩量(缺省为0.5)trainrpnet.trainParam.delt0初始权值变化(缺省为0.07)trainrpnet.trainParam.deltamax权值变化最⼤值(缺省为50.0)trainrpnet.trainParam.searchFcn⼀维线性搜索⽅法(缺省为srchcha)traincgf、traincgp、traincgb、trainbfg、trainoss net.trainParam.sigma因为⼆次求导对权值trainscg调整的影响参数(缺省值5.0e-5)/doc/cd3ed4b6f5335a8102d220e4.html mbda trainscgHessian矩阵不确定性调节参数(缺省为5.0e-7)net.trainParam.men_redtrainlm控制计算机内存/速uc度的参量,内存较⼤设为1,否则设为2(缺省为1)net.trainParam.mu trainlmµ的初始值(缺省为0.001)net.trainParam.mu_dec trainlmµ的减⼩率(缺省为0.1)net.trainParam.mu_inc trainlmµ的增长率(缺省为10)net.trainParam.mu_max trainlmµ的最⼤值(缺省为1e10)。

BP神经网络预测的matlab代码

BP神经网络预测的matlab代码

BP神经网络预测的matlab代码附录5:BP神经网络预测的matlab代码: P=[ 00.13860.21970.27730.32190.35840.38920.41590.43940.46050.47960.49700.52780.55450.59910.60890.61820.62710.63560.64380.65160.65920.66640.67350.72220.72750.73270.73780.74270.74750.75220.75680.76130.76570.7700]T=[0.4455 0.323 0.4116 0.3255 0.4486 0.2999 0.4926 0.2249 0.48930.2357 0.4866 0.22490.4819 0.2217 0.4997 0.2269 0.5027 0.217 0.5155 0.1918 0.5058 0.2395 0.4541 0.2408 0.4054 0.2701 0.3942 0.3316 0.2197 0.2963 0.5576 0.1061 0.4956 0.267 0.5126 0.2238 0.5314 0.2083 0.5191 0.208 0.5133 0.18480.5089 0.242 0.4812 0.2129 0.4927 0.287 0.4832 0.2742 0.5969 0.24030.5056 0.2173 0.5364 0.1994 0.5278 0.2015 0.5164 0.2239 0.4489 0.2404 0.4869 0.2963 0.4898 0.1987 0.5075 0.2917 0.4943 0.2902 ]threshold=[0 1]net=newff(threshold,[11,2],{'tansig','logsig'},'trainlm');net.trainParam.epochs=6000net.trainParam.goal=0.01LP.lr=0.1;net=train(net,P',T')P_test=[ 0.77420.77840.78240.78640.79020.7941 ] out=sim(net,P_test')友情提示:以上面0.7742为例0.7742=ln(47+1)/5因为网络输入有一个元素,对应的是测试时间,所以P只有一列,Pi=log(t+1)/10,这样做的目的是使得这些数据的范围处在[0 1]区间之内,但是事实上对于logsin命令而言输入参数是正负区间的任意值,而将输出值限定于0到1之间。

BP神经网络matlab实现的基本步骤

BP神经网络matlab实现的基本步骤

1、数据归一化2、数据分类,主要包括打乱数据顺序,抽取正常训练用数据、变量数据、测试数据3、建立神经网络,包括设置多少层网络(一般3层以内既可以,每层的节点数(具体节点数,尚无科学的模型和公式方法确定,可采用试凑法,但输出层的节点数应和需要输出的量个数相等),设置隐含层的传输函数等。

关于网络具体建立使用方法,在后几节的例子中将会说到。

4、指定训练参数进行训练,这步非常重要,在例子中,将详细进行说明5、完成训练后,就可以调用训练结果,输入测试数据,进行测试6、数据进行反归一化7、误差分析、结果预测或分类,作图等数据归一化问题归一化的意义:首先说一下,在工程应用领域中,应用BP网络的好坏最关键的仍然是输入特征选择和训练样本集的准备,若样本集代表性差、矛盾样本多、数据归一化存在问题,那么,使用多复杂的综合算法、多精致的网络结构,建立起来的模型预测效果不会多好。

若想取得实际有价值的应用效果,从最基础的数据整理工作做起吧,会少走弯路的。

归一化是为了加快训练网络的收敛性,具体做法是:1 把数变为(0,1)之间的小数主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。

2 把有量纲表达式变为无量纲表达式归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量比如,复数阻抗可以归一化书写:Z = R + jωL = R(1 + jωL/R) ,复数部分变成了纯数量了,没有量纲。

另外,微波之中也就是电路分析、信号系统、电磁波传输等,有很多运算都可以如此处理,既保证了运算的便捷,又能凸现出物理量的本质含义。

神经网络归一化方法:由于采集的各数据单位不一致,因而须对数据进行[-1,1]归一化处理,归一化方法主要有如下几种,供大家参考:1、线性函数转换,表达式如下:复制内容到剪贴板代码:y=(x-MinValue)/(MaxValue-MinValue)说明:x、y分别为转换前、后的值,MaxValue、MinValue分别为样本的最大值和最小值。

MATLAB神经网络(2)BP神经网络的非线性系统建模——非线性函数拟合

MATLAB神经网络(2)BP神经网络的非线性系统建模——非线性函数拟合

MATLAB神经⽹络(2)BP神经⽹络的⾮线性系统建模——⾮线性函数拟合2.1 案例背景在⼯程应⽤中经常会遇到⼀些复杂的⾮线性系统,这些系统状态⽅程复杂,难以⽤数学⽅法准确建模。

在这种情况下,可以建⽴BP神经⽹络表达这些⾮线性系统。

该⽅法把未知系统看成是⼀个⿊箱,⾸先⽤系统输⼊输出数据训练BP神经⽹络,使⽹络能够表达该未知函数,然后⽤训练好的BP神经⽹络预测系统输出。

本章拟合的⾮线性函数为y=x12+x22该函数的图形如下图所⽰。

t=-5:0.1:5;[x1,x2] =meshgrid(t);y=x1.^2+x2.^2;surfc(x1,x2,y);shading interpxlabel('x1');ylabel('x2');zlabel('y');title('⾮线性函数');2.2 模型建⽴神经⽹络结构:2-5-1从⾮线性函数中随机得到2000组输⼊输出数据,从中随机选择1900 组作为训练数据,⽤于⽹络训练,100组作为测试数据,⽤于测试⽹络的拟合性能。

2.3 MATLAB实现2.3.1 BP神经⽹络⼯具箱函数newffBP神经⽹络参数设置函数。

net=newff(P, T, S, TF, BTF, BLF, PF, IPF, OPF, DDF)P:输⼊数据矩阵;T:输出数据矩阵;S:隐含层节点数;TF:结点传递函数。

包括硬限幅传递函数hardlim、对称硬限幅传递函数hardlims、线性传递函数purelin、正切型传递函数tansig、对数型传递函数logsig;x=-5:0.1:5;subplot(2,6,[2,3]);y=hardlim(x);plot(x,y,'LineWidth',1.5);title('hardlim');subplot(2,6,[4,5]);y=hardlims(x);plot(x,y,'LineWidth',1.5);title('hardlims');subplot(2,6,[7,8]);y=purelin(x);plot(x,y,'LineWidth',1.5);title('purelin');subplot(2,6,[9,10]);y=tansig(x);plot(x,y,'LineWidth',1.5);title('tansig');subplot(2,6,[11,12]);y=logsig(x);plot(x,y,'LineWidth',1.5);title('logsig');BTF:训练函数。

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)BP(Back Propagation)神经网络是一种常用的人工神经网络结构,用于解决分类和回归问题。

在本文中,将详细介绍如何使用MATLAB实现BP神经网络的实验。

首先,需要准备一个数据集来训练和测试BP神经网络。

数据集可以是一个CSV文件,每一行代表一个样本,每一列代表一个特征。

一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。

在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集划分为输入和输出。

假设数据集的前几列是输入特征,最后一列是输出。

可以使用以下代码来实现:```matlabdata = csvread('dataset.csv');input = data(:, 1:end-1);output = data(:, end);```然后,需要创建一个BP神经网络模型。

可以使用MATLAB的`patternnet`函数来创建一个全连接的神经网络模型。

该函数的输入参数为每个隐藏层的神经元数量。

下面的代码创建了一个具有10个隐藏神经元的单隐藏层BP神经网络:```matlabhidden_neurons = 10;net = patternnet(hidden_neurons);```接下来,需要对BP神经网络进行训练。

可以使用`train`函数来训练模型。

该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。

下面的代码展示了如何使用`train`函数来训练模型:```matlabnet = train(net, input_train, output_train);```训练完成后,可以使用训练好的BP神经网络进行预测。

可以使用`net`模型的`sim`函数来进行预测。

下面的代码展示了如何使用`sim`函数预测测试集的输出:```matlaboutput_pred = sim(net, input_test);```最后,可以使用各种性能指标来评估预测的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

神经网络的设计实例(MATLAB编程)例1 采用动量梯度下降算法训练BP 网络。

训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为t = [-1 -1 1 1]解:本例的MATLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本P=[-1, -2, 3, 1; -1, 1, 5, -3]; % P 为输入矢量T=[-1, -1, 1, 1]; % T 为目标矢量clc% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值inputWeights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerWeights=net.LW{2,1}layerbias=net.b{2}pauseclc% 设置训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;pauseclc% 调用TRAINGDM 算法训练BP 网络[net,tr]=train(net,P,T);clc% 对BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2 采用贝叶斯正则化算法提高BP 网络的推广能力。

在本例中,我们采用两种训练方法,即L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。

其中,样本数据可以采用如下MATLAB 语句生成:输入矢量:P = [-1:0.05:1];目标矢量:randn(seed,78341223);T = sin(2*pi*P)+0.1*randn(size(P));解:本例的MATLAB 程序如下:close allclearclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本矢量% P 为输入矢量P = [-1:0.05:1];% T 为目标矢量randn('seed',78341223); T = sin(2*pi*P)+0.1*randn(size(P)); % 绘制样本数据点plot(P,T,'+');echo offhold on;plot(P,sin(2*pi*P),':');% 绘制不含噪声的正弦曲线echo onclcpauseclc% 创建一个新的前向神经网络net=newff(minmax(P),[20,1],{'tansig','purelin'});pauseclcecho offclcdisp('1. L-M 优化算法TRAINLM'); disp('2. 贝叶斯正则化算法TRAINBR'); choice=input('请选择训练算法(1,2):');figure(gcf);if(choice==1)echo onclc% 采用L-M 优化算法TRAINLMnet.trainFcn='trainlm';pauseclc% 设置训练参数net.trainParam.epochs = 500;net.trainParam.goal = 1e-6;net=init(net);% 重新初始化pauseclcelseif(choice==2)echo onclc% 采用贝叶斯正则化算法TRAINBR net.trainFcn='trainbr';pauseclc% 设置训练参数net.trainParam.epochs = 500; randn('seed',192736547);net = init(net);% 重新初始化pauseclcend% 调用相应算法训练BP 网络[net,tr]=train(net,P,T);pauseclc% 对BP 网络进行仿真A = sim(net,P);% 计算仿真误差E = T - A;MSE=mse(E)pauseclc% 绘制匹配结果曲线close all;plot(P,A,P,T,'+',P,sin(2*pi*P),':');pause;clcecho off通过采用两种不同的训练算法,我们可以得到如图1和图2所示的两种拟合结果。

图中的实线表示拟合曲线,虚线代表不含白噪声的正弦曲线,+点为含有白噪声的正弦样本数据点。

显然,经trainlm 函数训练后的神经网络对样本数据点实现了过度匹配,而经trainbr 函数训练的神经网络对噪声不敏感,具有较好的推广能力。

值得指出的是,在利用trainbr 函数训练BP 网络时,若训练结果收敛,通常会给出提示信息Maximum MU reached。

此外,用户还可以根据SSE 和SSW 的大小变化情况来判断训练是否收敛:当SSE 和SSW 的值在经过若干步迭代后处于恒值时,则通常说明网络训练收敛,此时可以停止训练。

观察trainbr 函数训练BP 网络的误差变化曲线,可见,当训练迭代至320 步时,网络训练收敛,此时SSE 和SSW 均为恒值,当前有效网络的参数(有效权值和阈值)个数为11.7973。

例3 采用提前停止方法提高BP 网络的推广能力。

对于和例2相同的问题,在本例中我们将采用训练函数traingdx 和提前停止相结合的方法来训练BP 网络,以提高BP 网络的推广能力。

解:在利用提前停止方法时,首先应分别定义训练样本、验证样本或测试样本,其中,验证样本是必不可少的。

在本例中,我们只定义并使用验证样本,即有验证样本输入矢量:val.P = [-0.975:.05:0.975]验证样本目标矢量:val.T = sin(2*pi*val.P)+0.1*randn(size(val.P))值得注意的是,尽管提前停止方法可以和任何一种BP 网络训练函数一起使用,但是不适合同训练速度过快的算法联合使用,比如trainlm 函数,所以本例中我们采用训练速度相对较慢的变学习速率算法traingdx 函数作为训练函数。

本例的MATLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本矢量% P 为输入矢量P = [-1:0.05:1];% T 为目标矢量randn('seed',78341223);T = sin(2*pi*P)+0.1*randn(size(P));% 绘制训练样本数据点plot(P,T,'+');echo offhold on;plot(P,sin(2*pi*P),':'); % 绘制不含噪声的正弦曲线echo onclcpauseclc% 定义验证样本val.P = [-0.975:0.05:0.975]; % 验证样本的输入矢量val.T = sin(2*pi*val.P)+0.1*randn(size(val.P)); % 验证样本的目标矢量pauseclc% 创建一个新的前向神经网络net=newff(minmax(P),[5,1],{'tansig','purelin'},'traingdx'); pauseclc% 设置训练参数net.trainParam.epochs = 500;net = init(net);pauseclc% 训练BP 网络[net,tr]=train(net,P,T,[],[],val);pauseclc% 对BP 网络进行仿真A = sim(net,P);% 计算仿真误差E = T - A;MSE=mse(E)pauseclc% 绘制仿真拟合结果曲线close all;plot(P,A,P,T,'+',P,sin(2*pi*P),':');pause;clcecho off下面给出了网络的某次训练结果,可见,当训练至第136 步时,训练提前停止,此时的网络误差为0.0102565。

给出了训练后的仿真数据拟合曲线,效果是相当满意的。

[net,tr]=train(net,P,T,[],[],val);TRAINGDX, Epoch 0/500, MSE 0.504647/0, Gradient 2.1201/1e-006 TRAINGDX, Epoch 25/500, MSE 0.163593/0, Gradient 0.384793/1e-006 TRAINGDX, Epoch 50/500, MSE 0.130259/0, Gradient 0.158209/1e-006 TRAINGDX, Epoch 75/500, MSE 0.086869/0, Gradient 0.0883479/1e-006 TRAINGDX, Epoch 100/500, MSE 0.0492511/0, Gradient 0.0387894/1e-006 TRAINGDX, Epoch 125/500, MSE 0.0110016/0, Gradient 0.017242/1e-006 TRAINGDX, Epoch 136/500, MSE 0.0102565/0, Gradient 0.01203/1e-006 TRAINGDX, Validation stop.例3 用BP网络估计胆固醇含量这是一个将神经网络用于医疗应用的例子。

我们设计一个器械,用于从血样的光谱组成的测量中得到血清的胆固醇含量级别,我们有261个病人的血样值,包括21种波长的谱线的数据,对于这些病人,我们得到了基于光谱分类的胆固醇含量级别hdl,ldl,vldl。

相关文档
最新文档