复变函数第四版(第六章)
复变函数-第6章

光滑曲线 Γ : w = f ( z (t )) (t0 ≤ t ≤ t1 ) 切向量 w′(t ) = f ′( z0 ) z ′(t0 ) ≠ 0 切向量辐角ψ = arg w′(t0 )
= arg f ′( z0 ) + arg z ′(t0 ) = arg f ′( z0 ) + ϕ
7
假设 | f ′( z0 ) |= r , arg f ′( z0 ) = α , 即 f ′( z0 ) = reiα , 则
| f ′( z0 ) | . | f ′( z ) − f ′( z0 ) |≤ 2 如果 z1 , z 2 ∈ D, 并且 Γ 是连接 z1 和 z 2 的线段, 则有
| f ( z1 ) − f ( z 2 ) |=
∫
Γ
f ′( z )dz =
∫
Γ
f ′( z0 )dz − ∫ ( f ′( z0 ) − f ′( z ))dz
f ′( z ) ≠ 0
单叶(单射)解析
局部单叶(单射)
解析且 f ′( z0 ) ≠ 0
定理 6.1.1 若 f (z )在 z0 解析, 且 f ′( z0 ) ≠ 0, 故存在以 z0为心 的圆盘 D 使得 f (z ) 在 D 上的单射(单叶).
3
定理 6.1.2 (保域定理) 若 w = f (z ) 为在区域 D 内解析的非常 数函数, 则它的值域 (像) G = f ( D) = {w | w = f ( z ), z ∈ D} 也是一个区域. 证明: 区域是连通的开集. (1) 证明 G 是一个开集, 即 G 内的每一点都是内点.
∀w0 ∈ G,
∃z0 ∈ D, s.t. w0 = f ( z0 ).
复变函数第六章

推论6.3 设a为f(z)的一阶极点,f (z) (z) ,
za
则 Re s f (z) (a) lim(z a) f (z).
za
推论6.4
za
设a为f(z)的二阶极点,f (z)
(z)
z a2
,
则 Re s f (z) (a) lim[(z a)2 f (z)].
za
za
定理6.5 设a为 f (z) (z) 的一级极点 ,其中(z),
1. 留数的定义及留数定理
若f(z)在点a解析,周线C包围a,则:C f zdz 0. 若a为 f(z)的孤立奇点,周线C包围a,则:C f zdz一般不为0.
定义6.1 设f(z)以有限点a为孤立奇点,即 f(z)在点a
的某去心邻域0<|z-a|<R内解析,则称积分
1
2i
f
zdz
( :| z a | ,0 R)
f
1 (z
)以点a为m阶零点.
定理5.5 f(z)的孤立奇点a为极点 lim f (z) . za
5. 本性奇点的性质
定理5.6 f(z)的孤立奇点a为本性奇点
lim
za
f
(z)
b(有
限
数),
即lim za
f
( z )广 义 不 存 在.
第六章 留数理论及其应用 第一节 留数
1. 留数的定义及留数定理 2. 留数的求法 3. 函数在无穷远点的留数
D 内且两两不相交,取逆时针方向,则由柯西积
分定理有
n
f z
n
f zdz 2 i Re s f z.
c
i 1 k
k1 zak
注 留数定理的重要意义在于把复变函数的闭合曲线积分转
复变函数习题解答(第6章)

p269第六章习题(一) [ 7, 8, 9, 10, 11, 12, 13, 14 ]7. 从⎰C e i z /√z dz 出发,其中C 是如图所示之周线(√z 沿正实轴取正值),证明:⎰(0, +∞) cos x /√x dx = ⎰(0, +∞) sin x /√x dx = √(π/2).【解】| ⎰C (R ) e i z /√z dz | ≤ ⎰C (R ) | e i z |/R 1/2 ds= ⎰[0, π/2] | e i ρ (cos θ + i sin θ )|/R 1/2 · R d θ = ⎰[0, π/2] | e - R sin θ | R 1/2 d θ≤ R 1/2 ⎰[0, π/2] e - R sin θ d θ.由sin θ ≥ 2θ/π (θ∈[0, π/2] ),故R 1/2⎰[0, π/2] e - R sin θ d θ≤ R 1/2 ⎰[0, π/2] e - (2R / π)θ d θ = (π/(2R 1/2))(1 – e - R ) ≤ π/(2R 1/2).所以,| ⎰C (R ) e i z /√z dz | → 0 (as R →+∞).而由| ⎰C (r ) e i z /√z dz | ≤ (π/(2r 1/2))(1 – e - r )知| ⎰C (r ) e i z /√z dz | → 0 (as r → 0+ ).当r → 0+,R →+∞时,⎰[r , R ] e i z /√z dz = ⎰[r , R ] e i x /√x dx = ⎰[r , R ] (cos x + i sin x )/√x dx→ ⎰(0, +∞) cos x /√x dx + i ⎰(0, +∞) sin x /√x dx .⎰[r i , R i ] e i z /√z dz = ⎰[r , R ] e i (i y )/√(i y ) i dy = ⎰[r , R ] e - y e i π/4/√y dy .= (1 + i )/√2 · ⎰[r , R ] e - y /√y dy = 2(1 + i )/√2 · ⎰[√r , √R ] e - u ^2 du→ (1 + i )√2 · ⎰(0, +∞) e - u ^2 du = (1 + i )√2 · √π/2 = (1 + i )√(π/2).由Cauchy 积分定理,⎰C e i z /√z dz = 0,故其极限也为0,所以,⎰(0, +∞) cos x /√x dx + i ⎰(0, +∞) sin x /√x dx = (1 + i )√(π/2),即⎰(0, +∞) cos x /√x dx = ⎰(0, +∞) sin x /√x dx = √(π/2).8. 从⎰C √z ln z /(1 + z )2 dz 出发,其中C 是如图所示之周线,证明:⎰(0, +∞) √x ln x /(1 + x )2 dx = π,⎰(0, +∞) √x /(1 + x )2 dx = π/2.【解】在割去原点及正实轴的z 平面上,√z ,ln z 都能分出单值解析分支,√z 取在正实轴的上岸取正值的那个分支,ln z 取在正实轴的上岸取实数值的那个分支.记f (z ) = √z ln z /(1 + z )2 dz .f (z )的有限奇点只有- 1,且- 1是f (z )的2阶极点.Res[√z ln z /(1 + z )2; - 1] = lim z → - 1 ((1 + z )2 · f (z ))’= lim z → - 1 (√z ln z )’ = lim z → - 1 (((1/2) ln z + 1 )√z /z )= ((1/2) ln (- 1) + 1 )√(- 1)/(- 1)= - ((1/2) πi + 1 )i = (1/2) π - i .当r < 1 < R 时,⎰C √z ln z /(1 + z )2 dz= ⎰C (r ) + ⎰C (R ) + ⎰L (1) + ⎰L (2) = 2πi Res[√z ln z /(1 + z )2; -1] = 2π + π2 i .⎰L (1) √z ln z /(1 + z )2 dz = ⎰(r , R ) √x ln x /(1 + x )2 dx→ ⎰(0, +∞) √x ln x /(1 + x )2 dx (当r → 0+,R →+∞时)⎰L (2) √z ln z /(1 + z )2 dz = ⎰(R , r ) (-√x )(ln x + 2πi )/(1 + x )2 dx= ⎰(r , R ) (√x ln x )/(1 + x )2 dx + 2πi ⎰(r , R )√x /(1 + x )2 dx→ ⎰(0, +∞) √x ln x /(1 + x )2 dx + 2πi ⎰(0, +∞) √x /(1 + x )2 dx (当r → 0+,R →+∞时). 因为z · √z ln z /(1 + z )2 → 0 (当| z |→ +∞时),故⎰C(R) √z ln z/(1 + z)2dz→ 0 (当R → +∞时).因为z ·√z ln z/(1 + z)2 → 0 (当| z |→ 0时),故⎰C(r) √z ln z/(1 + z)2dz→ 0 (当r → 0时).所以,⎰L(1)+ ⎰L(2)→π/2 -i (当r→ 0+,R→+∞时).故2⎰(0, +∞)√x ln x/(1 + x)2dx + 2πi⎰(0, +∞) √x /(1 + x)2dx = 2π + π2i.所以,⎰(0, +∞)√x ln x/(1 + x)2dx = π,⎰(0, +∞)√x /(1 + x)2dx = π/2.9. 证明:I = ⎰(0, 1) 1/((1 + x2)(1 -x2)1/2) dx = π/23/2.在割线的上岸(1 -z2)1/2取正值的那一支.因i和-i都是f(z)的一阶极点,故Res[ f(z); i] = 1/(2z (1 -z2)1/2)|z = i= -i/23/2.Res[ f(z); i] = 1/(2z (1 -z2)1/2)|z = –i= -i/23/2.若x在上岸,则f(x) = 1/((1 + x2)(1 -x2)1/2);若x在下岸,则f(x) = e-i π/((1 + x2)(1 -x2)1/2);⎰L(1) f(z) dz = ⎰[– 1 + r, 1 –r] f(x) dx.⎰L(2) f(z) dz = ⎰[– 1 + r, 1 –r] f(x) dx.因为lim z→–1 (1 + z) f(z) = 0,lim z→ 1 (1 -z) f(z) = 0,故⎰S(r) f(z) dz→ 0,⎰T(r) f(z) dz→ 0 (as r → 0).因为lim z→∞z f(z) = 0,故⎰C(R) f(z) dz→ 0 (as R → +∞).故⎰L(1) f(z) dz + ⎰L(2) f(z) dz→ (2πi)(Res[ f(z); i] + Res[ f(z); -i]) (as r→ 0+,R→+∞).所以2⎰(– 1, 1) f(x) dx = (2πi)(Res[ f(z); i] + Res[ f(z); -i]) = (2πi)(-i/23/2) = 2π/23/2.故⎰(– 1, 1) f(x) dx = π/23/2.10. 证明方程e z-λ= z ( λ> 1 )在单位圆| z | < 1内恰有一个根,且为实根.【解】在单位圆周C : | z | = 1上,设z = x + i y,则z-λ= (x -λ) + i y,故| e z-λ| = | e (x -λ) + i y | = | e x -λ| < 1 = | z |,由Rouché定理,N(z - e z-λ, C) = N(z, C) = 1.故z - e z-λ = 0在单位圆内恰有一个根.设f(x) = x - e x-λ,x∈ .因f(- 1) = (- 1)- e-1 -λ < 0,f(1) = 1- e 1 -λ > 0,故x - e x-λ = 0在区间(- 1, 1)内有根.所以方程e z-λ= z ( λ> 1 )在单位圆| z | < 1内的唯一根为实根.[原题是错题.例如c = 1/2,λ= 2,则∀z∈ ,当| z | < 1时,| c z-λ| = | exp((z-λ) Ln c)| = | exp(( z– 2)(ln| 1/2| + 2kπi)) | = e (2 –z)ln2 > 1 > | z |.]11. 证明方程e z- eλz n= 0 ( λ> 1 )在单位圆| z | < 1内有n个根.【解】在单位圆周C : | z | = 1上,| e z| = e Re(z)≤ e | z |≤ e < eλ= | eλz n |,由Rouché定理,N(eλz n- e z, C) = N(eλz n, C) = N(z n, C) = n.12. 若f(z)在周线C内部除有一个一阶极点外解析,且连续到C,在C上| f(z) | = 1,证明f(z) = a ( | a | > 1 )在C内部恰好有一个根.【解】考虑圆K = { z∈ | | z–a | < | a |}.因为| (a-f(z)) -a | = | f(z) | = 1 < | a |,故a-f(z)∈K.因ln(a-f(z))的每个分支,以及他们的导数(ln(a-f(z))’都在K内解析;故i ∆C arg (a-f(z) ) = ⎰C(ln(a-f(z))’dz = 0.由辐角原理,N(a -f(z), C) -P(a -f(z), C) = (2π)–1∆C arg (a-f(z) ) = 0.而a -f(z)在周线C内部除有一个一阶极点外解析,故P(a -f(z), C) = 1.因此N(a -f(z), C) = 1,故f(z) = a ( | a | > 1 )在C内部恰好有一个根.13. 若f(z)在周线C的内部亚纯且连续到C,试证:(1) 若z∈C时,| f(z) | < 1,则方程f(z) = 1在C的内部的根的个数,等于f(z)在C 的内部的极点个数.(2) 若z∈C时,| f(z) | > 1,则方程f(z) = 1在C的内部的根的个数,等于f(z)在C 的内部的零点个数.【解】(1) 类似第12题,设K = { z∈ | | z– 1 | < 1}.因| (1 -f(z)) – 1 | = | f(z) | < 1,故(1 -f(z))∈K.因i ∆C arg (a-f(z) ) = ⎰C(ln(1 -f(z))’dz = 0.故由辐角原理,N(1-f(z), C) -P(1-f(z), C) = (2π)–1∆C arg (a-f(z) ) = 0.而P(1-f(z), C) = P( f(z), C),所以,N(1-f(z), C) = P( f(z), C).(2) 因z∈C时,| f(z) | > 1,故在C上,恒有f(z) ≠ 0,即f(z)在C上无零点.设g(z) = 1/f(z) ( 若z是f(z)极点则规定g(z) = 0,若z是f(z)的零点不定义g(z)).那么,g(z)在C的内部亚纯且连续到C,并且当z∈C时,| g(z) | < 1.由(1)的结论,在C的内部,方程g(z) = 1的根的个数等于g(z)的极点的个数.再注意到方程g(z) = 1和方程f(z) = 1在C的内部的根的个数相同,并且,因为在C的内部,z是f(z)的零点⇔z是g(z)的极点,故g(z)的极点个数等于f(z)的零点个数;所以,方程f(z) = 1在C的内部的根的个数,等于f(z)在C的内部的零点个数.14. 设ϕ(z)在C : | z | = 1内部解析,且连续到C.在C上,| ϕ(z) | < 1.试证:在C的内部只有一个点z0,使ϕ(z0) = z0.【解】设f(z) = z,则f(z)在C内部解析且连续到C,在C上,| f(z) | = 1 > | ϕ(z) |.由Rouché定理,N( f(z) -ϕ(z), C) = N( f(z), C) = 1.即方程ϕ(z) = z在C的内部只有一个根.p273第六章习题(二) [ 2, 3, 4, 5 ]2. 计算积分(1/(2πi))⎰C 1/(ζ(ζ- z)) dζ,其中C为单位圆周| ζ| = 1,z∉C.【解】设f(ζ) = 1/(ζ(ζ- z)).当| z | > 1时,f(ζ)在C内部的唯一奇点0是1阶极点,故(1/(2πi))⎰C f(ζ) dζ = Res[f(ζ), 0] = - 1/z.当0 < | z | < 1时,f(ζ)在C内部的两个奇点0, z都是1阶极点,故(1/(2πi))⎰C f(ζ) dζ = Res[f(ζ), 0] + Res[f(ζ), z] = (- 1/z) + (1/z) = 0.当| z | = 0时,f(ζ)在C内部的唯一奇点0是2阶极点,故(1/(2πi))⎰C f(ζ) dζ = Res[f(ζ), 0] = 0.3. 设f(z)在| z | < 1内解析,在| z | ≤ 1上连续,试证:(1 - | z |2) f(z) = (1/(2πi))⎰C : | ζ| = 1f(ζ) ((1-z*ζ)/(ζ- z)) dζ,其中z属于C的内部.【解】设g(ζ) = f(ζ) ((1-z*ζ)/(ζ- z)).若f(z) = 0,则z是g(ζ)的解析点,因此g(ζ)在| ζ | < 1内解析,在| ζ | ≤ 1上连续,故⎰C : | ζ| = 1g(ζ) dζ = 0,因此等式成立.若f(z) ≠ 0,则z是g(ζ)的一阶极点,故(1/(2πi))⎰C : | ζ| = 1f(ζ) ((1-z*ζ)/(ζ- z)) dζ = Res[f(ζ) ((1-z*ζ)/(ζ- z)), z]= f(z) (1-z*z ) = (1 - | z |2) f(z).4. 试证:(z n/n! )2 = (1/(2πi))⎰C : | ζ| = 1 (z n e zζ)/(n! ζ n + 1 ) dζ,这里C是围绕原点的一条周线.【解】只需要证明,当z≠ 0时,z n/n! = (1/(2πi))⎰C : | ζ| = 1 e zζ/ζ n + 1dζ.由高阶导数公式,(n!/(2πi))⎰C : | ζ| = 1 e zζ/ζ n + 1dζ = (e zζ)(n)|ζ= 0= (z n e zζ)|ζ= 0= z n.或(1/(2πi))⎰C : | ζ| = 1 e zζ/ζ n + 1dζ = Res[e zζ/ζ n + 1, 0] = ((e zζ)(n)|ζ= 0)/n!= z n/n!.5. 试证(含∞的区域的留数定理):设D是 ∞内含有∞的区域,其边界C是由有限条互不包含且互不相交的周线C1, C2, ..., C m组成,又设函数f(z)在D内除去有限个孤立奇点z1, z2, ..., z n及∞外解析,且连续到边界C,则⎰-C f(z) dz = 2πi ( ∑1≤k≤n Res[f(z), z k] + Res[f(z), ∞] ).【解】∀j : 1 ≤j ≤m,因∞不在C j上,故C j ⊆ 中,因此C j是有界集.故可取充分大的R > 0,使得周线C1, C2, ..., C m及在 中的孤立奇点z1, z2, ..., z n 都在圆K = { z∈ | | z | < R }内.由留数定理,⎰∂K f(z) dz + ⎰-C f(z) dz = 2πi∑1≤k≤n Res[f(z), z k];而Res[f(z), ∞] = - (1/(2πi))⎰∂K f(z) dz,所以,⎰-C f(z) dz = 2πi ( ∑1≤k≤n Res[f(z), z k] + Res[f(z), ∞] ).∀∃∅-⨯±≠≥·◦≤≡⊕⊗≅αβχδεφγηιϕκλμνοπθρστυϖωξψζ∞•︒ℵℜ℘∇∏∑⎰⊥∠ √§ψ∈∉⊆⊂⊃⊇⊄⊄∠⇒♣♦♥♠§ #↔→←↑↓⌝∨∧⋃⋂⇔⇒⇐∆∑ΓΦΛΩ∂∀m∈ +,★z∈ ∞α1, α2, ...αn lim n→∞,+n→∞∀ε > 0,∑u n,∑n≥ 1u n,m∈ ,∀ε > 0,∃δ> 0,【解】z⎰[0, 2π]l 2 dx,f(x) = (-∞, +∞)[-π, π]∑1 ≤k≤n u n,[0, 2π]。
复变函数西安交大 第四版第六讲PPT课件

▪ 若z0 D ln i m sn (z0 ) s(z0 ),称 级 数(1)在z0收 敛, 其 和 为s(z0 ), ln i m sn (z0 )不 存 在 , 称 级 数(1)在z0发 散 。
且
u u ( ) ( )
y y x x
v x
dx
v y
dy
u y
dx
u x
dy
v
d v(
x,
y)
( x, y)
u
u
v(x, y)
( dx dy) c ()
y ( x0 , y0 )
x
第7页/共47页
v u v u 满 足C R方 程. x y y x
u iv在D内 解 析.
n0 n! n0 n!
n0 n!
(3)
n1
(1)n
收
敛
,
n
n1
1 2n
收
敛
,
n1
(
(1)n n
i 2n
)收 敛.
又 (1)n 条 件收 敛,原 级数 非 绝对 收 敛. n1 n
第24页/共47页
例3
讨论
z
n
的
敛散性。
n0 n!
解
令 z r,
zn
rn er
n0 n! n0 n!
1. 复数列的极限 2. 级数的概念
第17页/共47页
1. 复数列的极限
定义 设复数列{:n}(n 1,2,),其中n=an ibn,
又设复常数: a ib,
若 0, N 0, n N , 恒 有n ,
那 么称 为 复 数 列{n }当n 时 的 极 限 ,
记
(完整版)复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用§1.留数1.(定理6.1 柯西留数定理):∫f(z)dz=2πi∑Res(f(z),a k)nk=1C2.(定理6.2):设a为f(z)的m阶极点,f(z)=φ(z) (z−a)n,其中φ(z)在点a解析,φ(a)≠0,则Res(f(z),a)=φ(n−1)(a) (n−1)!3.(推论6.3):设a为f(z)的一阶极点,φ(z)=(z−a)f(z),则Res(f(z),a)=φ(a) 4.(推论6.4):设a为f(z)的二阶极点φ(z)=(z−a)2f(z)则Res(f(z),a)=φ′(a)5.本质奇点处的留数:可以利用洛朗展式6.无穷远点的留数:Res(f(z),∞)=12πi∫f(z)dzΓ−=−c−1即,Res(f(z),∞)等于f(z)在点∞的洛朗展式中1z这一项系数的反号7.(定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为a1,a2,…,a n,∞,则f(z)在各点的留数总和为零。
注:虽然f(z)在有限可去奇点a处,必有Res(f(z),∞)=0,但是,如果点∞为f(z)的可去奇点(或解析点),则Res(f(z),∞)可以不为零。
8.计算留数的另一公式:Res (f (z ),∞)=−Res (f (1t )1t 2,0)§2.用留数定理计算实积分一.∫R (cosθ,sinθ)dθ2π0型积分 → 引入z =e iθ注:注意偶函数二.∫P(x)Q(x)dx +∞−∞型积分1.(引理6.1 大弧引理):S R 上lim R→+∞zf (z )=λ则lim R→+∞∫f(z)dz S R=i(θ2−θ1)λ 2.(定理6.7)设f (z )=P (z )Q (z )为有理分式,其中P (z )=c 0z m +c 1z m−1+⋯+c m (c 0≠0)Q (z )=b 0z n +b 1z n−1+⋯+b n (b 0≠0)为互质多项式,且符合条件:(1)n-m ≥2;(2)Q(z)没有实零点于是有∫f (x )dx =2πi ∑Res(f (z ),a k )Ima k >0+∞−∞注:lim R→R+∞∫f(x)dx +R −R 可记为P.V.∫f(x)dx +∞−∞ 三. ∫P(x)Q(x)e imx dx +∞−∞型积分 3.(引理6.2 若尔当引理):设函数g(z)沿半圆周ΓR :z =Re iθ(0≤θ≤π,R 充分大)上连续,且lim R→+∞g (z )=0在ΓR 上一致成立。
复变函数第六章.ppt

6.2.1 函数的卷积
定义6.1 设函数 f1(t) 和 f2(t ) 都是(,)上的 绝对可积函数, 积分
f1( x) f2(t x)dx
称为函数 f1(t)和 f2(t ) 在区间(, )上的卷积. 记 为 ( f1 f2 )(t ) 或 f1(t ) f2(t )f1 f2 )(t) f1( x) f2(t x)dx.
设 de ( x)是当 x
0 时,
lim
e 0
d
e
(
x)
0,
在(, )
上可积的函数,并且对任何无穷可微的函数f (x), 有
lim
e 0
de ( x) f ( x)dx
f (0).
特别地,当 f ( x) 1 时,
lim
e 0
de ( x)dx 1.
满足这些条件的函数 de ( x)称为d 逼近函数. d 函
这是 [0,)上的卷积公式.
例6.1 求 f1(t) t 和 f2(t ) sin t 在 [0,)上的 卷积.
解 由 [0,)上的卷积公式
f1(t ) f2(t ) t sin t
t
0 x sin(t x)dx
x cos(t x) t
t
cos(t x)dx
0
0
t sin t.
卷积具有下面一些性质(这里假定所有的广义 积分均收敛, 并且允许积分交换次序):
(1) 交换律 f1(t ) f2(t ) f2(t ) f1(t ).
证明 由卷积的定义
f1(t ) f2(t ) f1( x) f2(t x)dx.
令 t x u, 则 dx du, 并且
f1(t ) f2(t ) f2(u) f1(t u)du
复变函数第六章共形映射习题ppt课件

在 z平面上任意给定三个相异的点z1, z2, z3,
在 w 平面上也任意给定三 个相异的点w1, w2, w3, 那么就存在唯一的分式线性映射, 将 zk (k 1,2,3) 依次映射成 wk (k 1,2,3).
即w az b (ad bc 0)可由下式给出: cz d
w w1 : w3 w1 z z1 : z3 z1 . w w2 w3 w2 z z2 z3 z2
故命题得证.
[证毕]
29
例6 试将如图所示的区域映射到上半平面.
解
取分式线性映射w1
z z
i i
,
将切点i映射为w1 ,并将
z i映射为w1 0.
y i
•
O
1x
由分式线性映射的保圆性知:
i
w1将两相切的圆周映射为两平行的直线(且w1(1) i).
取旋转变换
w2
i
e 2 w1
iw1
将铅直带形域
3) 当二圆交点中的一个映射成无穷远点时, 这 二圆周的弧所围成的区域映成角形区域.
14
5. 几个初等函数所构成的映射
1) 幂函数 w zn(n 2). 映射特点: 把以原点为顶点的角形域映射成以原 点为顶点的角形域, 但张角变成为原来的 n 倍.
(z)
0
0
w zn zn w
(w)
n 0
0
15
的一条有向光滑曲线 w f [z(t)], z , 且
4
1) 导数f (z0 ) 0的幅角Arg f (z0 )是曲线C经过 w f (z)映射后在z0处的转动角. 2) 转动角的大小与方向跟曲线C的形状与方向 无关.
3)保角性 相交于点z0 的任意两条曲线C1与 C2之间的
《复变函数论》第六章

第六章 留数理论及应用第一节 留数1、留数定理:设函数f (z )在点0z 解析。
作圆r z z C =-|:|0,使f (z )在以它为边界的闭圆盘上解析,那么根据柯西定理,积分⎰Cdz z f )(等于零。
设函数f (z )在区域R z z <-<||00内解析。
选取r ,使0<r<R ,并且作圆r z z C =-|:|0,那么如果f (z )在0z 也解析,则上面的积分也等于零;如果0z 是f (z )的孤立奇点,则上述积分就不一定等于零;这时,我们把积分⎰C dz z f i)(21π 定义为f (z )在孤立奇点0z 的留数,记作),(Res 0z f ,这里积分是沿着C 按逆时针方向取的。
注解1、我们定义的留数),(Res 0z f 与圆C 的半径r 无关:事实上,在R z z <-<||00内,f (z )有洛朗展式:∑+∞-∞=-=n n nz z z f )()(0α,而且这一展式在C 上一致收敛。
逐项积分,我们有,2)()(10-+∞-∞==-=∑⎰⎰απαi dz z z dz z f n Cnn C因此,10),(Res -=αz f 。
注解2、即f (z )在孤立奇点0z 的留数等于其洛朗级数展式中1z z -的系数。
注解3、如果0z 是f (z )的可去奇点,那么.0),(Res 0=z f定理1.1(留数定理)设D 是在复平面上的一个有界区域,其边界是一条或有限条简单闭曲线C 。
设f (z )在D 内除去有孤立奇点n z z z ,...,,21外,在每一点都解析,并且它在C 上每一点都解析,那么我们有:),,(Res 2)(1k nk Cz f i dz z f ∑⎰==π这里沿C 的积分按关于区域D 的正向取。
证明:以D 内每一个孤立奇点k z 为心,作圆k γ,使以它为边界的闭圆盘上每一点都在D 内,并且使任意两个这样的闭圆盘彼此无公共点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)工程技术中所遇到的函数大部分是存在拉氏变 换的。
(3)如果f (t)为指数级函数,则其增长指数不唯一。
}
三、 拉氏逆变换
定理 若函数f (t)满足拉氏变换存在定理中的条件。
L f (t ) F (s)
β0为收敛坐标,则L
-1[F(s)]由下式给出
1 j st f (t ) F ( s ) e ds j 2j
}
2、积分变换的作用
}
§2 拉普拉斯变换简介
一、拉氏变换和拉氏逆变换的定义
设函数f(t)当t 0时有定义,而且积分 0 (s是一个复参量),在s的某一域内收敛,则由此 积分决定的函数可写为 F (s) 0 f (t )est dt, (1) 称F ( s)为f (t ) 的拉普拉斯变换(简称拉氏变换)或 象函数,记为 L f (t ) ,即 F(s) L f (t ) 又称 f (t ) 为 F ( s) 的拉普拉斯逆变换(简称为拉氏 逆变换)或象原函数,记 L-1F (s) 即 f (t ) L-1F (s)
T T , 2 2
上满足狄利克雷条件,即满足以下条件:
⑴ 连续或者只有有限个第一类间断点;
⑵ 只有有限个极值点。
那么在
T T , 2 2
上fT(t)可以展成付氏级数。
}
在fT(t)的连续点处,付氏级数的三角形成为
a0 fT (t ) (an cosnt bn sin nt ) 2 n1 (1)
则积分F () f ( )e j d存在,并且在f (t)的连续点处
1 jt f (t ) F ( ) e d 而在f (t)的间断点t0处,应以 2 1 f (t0 0) f (t0 0) 代替该式左端的f (t)。 2
fT(t)的周期相同,因而称为基波频率,nω称为fT(t) 的n次谐波频率。
2 T a0 2T fT (e)dt T 2
2 T d n 2T fT (e)dt (n 1,2,3,) T 2
2 其中 称为频率,频率ω对应的周期T与 T
2 T bn 2T fT (t ) sin ntdt (n 1,2,3,) T 2
f (t )e st dt
}
二、拉氏变换的存在定理
拉氏变换存在定理 设函数f (t)满足下列条件: 1、当t<0时,f (t)=0; 2、f (t)在t≥0的任一有限区间上分段连续,间 断点的个数是有限个,且都是第一类间断点;
3、f (t)是指数级函数。
则f (t)的拉氏变换
F ( s)
}
1 f (t ) 2
f ( )e i d e jt d
这个公式称为函数f (t)的付里叶积分公式。
}
付氏积分定理 : 若f (t)在(-∞,+∞)上满足下列条件: 1°在任一有限区间满足狄利克雷条件; 2° f (t ) dt
}
在fT(t)的间断点t0处,式 (t0 0) 2
2、付氏级数的复指数形式
fT (t )
3、付氏积分
n
in0t C e n
任何一个非周期函数f (t)都可以看成由某个周 期函数fT(t)当T→+∞时转化而来的。
fT (t ) 即 Tlim f (t )
0
f (t )e st dt
在半平面Re(s)=β>βc上一定存在,此时上式右端 的积分绝对收敛而且一致收敛,同时在此半平面 内,F(s)是解析函数。
}
关于拉氏变换存在定理,做如下的几点说明: (1)从物理应用观点来看,条件2、3都是容易满足 的。实用上所考察的物理过程,往往是用时间函数来 描述的,并且是从某一时刻开始,因此可以选这时刻 为t=0,在此以前情况则不加考虑。例如sint,若要对 它进行拉氏变换则应把它理解为sintu(t)。
( s jw, t 0)
(2)
其中t为f(t)的连续点。 如果t为f(t)的间断点,则改成:
f (t 0) f (t 0) 1 j st F ( s ) e ds 2 2j j
这里的积分路线是平行于虚轴的任一直线 Res=β(>β0)称(2)式为复反演积分公式。
}
二、 付氏变换
1、定义 设f (t)和F(ω)分别是定义在R上的实值和复 值函数,称它们是一组付里叶变换对,如果成立
F (w) f (t )e
jwt
dt
1 f (t ) 2
F ( w)e jwt dw
并称F(ω)为f (t)的象函数或付里叶变换,记为 F[f(t)];称f (t)为F(ω)的象原函数或付里叶逆变 换,记为F-1[F(ω)]
第六章 积分变换
积分变换的内容主要包括傅里叶变换和拉普拉斯 变换的定义、性质、定理及运算等理论,其主要思想是通 过变换来化简函数,以达到解决问题的目的。 在自然科学和工程技术领域中均有广泛的应用, 是重要的运算工具。
}
§1 付里叶变换简介
一、付氏级数 1、付氏级数
设fT(t)是以T为周期的式值函数,如果在