基于BP神经网络预测模型指南
基于SVM和BP神经网络的预测模型

基于SVM和BP神经网络的预测模型随着社会的不断发展和技术的日益进步,各种预测模型的应用越来越广泛。
其中,基于支持向量机(SVM)和反向传播神经网络(BP神经网络)的预测模型备受关注。
它们不仅可以对数据进行分类和回归预测,还可以在信号、音频、图像等领域中得到广泛应用。
本文将介绍SVM和BP神经网络的基本原理及其在预测模型中的应用。
一、支持向量机(SVM)的基本原理支持向量机是一种基于统计学习理论的分类和回归分析方法。
它的基本原理是通过将原始样本空间映射到高维空间,将不可分的样本转化为可分的线性空间,从而实现分类或者回归分析。
SVM的关键是选择合适的核函数,可以将样本映射到任意高维空间,并通过最大化间隔来实现对样本的分类。
在SVM的分类中,最大间隔分类被称为硬间隔分类,是通过选择支持向量(即距离分类界线最近的样本)来实现的。
而在实际中,可能存在一些噪声和难以分类的样本,这时采用软间隔分类可以更好地适应于数据。
软间隔SVM将目标函数添加一个松弛变量,通过限制松弛变量和间隔来平衡分类精度和泛化能力。
二、反向传播神经网络(BP神经网络)的基本原理BP神经网络是一种典型的前馈型神经网络,具有非线性映射和逼近能力。
它可以用于分类、回归、时间序列预测、模式识别等问题,被广泛应用于各个领域。
BP神经网络由输入层、隐含层和输出层组成,其中隐含层是核心层,通过数学函数对其输入进行加工和处理,将处理的结果传递到输出层。
BP神经网络的训练过程就是通过调整网络的权值和阈值来减小训练误差的过程。
BP神经网络的训练过程可以分为前向传播和反向传播两部分。
前向传播是通过给定的输入,将输入信号经过网络传递到输出层,并计算输出误差。
反向传播是通过计算误差梯度,将误差传递回隐含层和输入层,并调整网络的权值和阈值。
三、SVM与BP神经网络在预测模型中的应用SVM和BP神经网络的预测模型在实际中广泛应用于各个领域,如无线通信、金融、物流、医疗等。
基于改进BP神经网络的价格预测模型研究

St u d y o n p r i c e p r e d i c t i o n mo d e l b a s e d o n i mp r o v e d BP n e u r a l n e t wo r k /
S U N H o n g mi n , WU J i n g t i n g , L I X i a 0 mi n g ( S c h o 0 I o f E l e c t r i c i t y a n d I n f o r ma t i o n , N o r t h e a s t A g r i c u l t u r a l
f u n c t i o n,i t c an b e ar b i t r a r y n on l i n e a r c on t i n u o u s f u n c t i o n a pp r o x i ma t i o n.Ac c o r d i n g t o t h e c om p l e x f ac t or s o f an i ma l pr od uc t s p r i c e c h an g es ,t h i s p a p er u s e s MATL AB t o r ea l i z e al l k i n ds o f d es i gn an d t r ai n i ng o f BP n e u r a l ne t wo r k ,u s i n g t h e i mpr o v e d n e ur a l ne w or t k a l g or i t h m b y i n t r o du c i n g t h e m0m e n t u m i n t h e wei g h t s o f i t ems .t he t r an s f er f un c t i on o f t h e i np u t l a y er t o hi d d en l a y er u s e s t h e S
基于BP神经网络的股票指数期货价格预测

基于BP神经网络的股票指数期货价格预测基于BP神经网络的股票指数期货价格预测一、引言股票指数期货是金融市场中的重要交易品种之一,其价格波动对投资者具有重要的参考价值。
而准确预测股票指数期货价格对于投资者来说十分关键,因为这能帮助他们做出更明智的投资决策。
而神经网络作为一种模拟人脑神经网络的数学模型,被广泛应用于各个领域,其中包括股票价格预测。
本文旨在探讨基于BP神经网络的股票指数期货价格预测方法,希望能对投资者提供可靠的决策依据。
二、BP神经网络的基本原理与结构BP神经网络是一种具有反向传播算法的前馈式神经网络模型。
它由输入层、隐含层和输出层组成。
输入层用于接受各种输入变量,隐含层通过非线性函数将输入传递给输出层,输出层可得到最终的预测结果。
BP神经网络通过反向传播算法,不断调整各层之间的连接权重,以最小化预测值与实际值之间的误差。
三、数据预处理在进行股票指数期货价格预测之前,首先需要对数据进行预处理。
这包括数据的清洗、归一化和划分训练集和测试集等步骤。
数据清洗是为了去除异常值和缺失值,以保证数据的质量。
归一化是将不同数量级的数据统一到一个范围内,避免在网络训练过程中某些特征权重过大或过小。
划分训练集和测试集是为了评估网络的预测能力。
四、BP神经网络的训练与优化BP神经网络的训练与优化是保证其预测能力的关键步骤。
在训练过程中,首先需要选择适当的隐含层数目和每层神经元的数量。
然后通过不断调整连接权重和阈值,利用反向传播算法,使网络的输出与实际值之间的误差最小化。
具体而言,这包括两个阶段,前向传播和误差反向传播。
前向传播是将输入数据在网络中传递,并计算输出值。
误差反向传播是将输出值与实际值之间的误差通过链式法则逆序传播,更新连接权重和阈值。
在优化方面,我们可以采用合适的激活函数、学习率和动量等方法,以提高网络的收敛速度和稳定性。
五、模型评估与预测结果分析在训练完成后,需要对模型进行评估以验证其预测能力。
bp网预报模型的建模方法及应用

bp网预报模型的建模方法及应用
随着现代社会的发展和进步,人们对技术的要求越来越高,各种预测技术也受到了广泛的应用。
BP网络预报模型是一种新兴的人工智能技术,它能够精确地预测未来的变化趋势,因此受到了社会的广泛关注。
本文就BP网络预报模型的建模方法及应用作一介绍,以期对此新技术的发展有所了解。
第一部分,主要介绍BP网络预报模型的建模方法。
BP网络模型是一种基于多层前馈神经网络的技术,它可以将复杂的函数映射到一个任意非线性结构。
首先,确定输入输出数据,然后利用梯度下降算法对输入和输出进行建模。
完成这一步之后,再通过反向传播算法调整权重,以达到最佳的模型精度。
第二部分,主要介绍BP网络预报模型的应用。
BP网络预报模型可应用于各种预测场景,如气象预测、股票市场预测以及经济发展趋势预测等。
在气象预测中,BP网络模型可以基于复杂的气象数据,准确预测天气状况;在股票市场预测中,可以基于历史股票数据,准确预测股票的变化趋势;在经济发展趋势预测中,可以基于经济数据,准确预测经济的发展趋势。
第三部分,主要介绍BP网络预报模型的局限性。
虽然BP网络预报模型具有极高的准确率,但存在一定的局限性:首先,它忽略了复杂度曲线,这可能会影响到模型的准确性;其次,它无法处理中断观测、局部极值问题,这也会降低预测的准确性;最后,它对数据量的要求较高,如果数据量不足,就无法达到较高的准确度。
最后,作为一种新兴的人工智能技术,BP网络预测模型取得了较大的成功。
它可以准确预测气象、股票市场和经济的发展趋势,为社会的发展和进步提供了帮助。
但是,它也有一定的局限性,因此在选择和使用时,也要根据实际情况进行合理的评估。
BP神经网络算法预测模型

BP神经网络算法预测模型
BP神经网络(Back Propagation Neural Network,BPNN)是一种常
用的人工神经网络,它是1986年由Rumelhart和McClelland首次提出的,主要用于处理有结构的或无结构的、离散的或连续的输入和输出的信息。
它属于多层前馈神经网络,各层之间存在权值关系,其中权值是由算法本
身计算出来的。
BP神经网络借助“反向传播”(Back Propagation)来
实现权值的更新,其核心思想是根据网络的输出,将错误信息以“反馈”
的方式传递到前面的每一层,通过现行的误差迭代传播至输入层,用来更
新每一层的权值,以达到错误最小的网络。
BP神经网络的框架,可以有输入层、隐含层和输出层等组成。
其中
输入层的节点数即为输入数据的维数,输出层的节点个数就是可以输出的
维数,而隐含层的节点数可以由设计者自由设定。
每一层之间的权值是
BP神经网络算法预测模型中最重要的参数,它决定了神经网络的预测精度。
BP神经网络的训练步骤主要有以下几步:首先,规定模型的参数,
包括节点数,层数,权值,学习率等;其次,以训练数据为输入,初始化
权值,通过计算决定输出层的输出及误差;然后,使用反向传播算法,从
输出层向前,层层地将误差反馈到前一层。
基于BP神经网络的股票趋势预测研究

基于BP神经网络的股票趋势预测研究股票市场对于很多人来说,都是一个神秘而又令人敬畏的存在。
而要在股票市场中获得收益,除了对经济、金融等方面有足够的了解外,还需要了解股票的走势以及对其进行预测。
而在这个过程中,BP神经网络被广泛应用于股票趋势预测研究中。
BP神经网络可以解决的问题BP神经网络是一种广泛运用于各种应用中的人工神经网络,其中BP代表的是反向传播。
在进行股票趋势预测时,BP神经网络主要可以解决以下问题:第一,BP神经网络可以通过学习历史数据,自动地建立股票的预测模型。
因为股票市场的变化非常复杂,但是通过历史数据进行分析,就可以找到某种规律性,从而建立预测模型。
第二,BP神经网络可以处理大量非线性数据。
股票市场中的变化是非线性的,无法通过简单的线性模型进行预测。
而BP神经网络可以自动将非线性关系进行学习和处理,从而实现更好的预测效果。
第三,BP神经网络还可以进行多因素分析,将多个因素进行综合,从而建立更加精准的预测模型。
股票市场的变化不仅仅受到一个因素的影响,而是受到多个因素的影响。
在使用BP神经网络进行预测时,可以将多个因素进行综合分析,并得出更加合理的预测结果。
如何使用BP神经网络进行股票趋势预测在使用BP神经网络进行股票趋势预测时,需要进行以下步骤:第一,准备数据。
需要收集大量的历史数据,包括股票的交易量、收盘价、成交量等。
这些数据需要进行预处理和特征提取,以便用于BP神经网络的学习。
第二,构建神经网络。
需要根据实际情况和需要,构建合适的BP神经网络模型。
模型的深度、层数、激活函数等都需要进行合理的选择。
第三,进行训练。
使用历史数据对BP神经网络进行训练,并进行不断的优化和调整。
在训练过程中,需要设置好学习率、迭代次数等参数,并对网络的权重和偏置等进行调整。
第四,进行预测。
训练好的BP神经网络可以用于预测未来的股票趋势。
在进行预测时,需要对输入数据进行编码,并进行前向传播,从而得到预测结果。
BP神经网络预测模型

BP 神经网络模型基本原理( 1) 神经网络的定义简介神经网络是由多个神经元组成的广泛互连的神经网络, 能够模拟生物神经系统真实世界及物体之间所做出的交互反应. 人工神经网络处理信息是通过信息样本对神经网络的训练, 使其具有人的大脑的记忆, 辨识能力, 完成名种信息处理功能. 它不需要任何先验公式, 就能从已有数据中自动地归纳规则, 获得这些数据的内在规律, 具有良好的自学习, 自适应, 联想记忆, 并行处理和非线性形转换的能力, 特别适合于因果关系复杂的非确定性推理, 判断, 识别和分类等问题. 对于任意一组随机的, 正态的数据, 都可以利用人工神经网络算法进行统计分析, 做出拟合和预测.基于误差反向传播(Back propagation)算法的多层前馈网络(Multiple-layer feedforward network, 简记为BP 网络), 是目前应用最成功和广泛的人工神经网络.( 2) BP 模型的基本原理[3]学习过程中由信号的正向传播与误差的逆向传播两个过程组成. 正向传播时, 模式作用于输入层, 经隐层处理后, 传入误差的逆向传播阶段, 将输出误差按某种子形式, 通过隐层向输入层逐层返回, 并“分摊”给各层的所有单元, 从而获得各层单元的参考误差或称误差信号, 以作为修改各单元权值的依据. 权值不断修改的过程, 也就是网络学习过程. 此过程一直进行到网络输出的误差准逐渐减少到可接受的程度或达到设定的学习次数为止. BP 网络模型包括其输入输出模型, 作用函数模型, 误差计算模型和自学习模型.BP 网络由输入层, 输出层以及一个或多个隐层节点互连而成的一种多层网, 这种结构使多层前馈网络可在输入和输出间建立合适的线性或非线性关系, 又不致使网络输出限制在-1和1之间. 见图( 1) .O 1 O 2 O i O m( 大于等于一层) W (1)…( 3) BP 神经网络的训练BP 算法通过“训练”这一事件来得到这种输入, 输出间合适的线性或非线性关系. “训练”的过程可以分为向前传输和向后传输两个阶段:输入层 输出层 隐含层图1 BP 网络模型[1]向前传输阶段:①从样本集中取一个样本,i j P Q , 将i P 输入网络;②计算出误差测度1E 和实际输出(1)(2)()21(...((())...))L i L iO F F F PW W W =; ③对权重值L W W W ,...,)2()1(各做一次调整, 重复这个循环, 直到i E ε<∑.[2]向后传播阶段——误差传播阶段:①计算实际输出p O 与理想输出i Q 的差;②用输出层的误差调整输出层权矩阵; ③211()2mi ij ij j E Q O ==-∑; ④用此误差估计输出层的直接前导层的误差, 再用输出层前导层误差估计更前一层的误差. 如此获得所有其他各层的误差估计;⑤并用这些估计实现对权矩阵的修改. 形成将输出端表现出的误差沿着与输出信号相反的方向逐级向输出端传递的过程.网络关于整个样本集的误差测度:i iE E =∑几点说明:一般地,BP 网络的输入变量即为待分析系统的内生变量(影响因子或自变量)数,一般根据专业知识确定。
基于BP神经网络的股票价格预测模型

基于BP神经网络的股票价格预测模型股票市场是一个高度波动的市场,股票价格每天都发生着变化,投资者需要在这个市场中赚取利润,但是要预测股票价格的变化是非常困难的。
传统的基本面分析和技术分析方法虽然可以对市场产生一定的影响,但是对于股票价格预测的准确性并不高。
近年来,随着神经网络技术的发展,越来越多的学者开始利用神经网络模型来进行股票价格预测。
BP神经网络作为一种最为基础的神经网络模型在股票价格预测中得到了广泛的应用。
本文将基于BP神经网络模型,探讨其在股票价格预测中的应用和优缺点。
一、BP神经网络模型概述BP神经网络模型是一种前向反馈的多层神经网络模型,由输入层、隐层和输出层组成。
输入层接收外部输入数据,隐层对输入值进行一定的特征提取和转换后输出到输出层,输出层则给出最终结果。
在训练过程中,BP神经网络利用反向传播算法,不断调整网络的权重和阈值,使得网络的输出结果与实际结果尽可能的接近。
二、BP神经网络在股票价格预测中的优缺点1.优点(1)非线性映射能力:BP神经网络模型能够非线性地拟合股票价格的变化趋势,能够更好的适应复杂和非线性的市场环境。
(2)自适应性:神经网络模型能够自动地对权重和阈值进行调整,对于不同的市场环境和数据情况都能够有一定的适应性。
(3)数据处理能力:神经网络模型具有较好的数据处理能力,能够识别并利用大量的数据和变量进行预测,这为股票价格预测提供了很大的便利。
2.缺点(1)过拟合问题:当神经网络模型的训练数据过多或者网络结构过于复杂时,容易出现过拟合问题,导致模型的泛化能力下降。
(2)训练时间长:传统的BP神经网络需要进行大量的迭代训练,对计算机资源和时间的要求较高。
(3)参数选择困难:BP神经网络的训练结果受到很多参数的影响,需要进行不断的试错才能得到最优的参数选择,影响模型的实用性。
三、BP神经网络模型的应用案例1.利用BP神经网络预测股票趋势李果等人利用BP神经网络,以2014年沪深300个股为样本,建立了股票价格预测模型,结果显示BP神经网络具有较好的精度和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于BP神经网络的国际黄金价格预测模型公文易文秘资源网顾孟钧张志和陈友2009-1-2 13:35:26我要投稿添加到百度搜藏[摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型[摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATL AB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型。
[关键词] MATLAB BP神经网络预测模型数据归一化一、引言自20世纪70年代初以来的30多年里,世界黄金价格出现了令人瞠目的剧烈变动。
20世纪70年代初,每盎司黄金价格仅为30多美元。
80年代初,黄金暴涨到每盎司近700美元。
本世纪初,黄金价格处于每盎司270美元左右,此后逐年攀升,到2006年5月12日达到了26年高点,每盎司730美元,此后又暴跌,仅一个月时间内就下跌了约160美元,跌幅高达21.9%。
最近两年,黄金价格一度冲高到每盎司900多美元。
黄金价格起伏如此之大,本文根据国际黄金价格的影响因素,通过BP神经网络预测模型来预测长期黄金价格。
二、影响因素刘曙光和胡再勇证实将观察期延长为1972年~2006年时,则影响黄金价格的主要因素扩展至包含道琼斯指数、美国消费者价格指数、美元名义有效汇率、美国联邦基金利率和世界黄金储备5个因素。
本文利用此观点,根据1972年~2006年各因素的值来建立神经网络预测模型。
三、模型构建1.模型选择:BP网络具有理论上能逼近任意非线性函数的能力,将输入模式映射到输出模式,只需用已知的模式训练网络,通过学习,网络就有了这种映射能力。
2.样本数据归一化:在训练前,对数据进行归一化处理,把输入向量和输出向量的取值范围都归一到[0,1]。
3.BP网络设计:采用单隐层的BP网络进行预测,由于输入样本为5维的输入向量,因此输入层一共有5个神经元,中间层取20个神经元,输出层一个神经元(即黄金价格),网络为5*20*1的结构。
中间层的传递函数为S型正切函数,输出层为S型对数函数。
中间层的神经元个数很难确定,测试时分别对12,15,20个数进行测试,寻找误差最小的。
4.网络训练:训练次数epochs5000,训练目标goal 0.001对30个样本数据进行训练,经过1818次的训练,目标误差达到要求,如图2所示:5.网络测试:神经元个数为20个时误差最小,此时网络的仿真结果如图3所示,预测精度80%以上,效果满意。
四、结论在对1976年~2006年的影响国际黄金价格的五种因素的数据进行归一化处理后,用M ATLAB建立的BP神经网络预测模型进行预测,达到了很好的效果。
国际黄金的长期价格受到许多因素的影响,本文只是对道琼斯工业指数等影响因素诸如分析,来预测长期的国际金价。
还有其他因素,如国际油价,局部政治因素等,如果考虑进去,预测精度会进一步提高。
参考文献:[1]徐优丽:基于神经网络的物流需求预测.浙江树人大学学报, 2008(01):56~58[2]刘曙光胡再勇:黄金价格的长期决定因素稳定性分析.世界经济研究,2008(02):35~41基于BP神经网络的中国铁矿石需求量预测来源:国土资源情报作者:郭娟发布时间:2009.03.04摘要:铁矿石作为国民经济发展的基础原料之一,在我国目前工业化全面发展的时期,正处于高消耗的状态首先,本文根据历年我国铁矿石的产量和进口量,对我国铁矿石的需求量进行了估算;然后运用Matlab工具,对铁矿石的需求量进行分析模拟,建立了神经网络模型;最后,对中国未来铁矿石需求进行了初步预测预测表明,中国铁矿石需求将在2012--2015年达到高峰期。
关键词:铁矿石需求量神经网络高峰一、引言伴随我国工业化、城镇化进程的不断推进,钢铁F业迅速发展,国民经济对钢铁的需求量不断增加,相应地对铁矿石需求量也在大幅上升,从而给我国铁矿石的生产带来了巨大的压力。
为了满足铁矿石消费量持续增长的需求,我国铁矿石产量一路飘升,从1978年到2007年,铁矿石产量从1.18亿吨增长到了7.07亿吨,增长了5倍。
2007年我国铁矿石产量占世界铁矿石总产量的20%,是世界上最大的铁矿石生产国。
但是,铁矿石产量增长仍远远跟不上需求的增长。
继2003年我国铁矿石进口量(1.48亿吨)超越日本、欧盟成为全球最大的铁矿石进口国后,进口铁矿占全球海运贸易量的比例不断加大。
1978--2007年的30年间,中国进口铁矿石从802.02万吨增长到3.83亿吨,翻了45倍。
二、BP神经网络概述神经网络是20世纪40年代新兴起来的一种预决策技术,因其具有极强的非线性动态处理能力,强大的自适应、自学习功能而被广泛应用于不同领域。
在众多神经网络中,BP神经网络是最具代表性和应用最为广泛的一种网络模型[1],其功能也发展得最全面和完整,因此本文运用BP神经网络的方法建立铁矿石需求模型,并利用该模型对铁矿石需求量进行预测。
BP神经网络是误差反向传播的多层前馈网络,它可以任意精度逼近任意的连续函数,主要应用于非线性建模函数逼近模式分类等力面。
BP神经网络由输人层、隐含层、输出层组成。
以带一个隐含层的BP神经网络为例,网络的一般结构见图1。
在BP神经网络中,信号由输人单向传至输出,且同一层的神经元之间互不传递信号[2]。
每个神经元与相邻层的所有神经元相连。
某一层的神经元的输出值通过连接权系数的加强或抑制传输到下一层的神经元。
除了输入层外,每一神经元的输人为前一层所有神经元之输出值的加权和。
图2给出了一个基本的BP神经元模型,它具有R个输入,每个输入都通过一个适当的权值、与神经元相连,神经元的输出可表示成[3]:三、铁矿石需求量的BP神经网络预测模型的建立和Matlab实现1989年Robert Hecht--Nielson证明了对于任何在闭区间的一个连续函数都可以用一个隐含层的BP网络来逼近,因而一个3层的BP网络可以完成任意的N维到M维的映射,所以本文采用3层BP神经网络。
1.样本数据处理对铁矿石的消费量,我们用国产原矿产量加净进口量来估算,由于我国铁矿石基本没有对外出口,铁矿石消费量约等于国产原矿产量加进口量的总和。
本文铁矿石消费量按65%成品矿计量,我国进口铁矿石品位多数在65%左右,折合为成品矿换算系数是1。
而国产原矿品位一般在35%左右,按品位折合为成品矿时,换算系数约为0.5。
1981--2007年我国铁矿石消费量计算结果见表1。
2.BP网络结构设计输入层:根据铁矿石产量数据的特点以及我国进行5年规划的惯例,选择输入层神经元个数为5。
即用1981--1985年的国内铁矿石需求量作为网络的输人,1986年的国内铁矿石需求量作为输出,依此类推,就得到22组数据。
输出层:由于输出的结果只有一个指标,即铁矿石需求量,因此取输出节点数为1。
隐含层:理论分析表明,具有单隐层的前向网络可以以任意精度映射任何的连续函数,本研究选用只有一个隐层的前向网络,而对于隐含层节点数使用经验公式s≥k×m/(m+n)来确定[5]。
其中:m为输入层节点数,取5;n为输出层节点数,取1;k为学习样本个数,取22。
由此可以计算出网络隐含层节点数为19个。
传递函数:一个神经网络,如果第一层是S型函数,而第二层是线形函数,就可以用来模拟任何函数(必须是连续有界的)。
因此,确定隐含层传递函数为S型函数“tansig",输出层传递函数为线形函数“purelin”。
训练函数:为了确定最快捷准确的训练函数,本文采用比较法来确定。
利用Matlab中常用的训练函数训练网络,得到不同函数的训练结果,最终确定采用,Levenberg Marquart算法,如表2所示。
从表2中可以看出,trainlm()函数的迭代次数最少,收敛精度最高,故采用Levenberg Marquart算法是最为快速和精确的。
3.BP网络建立及训练利用Matlab中的神经网络工具箱,可方便地直接在Matlab中调用相关函数实现BP网络模型的学习、训练、拟合及预测(仿真)过程。
具体步骤为:第一步,数据归一化。
为了在Matlab中计算的方便,在网络建立之前,需要对数据的大小进行归一化处理。
本文采用的是[-1,1]归一化,利用Matlab工具箱中的Premnmx()函数把数据归一化为单位方差和零均值,这相当于把原始数据看成服从正态分布。
第二步,建立网络。
数据归一化后,通过newff()函数并使用选定的训练函数trainlm (),生成了一个前馈的5-19-1的二层BP神经网络。
第三步,训练网络。
通过train()函数对已生成的网络进行学习训练,学习步长设为200个周期,目标误差设为0.001,学习速度设为0.05并每隔20步显示一次结果。
训练结果表明,训练从第三个周期开始,误差小于目标误差,误差平方和的均值为0.000281,此时停止训练。
第四步,网络仿真模拟及数据还原。
将经过归一化处理过的样本数据带人已训练的网络进行仿真模拟,此过程通过Matlab工具箱中的sim()函数来实现。
最后将运算结果通过Postmnmx ()函数进行反归一化处理,从而得到有效的预测值。
4.BP网络模型检验把1981--2007年的中国铁矿石消费量数据带人已训练好的模型,通过仿真模拟和数据的反归一化处理,可以得到1986--2007年铁矿石需求量的预测值,(见表3)。
从表中可以看出,误差百分比小于6%的有19项,占86.36%;大于6%的有2项,占13.64%。
说明铁矿石需求预测的神经网络模型误差很小,该模型的泛化能力较好,模拟的结果比较可靠。
四、铁矿石需求量的BP神经网络预测分析把2003--2007年中国铁矿石消费量的实际数据作为训练好的神经网络的输人,得到2008年需求量预测值。
将2004--2007年实际数据以及2008年的预测结果作为输入,得到2009年预测值,依此类推,可以得到2008--2015年中国铁矿石需求量的预测结果,如表4所示。
从表中可以看出,中国铁矿石需求量2008--2011年持续上升,2008年为78854万吨,2010年为86713万吨。
2012--2015年中国铁矿石需求量进人高峰阶段,为87828万--90379万吨。
图3是中国铁矿石需求预测模型的真实值和预测曲线图,从图中可以看出,运用BP神经网络仿真的效果十分理想,训练后的BP网络能很好地逼近给定的目标函数。
从图3中同时可以看出,2008--2011年未来4年中国铁矿石需求呈上升趋势,但增幅将会下降;2012--2015年进人铁矿石需求高峰阶段,铁矿石需求趋于平缓。