翻车机液压系统的故障分析及处理

翻车机液压系统的故障分析及处理
翻车机液压系统的故障分析及处理

翻车机液压系统的故障分析及处理

达州钢铁集团设备工程公司吴清让

摘要:通过对翻车机卸车系统中的液压系统的工作原理分析,简述我厂收料工段翻车机液压系统出现的故障,进行防范和处理。

关键词:翻车机液压系统压车机构靠车机构

1 前言

我厂收料工段翻车机自投产以来,历经一年的使用,先后出现两次较大的故障,因处理不到位,造成一次车皮脱轨事故和一次掉道事故。

随着翻车机翻卸能力的逐渐增加,翻车设备对液压传动的要求也不断提高,由以往的机械限位控制补偿,改为带活塞杆补偿的新型复合油缸,避免了压力补偿不够的情况,同时,在控制元件选择上由传统的单个独立板式或管式连接阀件改成了集成度更高、响应更快的板式叠加阀组,从而对过去的液压系统阀件管路复杂零散,不便安装调试及故障分析排查不便,减少了占用空间、控制难度降低、并减少各种形式的泄漏等方面有较大改进,确保了本液压系统的稳定和可靠。尽管液压传动还存在一定的泄漏、发热及污染等问题,加之我厂的作业环境受到,翻车机液压系统随所卸物料一同翻转,粉末矿粉四处漂移和散落对液压油及各阀件组进行污染和腐蚀,但翻车机液压系统作为卸车设备中的关键部分,为改善本系统在液压传动中的不足,下面从靠车原理和压车原理入手对翻车机液压系统进行分析,以预防类似的液压故障造成火车车皮脱轨事故。

2 靠车原理分析

为防止车辆脱轨或掉道,要求车辆必须可靠地被固定在翻车机轨道上,为避免车辆受到较大的外力损坏,铁道部制定了相应的标准。该标准规定,作用于车皮上的夹紧力不能超出标准允许的范围。因此靠车压力要尽可能调小,只要将靠板和车皮接触并在翻转过程中确定有良好的保压即可。靠车动作分油缸伸出和油缸缩回两步进行:其原理见图11,结构实物图见12.。

大泵电磁溢流阀YH1和靠车阀组电液换向阀电磁铁YH3一起得电,压力油从靠车阀组上边一排四个1A油口(图12所示)分别进入四个靠车油缸无杆腔,靠车油缸伸出。靠板光电信号动作,表明靠车已到位,电液换向阀断电,断电后,液控单向阀4.1快速关闭,加之液控单向阀具有锁闭功能,仍保持断电前状态,这样起到了A腔保压的作用。一个翻转单元完成后,需靠车油缸缩回时,电液换向阀的电磁铁YH4端得电,(即电液换向阀的机能为P-B,A-T接通,由液压泵提供的压力油从油口P进入, 经液控单向阀4.2,然后经单向节流阀的单向阀,进入油缸的B腔。)压力油进入油缸B腔,油缸受压缩回。

3压车原理分析

翻车机翻转时,翻车机的压车力要限定在一定范围之内,由于每节车皮都是满载,货物的重量和车皮的自重将车辆转向架弹簧压缩变形,当车辆随翻车机翻转到一定角度之后,车辆中的货物不断被卸出,被压缩的弹簧随着货物的减少受到的压力也娈小,因而弹簧要向上恢复变形,从而带动全个车辆向上运动,弹簧受力状态见图13。

如果翻车机压车油缸一直处于锁闭状态将车辆固定死,当货物全部卸出后,压车梁作用于车辆上的夹紧力就等于车辆所载货的自生才能平衡弹簧力,这么大的压紧力已超出了允许的范围,严重影响车辆的使用寿命。为解决上述问题,下面对压车动作(包括油缸压车、油缸补偿和油缸松开)进行分析.压车原理设计进行分

析:见图18所示

当系统工作时,压车阀组得到操作工的压车动作指令后,大泵和小泵的电磁溢流阀电磁铁YH1、YH2得电,保证压车阀系有可靠的压力值(大泵4MPa,小泵4.5MPa);同时,压车阀组中的主油路序号1电液换向阀YH6和控制油路中的序号10电磁换向阀YH7得电,打开压车阀组主油路给8只压车油缸的有杆腔(B腔)供油,使压车梁压下;当压车油缸A腔压力达到压力继电器12设定压力时,压力继电器发出信号,表明压车已到位,并且压力已达到翻车所需能力,,;因B腔前的一序号13液控单向阀,要想实现压车梁抬起,就必须有控制油去打开8个序号13液控单向阀(即YH2和YH7同时得电,从而打开8个液控单向阀),实现压车

油缸(B腔)的回油;并以保证压车梁在无控制油的作用下,8个起闭锁作用的液控单向阀是无法打开,确保了翻车机在翻转时,压车油缸压下的闭锁和车皮的安全。

当翻车机翻转从0~45度时,压车压力靠压力继电器信号灯确认;45度~90度时,翻车机靠车板就承载较大负荷(车皮自重和物料重量);90~110度物料倾倒,负荷开始减轻;靠车板负荷减轻,而压车梁及压车油缸负载增加;此时压车阀组中的控制压力油失压(即YH2和YH7失电),8个液控单向阀锁闭。它确保了压车油缸的保压,同时,压车油缸的有杆腔(B腔)随车皮和物料的翻转负载增加,油缸(B腔)压力增大;P=F/S(P表示压强MPa 液压中将压强称为压力),因此,为了保证油缸的安全,在系统中设定了一个卸压保流(保油)装置,序号7单向阀和序号8节流阀。

与翻车机翻转同步的补偿油缸随着车辆中货物不断被卸出,弹簧因要恢复变形而向上拉活塞杆的力不断增大, 补偿油缸有杆腔B的压力也渐渐升高。由于B 腔压力作用在活塞杆上,当压力升高到平衡阀(顺序阀)的设定压力时,该阀打开,活塞杆的A腔的液压油经此阀溢出,活塞杆上移,这样, 整个车辆跟着向上抬升,弹簧恢复一定的变形,作用在车辆上的力被告减小,所以对车皮起到了保护作用。因为活塞杆的提升, 补偿油缸的无杆腔A形成一定的负压,A腔从系统回油管路T吸油以补偿活塞杆向上动作所需的油液,这样,压车油缸液压补偿完成。

由于翻卸过程中, 为了保证油缸的安全,在系统中设定了一个卸压保流(保油)装置,序号7单向阀和序号8节流阀。它们的作用:一是为了增大压车主油路中油液通过序号10电磁阀泄回油箱的阻力,让压车油缸旁8个液控单向阀能快速关闭。二是卸压不卸油(流)。当翻车机翻转到110度时,压车油缸受负载的影响压力增大,为了保压闭锁,YH2和YH7(序号10电磁阀)失电,8个液控单向阀锁闭还有一段过程和时间,序号7单向阀打开,序号8节流阀卸压,保证8个液控单向阀在确保压车油缸(B腔)有足够压力的前提下,快速关闭。如序号8节流阀调整过大,卸压的同时就卸油(流)了,油量减少使压车油缸(B腔)就出现空穴,压车梁自然就打开。车皮随之而脱轨和掉道。

4我厂翻车机液压系统出现的故障分析及处理

从上述的液压原理可知,几个主要液压元件的作用和本系统的重点:

电液换向阀1及液控单向阀2和单向节流阀11的作用。就是控制油液的流向及流量,从而起调节液压缸速度及改变液压缸运动方向的作用。

液控单向阀13与电磁阀10起控制主油路的快速关闭(锁闭),保压作用。

本系统的重点和关键:就是整机设备运行的安全性,防止火车车皮的脱轨

和掉道。即翻车机液压系统的保压闭锁。

5 结论

通过我单位的翻车机的运行工况,及检修中出现的问题,分析和总结,加强了故障的预防,杜绝了液压系统的故障。

参考文献

[1] 何存兴液压元件/机械工业出版社. 1983

[2]丁树模液压传动//机械工业出版社. 2002

[3] 王家凯C型翻车机液压系统调试指导书2011

翻车机液压系统使用说明书

翻车机液压系统 使用说明书 :白酒2斤,灵芝20克,黄芪20克,党参15克,白术10克,白糖或冰糖4斤 一、技术参数 1、系统压力 5 Mpa(压车梁压力) 3.5Mpa(靠车板压力) 5Mpa(控制回路压力) 2、油泵排量85ml/r(大泵) 56ml/r(次级泵) 16ml/r(小泵) 3、电动机Y180L-4W P=22KW n=1470r/min 4、油箱容积850L 5、液压油YB-N46 二、原理图及动作说明 1原理图

1、动作顺序说明 1)启动电动机,空转几分钟后,待达到系统内循环平衡。 2)重车在翻车机上定位后,1DT、3DT得电,压车梁开始压车。1XK 发讯号,压车梁压紧到位,1DT、3DT失电。 3)4DT、9DT得电,靠板开始靠车,4XK发讯号,靠板靠紧到位,4DT、9DT失电。 4)翻卸开始,5DT、6DT得电,释放弹簧的弹性势能,待翻车机转 到110°时,5DT、6DT同时失电。 5)翻车机回翻到零位后,4DT、8DT、5DT、7DT得电,靠板开始 松开,3XK发讯号,靠板松靠到位,4DT、8DT、5DT、7DT失电。 6) 2DT、3DT、5DT、6DT得电,压车梁开始松压。2XK发讯号,

压车梁松压到位,2DT、3DT、5DT、6DT失电。 7)重车调车机推空车,进入下一个循环。 三、启动与调试操作 1、油箱注油至油标上限,约为油箱容积2/3(注液压油必须经≤ 20um滤网过滤后方可注入油箱)。 2、将进油口、回油口管路球阀打开,将所有溢流阀均调至开口最 大状态。 3、检测电机绝缘应>1mΩ,接通电源,点动电机,观察电机旋转 方向(从电机轴端处看应为顺时针方向旋转) 4、启动电机,容载运行5~10min (注此时为排系统内空气)检测电 机电流,空转电流约15A左右,判断油泵有无异常噪音、振动以及各阀件管路连接处是否有漏油现象,否则应停机进行处理。 5、调整压车回路,靠车回路,控制回路压力至参考压力值。调整 控制回路压力时需让电磁换向阀处于工作状态,否则无法调定。 6、待系统压力调整正常后,进行平衡油缸回路顺序阀压力整定, 其压力设定高于压车回路压力2Mpa左右。 7、所有压力调整过程中,应使压力均匀上升至调定值。 8、调整压力完毕后,再通电进行调试。 9、所有油缸在运动中均应无卡涩、冲击、爬行现象,才可认为动 作正常。 10、以上工作均结束后,检查各管道连接处有无漏油、渗油现象, 否则需更换密封件。

液压系统常见故障及排除方法

液压系统常见故障及排除方法 一液压泵常见故障分析与排除方法 故障现象故障分析排除方法 不出油1、电动机转向不对1、检查电动机转向 输油量不足2、吸油管或过滤器堵塞2、疏通管道、清洗过滤器、换新油 压力上不去3、轴向间隙或径向间隙过大3、检查更换有关零件 4、连接泄露,混入空气4、紧固各连接处螺钉,避免泄露,严防 空气混入 5、油粘度太大或油温升太高5、正确选用油液,控制温升 噪音严重1、吸油管及过滤器堵塞或过滤器容量小1、清洗过滤器使过滤器畅通、正确选用 过滤器 压力波动2、吸油管密封处泄露或油液中有气泡2、在连接处或密封处加点油,如果噪音 减小,可拧紧接头处或更换密封圈; 回油管口应在油面以下,与吸油管要 有一定距离 3、泵与联轴节不同心3、调整同心 4、油位低4、加油液 5、油温低或粘度高5、把油液加热到适当温度 6、泵轴承损坏6、检查(用手触感)泵轴承部分温升 温升过高1、液压泵磨损严重,间隙过大泄漏增加1、修磨零件,使其达到合适间隙 2、泵连续吸气,液体在泵内受绝热高压,2、检查泵内进气部位,及时处理 产生高温 3、定子曲面伤痕大3、修整抛光定子曲面 4、主轴密封过紧或轴承单边发热4、修整或更换 内泄漏1、柱塞与缸孔之间磨损1、更换柱塞重新配研 2、油液粘度过低,导致内泄2、更换粘度适当的油液 二、液压缸常见故障分析与排除方法 故障现象故障分析排除方法 爬行1、空气入侵1、增设排气装置,如无排气装置,可开动液压 系统以最大行程使工作部分快速运动,强迫排气 2、不同心2、校正二者同心度 3、缸内腐蚀,拉毛3、轻微者去除毛刺,严重者必须镗磨

冲击1、靠间隙密封的活塞和液1、安规定配活塞与液压缸的间隙,减少泄露压缸之间间隙过大节流阀 失去作用 2、端头的缓冲单向阀失灵,缓冲不起作用2、修正研配单向阀与阀座 推力不足1、液压缸或活塞配合间隙太大或O型密封1、单配活塞和液压缸的间隙或更换O 或工作速度圈损坏造成高低压腔互通型密封圈 逐渐下降2、由于工作时经常用工作行程的某一段2、镗磨修复液压缸孔径,单配活塞 甚至停止,造成液压缸孔径线性不良(局部腰鼓) 至使液压缸高低压油腔互通, 3、缸端油封压得太紧或活塞杆弯曲3、放松油封,以不漏油为限,校直活塞 使摩擦力或阻力增加杆 4、泄露过多4、寻找泄露部位,紧固各结合面 5、油温太高,粘度太小,靠间隙密封或5、分析发热原因,设法散热降温,如密 密封质量差的油缸行速变慢,若液压缸封间隙过大则单配活塞或增设密封环 两端高低压油腔互通,运行速度逐步减 慢或停止 原位移动1、换向阀泄露量大1、更换换向阀 2、差动用单向阀锥阀与阀座线接触不良2、更换单向阀或研磨阀座 3、换向阀机能选型不对3、重新选型,有蓄能器的液压系列一般 常用YX或Y型机型 三、溢流阀的故障分析与排除方法 故障现象故障分析排除方法 压力波动1、弹簧太软或弯曲1、更换弹簧 2、锥阀与阀座接触不良2、如锥阀是新的即卸下调整螺母将导杆推 几下,使其接触良好,或更换锥阀 3、钢球与阀座密配合不良3、检查钢球圆度,更换钢球,研磨阀座 4、滑阀变形或拉毛4、更换或修研滑阀 5、锥阀泄露5、检查,补装 调整无效1、弹簧断裂或漏装1、更换弹簧 2、阻尼孔堵塞2、疏通阻尼孔 3、滑阀卡住3、拆出、检查、修整 4、进出油口反装4、检查油源方向 5、锥阀泄露5、检查、修补 泄露严重1、锥阀或钢球与阀座的接触不良1、锥阀或钢球磨损时更换新的锥阀或钢球 2、滑阀与阀体配合间隙过大2、检查阀芯与阀体的间隙

液压系统常见故障分析及处理

液压系统常见故障分析及处理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。文中概括介绍了液压系统在日常使用中常见故障分析以及处理方法。 一.工作原理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。 二.液压系统的组成 液压传动系统通常由以下五部分组成。 1.动力装置部分。其作用是将电动机(或其它原动机)提供的机械能转换为液体的压力能。简单地说,就是向系统提供压力油的装置。如各类液压泵。 2.控制调节装置部分。包括压力、流量、方向控制阀,是用以控制和调节液压系统中液流的压力、流量和流动方向,以满足工作部件所需力(或力矩)、速度(或转速)和运动方向(或运动循环)的要求。 3.执行机构部分。其作用是将液体的压力能转化为机械能以带动工作部件运动。包括液压缸和液压马达。 4.自动控制部分。主要是指电气控制装置。 5.辅助装置部分。除上述四大部分以外的油箱、油管、集成块、滤油器、蓄能器、压力表、加热器、冷却器等等。它们对于保证液压系统工作的可靠性和稳定性是不可缺少的,具有重要的作用。 三.液压缸 液压缸是把液压能转换为机械能的执行元件。液压缸常见故障有:液压缸爬行、液压外泄漏、液压缸机械别劲、液压缸进气、液压缸冲击等。 1.液压缸爬行故障分析及处理 (1)缸或管道内存有空气,处理方法:设置排气装置;若无排气装置,可开动液压系统以最大行程往复数次,强迫排除空气;对系统及管道进行密封。 (2)缸某处形成负压,处理方法:找出液压缸形成负压处加以密封;并排气。 (3)密封圈压得太紧,处理方法:调整密封圈,使其不松不紧,保证活塞杆能来回用手拉动。 (4)活塞与活塞杆不同轴,处理方法:两者装在一起,放在V形块上校正,使同度误差在0.04mm以内;换新活塞。 (5)活塞杆不直(有弯曲),处理方法:单个或连同活塞放在V形块上,用压力机控直和用千分表校正调直。

液压系统常见的故障系统处理

1 常见故障的诊断方法 5。液压设备是由机械、液压、电气等装置组合而成的,故出现的故障也是多种多样的。某一种故障现象可能由许多因素影响后造成的,因此分析液压故障必须能看懂液压系统原理图,对原理图中各个元件的作用有一个大体的了解,然后根据故障现象进行分析、判断,针对许多因素引起的故障原因需逐一分析,抓住主要矛盾,才能较好的解决和排除。液压系统中工作液在元件和管路中的流动情况,外界是很难了解到的,所以给分析、诊断带来了较多的困难,因此要求人们具备较强分析判断故障的能力。在机械、液压、电气诸多复杂的关系中找出故障原因和部位并及时、准确加以排除。 5.1.1 简易故障诊断法 简易故障诊断法是目前采用最普遍的方法,它是靠维修人员凭个人的经验,利用简单仪表根据液压系统出现的故障,客观的采用问、看、听、摸、闻等方法了解系统工作情况,进行分析、诊断、确定产生故障的原因和部位,具体做法如下: 1)询问设备操作者,了解设备运行状况。其中包括:液压系统工作是否正常;液压泵有无异常现象;液压油检测清洁度的时间及结果;滤芯清洗和更换情况;发生故障前是否对液压元件进行了调节;是否更换过密封元件;故障前后液压系统出现过哪些不正常现象;过去该系统出现过什么故障,是如何排除的等,需逐一进行了解。 2)看液压系统工作的实际状况,观察系统压力、速度、油液、泄漏、振动等是否存在问题。

3)听液压系统的声音,如:冲击声;泵的噪声及异常声;判断液压系统工作是否正常。 4)摸温升、振动、爬行及联接处的松紧程度判定运动部件工作状态是否正常。 总之,简易诊断法只是一个简易的定性分析,对快速判断和排除故障,具有较广泛的实用性。 5.1.2 液压系统原理图分析法 根据液压系统原理图分析液压传动系统出现的故障,找出故障产生的部位及原因,并提出排除故障的方法。液压系统图分析法是目前工程技术人员应用最为普遍的方法,它要求人们对液压知识具有一定基础并能看懂液压系统图掌握各图形符号所代表元件的名称、功能、对元件的原理、结构及性能也应有一定的了解,有这样的基础,结合动作循环表对照分析、判断故障就很容易了。所以认真学习液压基础知识掌握液压原理图是故障诊断与排除最有力的助手,也是其它故障分析法的基础。必须认真掌握。 5.1.3 其它分析法 液压系统发生故障时,往往不能立即找出故障发生的部位和根源,为了避免盲目性,人们必须根据液压系统原理进行逻辑分析或采用因果分析等方法逐一排除,最后找出发生故障的部位,这就是用逻辑分析的方法查找出故障。为了便于应用,故障诊断专家设计了逻辑流程图或其它图表对故障进行逻辑判断,为故障诊断提供了方便。

翻车机维护检修规程

翻车机维护检修规程 1.总则: 设备概述:简述设备工作原理、主要特性、功能。 翻车机的工作原理 其原理是将敞车翻转到170-180度,将散料卸到地下的传送皮带上,由地面皮带机将卸下的散料运送到需要的地方。 适用范围(本规程适用的所有设备清单) 适用设备清单

设备主要技术性能、参数(不同设备应分别列出) C2型转子式翻车机主要技术性能、参数 . 1.2、翻卸形式C型转子式 . 1.3、翻卸车辆最大重量100T . 1.4、翻车机最大回转速度min . 1.5、适用翻卸车辆规格:长:11938~14038 ㎜ 宽:3100 ~3243 ㎜ 高:2790 ~3293 ㎜. 1.6、翻卸车辆轨距1435㎜ . 1.7、击振力0~18KN . 1.8、翻车机驱动功率:2×45KW

. 1.9、液压站油泵电机:型号:Y180L–4 功率:22KW 转速:1470r/min 50HZ 380V IP54 F级绝缘接法:Δ 油箱容积: 850L . 1.10、外形尺寸长×宽×高21650×7800×8410㎜ . 1.11、主电动机型号:YZP280S1-10 37KW 600 r/min IM1003 IC416 IP54 F 级 . 1.12、减速器型号:M3PSF50(SEW) 14、234形式各1台速比i= . 1.13、制动器:YWZ5-400/121 制动轮直径400㎜ . 1.14、振动电机:VB-546-W . 1.15、开式齿轮: 1. 啮合形式:外啮合齿轮齿数21 齿条340 2.尺距P= 速比i=340/21= 中心距3971㎜ 总速比:510 齿轮转速:min 选用生产厂家:江苏泰隆或江苏泰兴

翻车机液压系统的安装与调试

翻车机液压系统的安装与调试天津一航安装工程有限公司 刘秀芳 神华天津煤炭码头有限责任公司 曹卫冲 1 管路安装 翻车机液压系统所用大管径管件硬管均应在工厂内制作完成,小管径管件可在现场制作,所用材质为无缝钢管,使用前需经过酸洗。常用小管径有4种规格( 16 2、 20 2.5、 25 3、 28 2),硬管配管工艺如下: (1)管路制作基于液压原理图和管路布置图,原则上应根据这两个图来布置接头、法兰和管夹,但有时由于现场实际情况不可预见而会有所更改。有些管路是按照计划预先设计的,有些管路则是设备安装固定时在现场测量后安装的。 (2)在正式安装前必须进行预安装。管道预安装后,应进行检查和调整,然后才能正式安装。 (3)硬管必须用机械方法切割,不允许用气割,以保证尺寸正确和表面平整,并避免影响管子机械性能。切口必须经过去毛刺处理。 (4)弯管应采用冷弯,最小弯曲半径应不小于管材外径的3倍。 (5)接头的制作不同于一般的卡套式接头,管接头本身没有卡套,只有接头体和螺母。硬管经过按尺寸切割、冷弯后,可用一种名为W a lfor m m a chi n e的专用工具压制出管接头密封连接的关键部分。对应于不同的管径配有相应的模具,适用外径范围为6~42mm。这种接头的主要优点是耐压高,不易发生爆管泄漏等现象,且容易更换,但前提条件是接口必须压好。 (6)管道敷设时,相邻管道管件边缘距离应不小于10mm,尤其对于高压管道。同排管道的法兰或活接头,应相互错开100mm以上。 (7)为减少管路冲击,必须合理布置管夹。管夹间距的要求见表1。 表1 管道直管支架间、管夹间的距离/mm[1] 直管外径<1010~2525~5050~80>80间距500~10001000~15001500~20002000~30003000~5000 (8)安装过程中要做好清洁工作,不可使异物进入管道。安装前对管道进行清理,用专用工具,配合对应管径的泡沫,把泡沫放进管口,在气压作用下将其从另一管口打出来,管中异物随之而出。 (9)对于安装过程中暂时不可以联接的附件和管道端头,应采取堵头封堵等措施,防止污物侵入。 (10)管路安装顺序为从油缸至油箱。由于所有大管径管件是预制完毕后运抵现场的,为防止安装误差,配有适配块作为误差补偿。 软管在安装过程中必须注意以下3点: (1)不允许有急弯、扭转等情况,弯曲半径应大于外径的9~10倍。软管与管接头联接处,应有不小于软管半径6倍的直线过渡长度,同时长度上应留有4%的活动余量[2]。 (2)软管与其他物体不得有接触,要考虑到实际工作时由于油液冲击,软管振动时可能产生的位移。靠近热源时应有隔热措施。为防止与其他物体接触摩擦,应在软管外部加装磨损保护套。 (3)每根软管在安装前必须经过清洗。 2 系统冲洗 系统在组装过程中难免有杂质侵入,因此液压系统在组装完毕后必须进行冲洗,除去污染物。 必须采用独立的冲洗泵站进行冲洗。冲洗泵站包括内燃机、泵组、油箱、加热器、过滤器、压力指示表、安全阀、集成分油块和必要的联接件等。冲洗压力由6个手动截止阀控制。 系统液压站出厂时已冲洗好,故只冲洗管路。 (1)冲洗所选油液与实际工作时所用的液压油型号必须相同,选用#46液压油。 (2)冲洗之前先把油缸和系统中的平衡马达短接,把系统的P、T、Y口断开接入冲洗泵站。 (3)冲洗开始时手动阀全开,油液直接回油箱。 (4)逐一关闭手动截止阀,使直接回油箱的油 22 Po rt Operati on 2010 N o 4(Ser i a l N o 192)

采煤机液压系统常见故障分析及原因

采煤机液压系统常见故障分析及原因 摘要:阐述了采煤机液压系统的组成及工作原理,针对我公司采煤机液压系统在实际维修和运行中出现的几种异常现象,进行了故障分析与排除,故障处理方法及结果对采煤机的使用者具有一定的参考价值。 关键词:采煤机;液压系统;泄漏;磨损;系统压力 我公司主要使用的采煤机有两种:天地科技股份有限公司的MG250/300采煤机和鸡西煤矿机械有限公司的MG300/700采煤机。适用于中厚煤层开采作业。该采煤机在使用和大修过程中其液压系统出现:摇臂升降速度缓慢或不能抬起、油温过热、开机后摇臂立即上升或下降、齿轮泵压力不足、液压系统产生噪声等现象。因此对采煤机液压系统组成和工作原理有一定了解,才能在实际生产中准确判断、分析与预防各种故障。 1.采煤机液压系统组成及工作原理 1.1采煤机液压系统主要部件及功能 1.1.1采煤机液压系统主要部件 (1)MG250/300采煤机液压系统主要由调高泵组件、过滤器、集成块、液力锁、调高油缸、机外油管和液压制动器等组成。集成阀块是将手液动换向阀、电磁阀、压力继电器、高低压溢流阀、压力表等集成在一起,通过阀体内部通道实现采煤机工作。 (2)MG300/700采煤机调高液压系统主要由手液动阀组、泵组件、低压阀组、粗过滤器、精过滤器、调高油缸、液压制动器、液压锁、高压阀、隔爆电磁换向阀、压力表、管路元件等组成。 1.2工作原理 1.2.1采煤机液压系统主要包括两部分:调高回路和制动回路 (1)调高回路有两个功能:①满足采煤机卧底量要求;②适应采高的要求。调高回路的动力由调高(截割)电机提供。在调高时,调高油缸的阻力较大,为防止系统油压过高,损坏油泵及附件,在齿轮泵出口处设有一高压溢流阀作为安全阀,调定压力为MG300/700采煤机压力25MPa,MG250/300采煤机压力20MPa,可以满足调高要求。该回路由手液动换向阀、电磁换向阀、液力锁、调高油缸组成。 (2)MG250/300采煤机液压制动回路的压力油与调高控制回路是同一控制油源;由二位三通刹车电磁阀,液压制动器及其管路组成。当需要采煤机行走时,

液压系统故障原因分析

液压系统故障原因分析 一、液压系统好长时间没有用,这次开机后,震动、噪音大。 可能是长时间放置,蓄能器氮气泄露,没起到减少脉动的作用。检查氮气的压力,补压或者更换皮囊。噪音是由于振动太大而产生的,没有了震动,就会消除。 二、油缸工作不正常,只能出不能回。 检查油缸的另一端是否出油,电磁阀是否换向,油缸内泄是不是特别严重。回油管路是否被异物堵死。 三、油缸启动压力高。 油缸启动压力高和油缸的制造质量(如活塞杆弯曲、缸筒弯曲等)、密封的形式和安装等因素有关。对于伺服油缸,启动压力高会影响其的动态特性。 对于普通油缸,启动压力的要求没有伺服油缸那样严格,但是也不能太高。一旦发现启动压力高,需要认真对油缸的零件进行尺寸复测,并检查密封的安装质量。 1、内部阻力过大。 2、外部执行部分有机械故障。 油缸的启动压力与油缸的设计结构有关,油口与活塞接触的受力面积,如油口的大小即活塞初始启动的受力面积,启动压力就高,油口与活塞接触间加工受力面积腔(启动压力腔)启动压力就很小。 四、液压系统油缸要求同步。 在支管路上加单向节流阀,价格比较便宜。要求比较高就加个分流节流阀,造价高,但效果较好。 五、液压系统维修率特别高。 主要原因是环境恶劣,液压系统是比较精密的设备,平常要多注意保养,油质要好,加油时要过滤,系统密封要好。各类检测设备要完善,需要有专业的人员对系统的工作情况进

行记录和维护。 六、液压缸动作不规则。 1、电磁阀换向不规则,需要检查电炉部分 2、电液伺服、比例阀的放大器失灵或调整不当。 3、也有就是油缸磨损严重,需修理或者更换。 4、可能是液压管路混杂有空气,需要找出混入空气的部位,然后清洗检查,重新安装和更换元辅件。

翻车机液压系统的维护保养

翻车机液压系统的维护保养 液压系统是保证翻车机能够正常运行的关键,但是在实际工作中却是翻车机系统最为脆弱的部分,极其容易发生故障。深入地研究翻车机液压系统发生故障的原因,然后对原因进行分析,找到预防这些故障的可行性办法以及在实际工作中如何对翻车机液压系统进行有效的保养就显得非常的重要。同时翻车机液压系统的有效维护和保养还可以延长液压系统使用的寿命,大大地提高翻车机工作的效率。文章将从翻车机液压系统的使用注意事项,故障诊断以及故障排除这三个方面展开对翻车机液压系统的维护和保养的研究。 标签:液压系统;故障;维护 1 翻车机液压系统概述 翻车机液压系统主要由六部分组成,执行元件、控制元件、动力元件以及辅助元件和液压油。实际上六部分中的液压缸、液压泵、液压阀、液压马达都是极其容易出现故障的部位,造成这些部分发生故障的原因有很多,很多是综合性的原因,因此实际工作中就必须对这些故障产生的原因进行深入分析,找到故障产生的原因,才能对复杂的系统进行针对性的故障排除。 2 翻车机液压系统使用的注意事项 2.1 翻车机液压系统使用温度 翻车机液压系统使用温度非常严格,通常油温必须在35~60摄氏度的范围内,过高和过低都会造成系统使用的故障,因此,翻车机液压系统的油温控制不仅要有有效的保温系统,确保在冬天能够正常启动,同时不能让系统在运行的过程中油温过高,损害系统,因此需要保证散热系统运行良好。 2.2 翻车机液压系统过滤器使用注意事项 翻车机液压系统对过滤器的要求也非常苛刻,需要的精度非常的高,通常为5mm~10mm,过高和过低都不行。 2.3 翻车机液压系统的油液使用注意事项 翻车机液压系统的油液使用非常需要注意的是油液需定期的更换,保证油液的新鲜,正常情况下一年换一次油液就可以,但是如果遇到翻车机运行的环境恶劣,油液容易混进灰尘和杂物的情况,就应该缩短油液更换的周期,理论上更换的周期越短越好,但是需要考虑经济因素。 2.4 翻车机液压系统排气注意事项

翻车机系统简介

翻车机系统简介 一、翻车机系统原理及结构 翻车机是一种大型、高效的机械化卸车设备,用于翻卸铁路敞车。目前它是我国大中型火力发电厂最为广泛采用的一种卸车设备。我厂翻车机系统采用折返式卸车作业线,是火车来煤卸车的唯一机械设备,由武汉电力设备厂设计制造。 翻车机翻卸形式为C型转子式,驱动方式为销齿传动,其压车机构采用液压压车。翻车机系统将火车来煤自卸到地下煤斗中,然后通过皮带输送到原煤仓或煤场。翻车机系统综合卸车能力为20-25辆/小时。 翻车机电气控制系统采用可编程序控制器(PLC),CRT监控系统与PLC进行全双工异步串行通讯,通过采集翻车机系统的工况及各种参数,进行运算、判断处理,将现场各设备工况适时显示在计算机屏幕上,可通过鼠标对设备进行软操作。 翻车机系统由重车调车机、翻车机、迁车台、空车调车机等。 翻车机工作过程FZ15—100型转子式翻车机可与卸车线上其他配套设备联动实现自动卸车,也可由人工操作实现手动控制。工作过程是:由重车调车机牵引一节满载敞车准确定位于翻车机的托车梁上。压车臂下落压住敞车两侧车帮。靠板振动器在液压缸的推动下靠向敞车一侧。当压车臂压住、靠板靠上、重车调车机臂已驶出翻车机后,翻车机开始以正常速度翻卸,(在翻卸过程中,车辆弹簧力的释放是通过不关闭液压缸上的液压锁来吸收弹簧的释放能量。翻卸到110度后,关闭液压锁,将翻卸车辆锁住,以防车辆掉道。)翻车机继续翻卸直到接近160度左右减速、停车、振动器投入,3秒钟后,振动停止,翻车机以正常速度返回,离回零位30度时,压车臂开始抬起,快到零位时减速,对轨停机。停机后靠板后退,当压车臂上到最高位、靠板退到最后位、重车调车机牵引第二节满载敞车, 进入翻车机顺便顶出已翻卸的空车。翻车机就完成了一个工作循环。 部套结构 重车调车机是翻车机的前端的设备,安装于翻车机的进车端,行走在与重车线平行的钢轨上,即能牵引整列重车,也可将单节重车送入翻车机本体,同时将翻车机内已翻卸完的空车推出,主要由车体、行车走轮、导向轮、调车臂架、行走传

液压系统故障诊断

第十一章液压系统故障诊断 第一节概述 液压系统的故障诊断是指在不拆卸液压设备的情况下,凭观察和仪表测试判断液压设备的故障所在和原因。液压设备的故障是指液压设备的各项技术指标偏离了它的正常状态,如管路和某些元件损坏、漏油、发热、致使设备的工作能力丧失,功率下降,产生振动和噪声增大等。 在使用液压设备时,液压系统可能出现的故障是多种多样的。即使是同一个故障现象,产生故障的原因也不一样,它是许多因素综合影响的结果。特别是新装置的液压设备,在试车时产生的故障现象,其原因更是多方面的。液压系统是一个密闭的系统,各元件的工作状态是看不见,摸不着的。因此,在进行故障诊断时,必须对引起故障的因素逐一分析,注意到其内在联系,找出主要矛盾,这样才能比较容易地排除故障。 液压系统的故障主要是由构成回路的液压元件本身产生的动作不良、系统回路的相 少液压设备出现故障的有力措施。 当然,液压系统的故障除由元件本身和工作油液的污染引起的以外,还因安装、调试和设计不当等原因引起的也较多。 液压系统的故障诊断,过去一般凭经验,随着液压测试技术的发展,国内外正研制和应用专用的测试仪和设备。如手提式测试器、液压故障诊断器和液压故障检修车等。应用这些专用仪器和设备能在现场很快查出液压元件及系统的故障,并进行排除。 近年来,在液压系统故障诊断与状态监测技术方面取得了较大进展。如利用振动信

号、油液光谱分析、油液铁谱分析、超声波泄漏指示器、红外线测试仪等来进行检测的技术,利用微机进行分析处理信号和预报故障的技术等的应用已有不少报道。而在港口工程机械液压系统中,普遍使用这些技术来进行故障诊断及状态监测,则还需经过有关各方面的努力才可能逐步实现。 第二节液压系统的故障预兆 液压系统产生故障以前,通常都有预兆。如压力失调、噪声过大、振动过大、温升过高,泄漏过大等等。如果这些现象能及时发现,并加以适当控制或排除,系统的故障就可以减少或避免发生。 一、液压系统的工作压力失调 压力失调常表现为压力不稳定、压力调不上去或调不下来、压力转换滞后、卸荷压力较高等。产生压力失调的原因主要有以下几个方面: 1.液压泵引起的压力失调 1)液压泵的轴向、径向间隙由于磨损而增大; 2)泵的“困油”未得到圆满解决; 3)泵内零件加工及装配精度较差; 4)泵内个别零件损坏等。 2. 液压控制阀引起的压力失调 1)在压力控制阀中: ①先导阀的锥阀与阀座配合不良; ②调压弹簧太软或损坏; ③主阀芯的阻尼孔被堵塞,滑阀失去控制作用; ④主阀芯被污物卡住在开口位置或闭口位置; ⑤溢流阀作远程控制用时,其远程连接通道过小或泄漏; ⑥溢流阀作卸荷阀用时,其控制卸荷的换向阀失灵等。 2)在方向控制阀中: ①油路切换过快而产生液压冲击; ②电磁换向阀换向推杆过长或过短等。 3.辅助元件引起的压力失调 1)油滤器堵塞; 2)液流通道过小,回油不畅; 3)油液粘度太稠或太稀等。 4.其他 1)机械部分未调整好,摩擦阻力过大; 2)空气进入系统; 3)油液污染; 4)电机功率不足或转速过低;

液压翻车机.

FCJ-Ⅱ型自行式液压翻车机设计 完成日期: 指导教师签字: 评阅教师签字: 答辩小组组长签字: 答辩小组成员签字:

摘要 翻车机是矿山常用的一种卸矿机械,原矿石由矿车编组运输至矿仓上方后,由翻车机卸入矿仓,随着采矿技术的发展和提高产量的需要,原设计的翻车机往往不能满足要求。FCJ-Ⅱ型的自行式液压翻车机是为满足矿山的需要,根据原研制的FCJ-Ⅰ型的压翻车机在使用中的情况,根据需要研改制而成的,更便于生产,提高了生产效率,降低了工作强度。此次设计是仿制设计,基本上采用液压翻车机样机的基本结构形式,结构和工作原理,通过对整机的结构了解,绘制整机装配图,在此基础上自主研制翻车机的液压系统设计,主要包括系统工作压力的确定,执行元件的控制确定,拟订液压系统原理图,计算执行元件主要参数,选择液压控制元件和辅件,绘制管路布置图和设计液压站。 关键词:液压翻车机;液压系统;原理;元件;参数

Abstract The tripping device is the mine commonly used one kind unloads the ore machinery, the raw ore by the mine car grouping transportation after the pocket above, unloads into the pocket by the tripping device, and enhances the output along with the mining technology development the need, The FCJ- II -like hydraulic pressure tripping device is voluntarily for satisfies the mine the need, according to the original development FCJ- I pressure tripping device in use situation, according to needs to grind changes the system but becomes, is advantageous for the production, enhanced the production efficiency, reduced the working strength. This design imitates the design, basically uses the hydraulic pressure tripping device prototype basic structure form which Professor Li even develops, the structure and the principle of work, through understood to the entire machine structure, draws up the entire machine assembly drawing, independently develops the tripping device in this foundation the hydraulic system design, mainly includes the system working pressure the determination, the functional element control determined, drafts the hydraulic system schematic diagram, the computation functional element main parameter, the choice hydraulic control part and auxiliary, draws up the piping plan and the design hydraulic pressure station.. Key word: Hydraulic pressure tripping device; hydraulic system; principle, part; parameter

液压系统常见故障的成因及其预防与排除

在 在液压传动系统中,都是一些比较精密的零件。人们对机械的液压传动虽然觉得省力方便,但同时又感到它易于损坏。究其原因,主要是不太清楚其工作原理和构造特性,从而也不大了解其预防保养的方法。 液压系统有3个基本的“致病”因素: 污染、过热和进入空气。这3个不利因素有着密切的内在联系,出现其中任何一个问题,就会连带产生另外一个或多个问题。由实践证明,液压系统75%“致病”的原因,均是这三者造成的。 如果液压系统的制造质量没有问题,则造成故障的原因大多是预防保养不当,操作不当的因素一般较少。之所以如此,主要是由于对它的工作条件认识不足。如果懂得一些基本原理,弄明白导致故障的上述3个有害因素,就能长期地保证系统处于良好的工作状况。 1、工作油液因进入污物而变质 进入油液中的污物(如灰、砂、土等)的来源有: (1)系统外部不清洁。不清洁物在加油或检查油量时被带入系统,或通过损坏的油封或密封环而进入系统; (2)内部清洗不彻底。在油箱或部件内仍留有微量的污物残渣; (3)加油容器或用具不洁; (4)制造时因热弯油管而在管内产生锈皮; (5)油液储存不当,在加入系统前就不洁或已变质; (6)已逐渐变质的油会腐蚀零件。被腐蚀金属可能成为游离分子悬浮在油中。

污物会造成零件的磨损与腐蚀,尤其是对于精加工的零件,它们会擦伤胶皮管的内壁、油封环和填料,而这些东西损伤后又会导致更多的污物进入系统中,这样就形成恶性循环的损坏。 2、过热 造成系统过热可能由以下一种或多种原因造成: (1)油中进入空气或水分,当液压泵把油液转变为压力油时,空气和水分就会助长热的增加而引起过热; (2)容器内的油平面过高,油液被强烈搅动,从而引起过热; (3)质量差的油可能变稀,使外来物质悬浮着,或与水有亲合力,这也会引起生热; (4)工作时超过了额定工作能力,因而产生热; (5)回油阀调整不当,或未及时更换已损零件,有时也会产生热。 过热将使油液迅速氧化,氧化又会释放出难溶的树脂、污泥与酸类等,而这些物质聚积油中造成零件的加速磨损和腐蚀,且它们粘附在精加工零件表面上还会使零件失去原有功能。油液因过热变稀还会使传动工作变迟缓。 上述过热的结果,常反映在操纵时传动动作迟缓和回油阀被卡死。 3、进入空气 油液中进入空气的原因有下列几种: (1)加油时不适当地向下倾倒,致使有气泡混入油内而带入管路中; (2)接头松了或油封损坏了,空气被吸入; (3)吸油管路被磨穿、擦破或腐蚀,因而空气进入。 空气进入油中除引起过热外,也会有相当数量空气在压力下被溶于油内。如果被压缩的体积大约有10%是属于被溶的空气,则压力下降时便会形成泡

翻车机液压系统使用说明书

翻车机液压系统 使用说明书 一、技术参数 1、系统压力 5 Mpa(压车梁压力) 3.5Mpa(靠车板压力) 5Mpa(控制回路压力) 2、油泵排量 85ml/r(大泵) 56ml/r(次级泵) 16ml/r(小泵) 3、电动机 Y180L-4W P=22KW n=1470r/min 4、油箱容积 850L 5、液压油 YB-N46 二、原理图及动作说明 1原理图

1、动作顺序说明

2、 1)启动电动机,空转几分钟后,待达到系统内循环平衡。 2)重车在翻车机上定位后,1DT、3DT得电,压车梁开始压车。1XK 发讯号,压车梁压紧到位,1DT、3DT失电。 3)4DT、9DT得电,靠板开始靠车,4XK发讯号,靠板靠紧到位,4DT、9DT失电。 4)翻卸开始,5DT、6DT得电,释放弹簧的弹性势能,待翻车机转到 110°时,5DT、6DT同时失电。 5)翻车机回翻到零位后,4DT、8DT、5DT、7DT得电,靠板开始松开, 3XK发讯号,靠板松靠到位,4DT、8DT、5DT、7DT失电。 6) 2DT、3DT、5DT、6DT得电,压车梁开始松压。2XK发讯号,压 车梁松压到位,2DT、3DT、5DT、6DT失电。 7)重车调车机推空车,进入下一个循环。 三、启动与调试操作 1、油箱注油至油标上限,约为油箱容积2/3(注液压油必须经≤20um 滤网过滤后方可注入油箱)。 2、将进油口、回油口管路球阀打开,将所有溢流阀均调至开口最大 状态。 3、检测电机绝缘应>1mΩ,接通电源,点动电机,观察电机旋转方 向(从电机轴端处看应为顺时针方向旋转) 4、启动电机,容载运行5~10min (注此时为排系统内空气)检测电 机电流,空转电流约15A左右,判断油泵有无异常噪音、振动以及

联合收割机液压系统结构故障分析与判断

47 河南农业 2019年第2期(中) HENANNONGYE 农业机械 NONG YE JI XIE 联合收割机液压系统结构故障分析与判断 赛爱华1,常树堂2 (1.河南省漯河市召陵区农机局,河南 漯河 462300;2.河南省漯河市郾城区农机化技术推广站,河南 漯河 462300) 摘 要:对小麦收割机稍加改动,就可以兼收油菜、大豆;换装割台后,对脱粒、清选部分装置稍做互换,便可以收获玉米籽粒。小麦联合收割机因能为多种农作物机械化收获提供服务而越来越受农民朋友的欢迎。随着小麦收获机使用频率的提高,伴随而来的是小麦收获机的维修问题,特别是液压系统的维修,成为许多机手十分头痛的问题。面对液压系统故障,只要了解收割机液压系统油路结构、工作原理、各部件功用,液压系统故障的排查是有规律可循的。基于此,本文主要就联合收割机液压系统结构故障分析与判断进行综述,为农机手提供借鉴。 关键词:联合收割机;液压系统;故障 一、联合收割机液压系统结构组成联合收割机的液压系统因能安全可靠地实现远距离传递动力和能量,完成远距离机械运动的自动控制,成为联合收割机上不可或缺的重要组成部分。联合收割机的液压系统组成与其他机械的液压控制系统一样,均由以下5个部分构成。 (一)动力源 动力源就是能将原动力输出的机械能转换为推动液压油做功的压力能。这个动力源一般由液压泵完成。 (二)控制元件 控制元件是指对系统中的液压油压力、流量和去向进行控制和调节的元件,主要指各类阀件,大家称之为液压控制器、控制阀或液压分配器。具体到收割机上有2个重要控制元件:液压转向器(或称为方向机、转向阀)、多路阀。 (三)执行元件 执行元件是指把液压油的压力能变成机械能,推动负载运动,满足机械使用者的需要,主要指液压油缸等。 (四)工作介质 小麦收割机一般采用68号抗磨液压油,利用其进行能量传递和信号传递。 (五)辅助元件 辅助元件主要是指动力、控制、执行元件以外的液压器件,在液压系统中起储存、输送、过滤、加热、冷却和测量等作用的器件,包括油管、接头、油箱、过滤器、散热器、储能器、各种测试仪表和安全阀等。 二、联合收割机液压系统主要组成部分功能及常见故障 (一)动力源——齿轮泵 联合收割机多采用齿轮泵作为液压 油的动力源。其构造为有一对几何参数相同的主、被动齿轮,被封闭在齿廓壳体和侧盖板组成的封闭空间内。工作原理是当齿轮泵主动齿轮运转时,带动从动齿轮与之啮合并一起运转,在吸油腔内由于两齿轮脱离时,齿间容积变大出现真空,而从油箱中吸油。吸入的油液由旋转的齿谷携带到排油腔,在排油腔由于齿间容积减小而将液压油挤出泵体。由于齿轮的齿顶和壳体内孔表面间及齿轮端面和盖板间间隙小,而且啮合齿的接触面接触紧密,起到密封作用,并把吸、压油区隔开,因此齿轮转动时泵便连续不断地将液压油排出,为系统提供高压油源[1] 。 现在的联合收割机上大都配有双联齿轮泵(既装备有2个这样的齿轮油泵,两泵主轴由联轴器相连),双联泵中2个油泵虽然转向相同,同为左旋转泵,但排量不同。一个泵向转向机构提供高压油源的叫恒流泵,另一个泵向全车部位如割台、无级变速、液压卸粮等提供高压油源,其油泵排量较大。 齿轮泵常见故障有油封漏油、壳体炸裂、噪声过大并有振动、高温过高以及元件速度不够。其中,油封漏油的原因有油封件老化、油封唇口损坏、泵轴与联轴器同心度差(易引起中间断轴)以及泵体内部磨损严重、高低压腔串通。油泵壳体炸裂的原因有安全阀压力调得过高、安全阀卡死、油泵出油口管路堵死、执行元限位机构反应不灵敏以及油缸启动时活塞抵死端盖导致油环面积不够。噪声过大并有震动的原因有低压管路及法兰处漏气、油箱油位过低、进油管路有折瘪现象导致局部区域形成节流,进 而造成通径不够、安装位置不牢或同轴度差太大以及进油滤清器堵塞。油温过高的原因有系统压力过高,内泄漏油造成能量损失;系统压力过载,安全阀打开;管道不通畅,节流孔堵塞,阻力太大;油箱油位太低。 (二)控制元件——液压控制阀液压阀通常也称液压分配器,从字典中可查到“阀”者,活动的门也。既然是可活动的门,自然可以打开和关闭。操作者通过打开和关闭这个“门”,可实现油源分配,改变系统管道油的流量大小、方向,进而满足机械使用者的需求。液压阀的基本结构主要包括阀芯、阀体和驱动阀芯在阀体内做相对运动的装置。阀芯的主要结构形式有滑阀、锥阀和球阀。阀体上除有与阀芯配合的阀套孔外,还有与外界连接的油管进出油口以及驱动阀芯与阀体做相对运动的装置,可以是手动机构,也可用弹簧配合机动机构。液压系统有转向和操纵两部分组成。2个分系统共用一个油箱和齿轮泵,通过单路稳定分流阀(或使用双联泵)分成两部分。转向部分用于控制收割机转向,主要工作部件是全液压转向器、转向油缸等;操纵部分用于控制工作装置,如割台、拨禾轮、粮仓和无级变速装置,主要工作部件是多路阀、无级变速油缸等。现在就联合收割机上的2个重要的液压控制器做一介绍:控制转向的阀(也称转向器)、控制如割台、拨禾轮、无极变速等功能的多路阀。 1.液压转向器(阀) 小麦收获机上一般都采用一种转阀式全液压转向器,与组合阀分体设计,可根据需要直接连接不同组合阀块,形 DOI:10.15904/https://www.360docs.net/doc/8b11341402.html,ki.hnny.2019.05.027

翻车机系统的构造和原理

翻车机系统的构造和原理 (一)翻车机系统简介 设备形式:转子式“O”型三车翻车机。用于单元列车不摘钩卸车,机车与列车不解体,每系统每次同时翻卸三辆车。每系统由翻车机、定位车、重车线上的三台夹轮器,空车线上的一台夹轮器,空、重车线上的动态轨道衡,翻车机下的冻煤破碎机,漏

斗、格栅、振动给料器以及附属设备组成。详见图2-1 1、翻车机 2、定位车 3、定位车主臂 4、定位车辅臂 5、定位车辅臂钩头 6、入口1#夹轮器 7、入口2#夹轮器8出口夹轮器9、入口轨道衡 10、出口轨道衡11、振动给料器12、输送皮带 翻车机系统结构示意图 (二)翻车机系统的组成: 翻车机系统由夹轮器、定位车、翻车机、轨道衡和漏斗等五大部分组成。 1、夹轮器 夹轮器液压站

在翻车机外侧,安装列车固定系统。定位车臂离开列车前,此固定系统将空重车线上的车辆夹紧,使翻车机内的车辆处于稳定状态,防止空重车线上的车辆惯性冲击力影响正在翻卸的车辆。列车固定系统由重车线上的三套夹轮器和空车线上的一套夹轮器组成。四套夹轮器采用相同的四套液压站。列车永远在固定系统和定位车臂二者之一的控制下。夹轮器是用液压驱动的车轮夹子,油缸通过机械连杆施力于水平的夹轮棒夹住车轮。夹轮器.MPG 2、定位车(原六公司定位车) 原六公司定位车驱动装置 (七)定位车工作.MPG (1)定位车的组成:定位车由车体、主推车臂、辅助推车臂,齿轮齿条(六公司是卷筒钢丝绳如上图)驱动系统,行走导向系统组成。 (2)定位车能准确的自动找到车钩,并准确的将车辆定位在翻车机平台上。 (3)定位车具有足够的安全储备如:作业时突然断电、限位开关损坏时,前后止挡液压缓冲器能吸收作业设备的全部能量。设备飞车故障的预防、全部的安全防护措施。 (4)设备说明: ①车体和推车臂:车体上装有主臂和辅臂,主辅臂的驱动采用液压驱动伸缩方式。并采用光电管定位,采取了安全措施防止车臂误动作造成对车辆的损坏。辅臂用来推最后一个循环的车辆进人翻车机。

相关文档
最新文档